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Abstract—Nuclei segmentation is a fundamental task in digital
pathology analysis and can be automated by deep learning-
based methods. However, the development of such an automated
method requires a large amount of data with precisely annotated
masks which is hard to obtain. Training with weakly labeled data
is a popular solution for reducing the workload of annotation.
In this paper, we propose a novel meta-learning-based nuclei
segmentation method which follows the label correction paradigm
to leverage data with noisy masks. Specifically, we design a
fully conventional meta-model that can correct noisy masks
using a small amount of clean meta-data. Then the corrected
masks can be used to supervise the training of the segmentation
model. Meanwhile, a bi-level optimization method is adopted
to alternately update the parameters of the main segmentation
model and the meta-model in an end-to-end way. Extensive
experimental results on two nuclear segmentation datasets show
that our method achieves the state-of-the-art result. It even
achieves comparable performance with the model training on
supervised data in some noisy settings.

Index Terms—deep learning, histopathological image, meta-
learning, nuclei segmentation, weak annotations

I. INTRODUCTION

Nuclei segmentation, which extracts pixel-level mask of
each nucleus in the image, is an essential and highly challeng-
ing task in digital pathological image analysis. Many important
downstream tasks, such as genotype-phenotype correlation,
survival analysis, etc., rely on the precise segmentation of the
nuclei. In recent years, deep neural networks have made great
progress in the task of nuclei segmentation [1]], [2], [3[], [4],
[5]. However, due to the deep layers and many parameters
of the DNN, a large amount of high-quality data is usually
needed to help the model achieve good performance. Each
pathological image contains tens of thousands of nuclei, and
these nuclei show a high-level heterogeneity, such as different
shapes, sizes, and chromatin patterns. Moreover, some nuclei
appearing in clusters or clumps. All the above situations lead
to the difficulty of the fine-grained nuclei annotation, e.g.,
time-consuming, incorrect, and missing labeling. Therefore,
training a nuclei segmentation model with good performance
using noisy annotation is essential and challenging.
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Recently, many approaches to medical image segmenta-
tion with noisy annotation have been proposed. One popular
schema is based on the additional constraints. Qu [|6] et al. gen-
erated clustering labels and Voronoi diagrams based on point
annotations, supervised the training of Bayesian networks,
and selected nuclei with large uncertainties to be labeled by
the annotators. Tian [7] et al. supervised model training by
iteratively optimizing the generated distance map. This kind
of method’s main problem is that it needs to generate pseudo-
labels based on external knowledge and perform iterative op-
timization. When there is much noise in the data, it is difficult
to converge to better performance. Another popular strategy
used to learning with noisy annotation is the loss re-weighting-
based method. These works focus on learning a weight matrix
to guide the model’s optimization direction, thereby reducing
the impact of label noise. For example, Spatial reweighting
[8]] generates importance weights for each pixel based on the
pixel-wise loss gradient direction to adjust the contribution of
each pixel to model optimization. After that, the MCPM [9]]
method designed a meta-model to protect the segmentation
model from the influence of noise annotations. The weight
map was generated by inputting the loss value map into the
meta-model to illustrate the importance of each pixel, thereby
weakening the influence of noise annotation when the model is
updated. The limitation of the loss re-weighting-based method
is that it can only increase or decrease the weight of the
instance contribution in the learning process, and there is a
problem of information bottleneck. Because these methods
weight the importance of the loss value, the meta-model cannot
distinguish the different input pairs if their loss is the same.

To solve the above-mentioned problems, we propose a new
method Meta Mask Correction termed MMC. We pose the
problem as a label correction problem within a meta-learning
framework and view the label correction procedure as a meta-
process. The idea is to design a fully convolutional meta-model
to correct the noise mask and supervise the training of the
main segmentation model. Specifically, by inputting the feature
maps and noise masks into the meta-model, corresponding
corrected masks are generated. The main contributions of this
paper include:



o Aiming at nuclei segmentation with noisy annotation,
based on the label correction schema, we propose a new
meta-learning framework to train the segmentation model.

o The proposed fully conventional network can learn the
mapping relationship between the noise mask and the
correction mask under the condition of a small number
of clean data.

« Extensive experiments were performed on two datasets to
verify that the proposed method achieves state-of-the-art
performance in nuclei segmentation tasks under different
noise types.

II. METHODOLOGY

In this paper, we present a novel method (MMC) to solve the
nuclei segmentation task with noise in the histopathological
image. When masks of training data contain noise, it is difficult
for the segmentation model to achieve satisfactory generaliza-
tion performance. Noisy masks will provide the wrong direc-
tion for updating model parameters, making the model overfit
the noise. Simultaneously, directly training a model using a
small number of data with fine-grained masks will cause an
over-fitting problem, resulting in sub-optimal situations. Zheng
et al. [10] proposed a meta-learning-based framework.i.e.,
MLC, to map noisy labels to clean labels through a multi-layer
perceptron under the condition of using only a small amount
of clean data. Unlike the image classification model that maps
images to various categories, the image segmentation model
needs to learn a mapping relationship between images and
pixel-level masks. Due to this difference, MLC is hard to
handle the segmentation task. Furthermore, MLP can only
correct one pixel at a time and does not consider the spatial
position relation of different pixels, which is very important
for the segmentation task. Inspired by MLC, we designed the
correction network structure into a fully conventional network
that directly learns a mapping between noisy masks and clean
masks. The fully conventional structure can correct an entire
mask and consider the spatial position relation of different
pixels in an image. The proposed framework and optimization
process are shown in Fig. [T} The specific calculation process of
updating meat-model is as follows: (I) Feed image into Current
U-Net and compute the logits for prediction, @) Feed noisy
mask and prediction logits into C-Net and get its corrected
mask, 3 Compute the loss with logits and corrected mask,
then compute the gradient of the loss with respect to the
parameter of the U-Net, @ Update the U-Net parameter while
keeping the computation graph for the gradient, B) feed a pair
of clean mask and image to the new U-Net and compute the
loss, ® Compute the gradient of loss and update the C-Net.

A. Objective functions

Given a set of clean examples D = {z,y}™ and a set of
weak annotations data D' = {xz,y'} in which M and m
indicate the number of noisy and clean sample and m<M.
y' indicates the noisy mask of image x. The main model is
parameterized as a function with parameter W, y = fyy ().
The meta-model is parameterized as a function with parameter
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Fig. 1. MMC Architecture and optimized process. U-Net and C-Net separately
represent the main segmentation network and the meta-model.

0, y. = go(h(x),y’) to correct the weak mask y’ and example
feature h(x) to a more accurate mask. We treat the training
of the main segmentation model and meta-model as a bi-level
optimization process. Given a fixed meta-model parameters 6,
the optimized solution to W can be found through minimizing
the following objective function:

W, = argming]E(%y/)eD/ﬁ(fW(x),gg(h(ac),y’)) (D

Given a small number of meta-data with clean mask and
optimized W, the optimized solution to 6 can be acquired
through minimizing the following objective functions:

G;V = argminWE(x,y)ED‘c(ya fW(z)) (2
B. Optimization process

In order to obtain the optimal main and meta-model pa-
rameters, we adopt an iterative method to alternately update
the values of W and 6 in an end-to-end way. The one-loop
optimization algorithm mainly includes the following steps:
-Stepl: Initialize main segmentation model parameter V()
and meta-model parameter 6(0).

-Step2: For the i-th iteration, the parameters of the segmen-

tation network are temporally updated as in Eq. (3)), via one

step of gradient descent in minimizing the objective function

Eq. (I). The loss calculation formula of the main segmentation
model at time t is shown in Eq. ().
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« is the learning rate of the main segmentation model.
-Step3: The meta-model parameter 6 can be updated by
minimizing the objective function Eq. (Z), and the update
process is as Eq. (©).
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where L'() = £L(y, f:,) (7)) is calculated on meta-data at time
t+ 1. 3 is the learniné rate of the meta-model.



-Step4: Finally, the main segmentation model parameter W is
updated as in Eq. (6) by minimizing the objective function Eq.
(1), loss calculation formula of the main segmentation model
at time ¢t + 1 is as shown in Eq. (7).
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I1II. EVALUATION
A. Datasets

In the experiment, we selected two datasets MoNuSeg [/11]]
and ccRCC to verify our method’s superiority. MoNuSeg
contains 30 images with pixel-level annotations, each image
with a size of 1000x1000 pixels. The ccRCC dataset is
constructed and annotated by our team. The original whole
slide image is downloaded from TCGA [12]]. Experienced
pathologists select the appropriate area and use the OpenHI
[13] platform for annotation. ccRCC dataset contains 1000
diagnostic areas with 512x512 pixels.

Based on ccRCC and MoNuSeg datasets, we utilize two
methods to generate three datasets (S-ccRCC, S-MoNuSeg,
M-ccRCC) used in our experiment. Two kinds of generation
methods are as flows:

1) Single-nuclei patch generation: we crop each nucleus
according to the pixel-level annotation to ensure that the nuclei
are in the center of the patch, then scale all patches to a size
of 64x64 pixels.

2) Multi-nuclei patch generation: we use the sliding win-
dow method to crop 128x128 areas from the original image
and fine-grained annotations. Each area contains multiple
nuclei and corresponding pixel-level annotations.

We use the single-nuclei generation method to process
ccRCC and MoNuSeg datasets and generate two datasets,i.e.,
S-ccRCC and S-MoNuSeg. Then Multi-nuclei patch genera-
tion method is used to process the ccRCC dataset and generate
M-ccRCC. The specific dataset statistics are shown in Table
m

We use Iou and Dice coefficients as the evaluation indicators
of the experimental results. The calculation formula of Iou and
Dice is shown in Eq. (8) and Eq. (9), in which P represents
model prediction result and G represents corresponding ground
truth mask.

PNG
Tou = UG (8)
) 2x PNG
Dice =576 ®

B. Noisy mask generation

Fine-grained pixel-level annotation of the whole histopatho-
logical image usually takes time and effort. The annotator
needs to outline each nucleus and checks repeatedly to confirm
whether any nuclei are missed in the current area. Partial
coarse-grained annotation can greatly reduce the workload of

TABLE I
DATASET STATISTICS
Methods Single-nuclei patch Multi-nuclei patch
Dataset | S-ccRCC | S-MoNuSeg M-ccRCC
Train 2000 1900 1000
Test 1500 1200 800
Meta 50 30 50

(d) (e)

Fig. 2. Different kinds of annotation. (a) Original Image, (b) Pixel-level
annotation, (c) Partial annotation, (d) Bounding box annotation, (e) Dilation
annotation.

annotators and improve the efficiency of annotating. In order
to simulate the real scene encountered by pathologists and
annotators in the annotating process, we set the following ways
to add noise to the mask:

1) Partial gold annotation: Based on a certain proportion,
we randomly delete a part of the nuclei’s annotation and keep
other gold annotations as shown in Fig. [2| (c).

2) Partial weak annotation: We use two methods to gener-
ate different weak annotations for all datasets, i.e., bounding
box, dilation noise as shown in Fig. [2] (d) and (e). We first
use the Partial gold annotation method to process the dataset.
On this basis, for bounding box noise, each nuclei’s mask
is expanded to a corresponding circumscribed rectangle, and
then the rectangle is randomly expanded by 1 to 3 pixels. For
dilation noise, the dilation morphology operator is employed
to extend the foreground region by 1 to 5 pixels.

C. Implementation details

We utilize the PyTorch framework to implement our MMC
method. The architecture of ResNet-32 [14]] backbone U-
Net [15]] is the main segmentation model. The meta-model
structure includes a layer of 3x3 and 1x1 convolution. The
learning rate of the main segmentation model is set to 1x10~3
and drops 0.1 after 300 epochs, and a total of 500 epochs are
trained. The learning rate of meta-model is set to 1x10~%, and
Adam [16] is used to optimize the two network parameters.

D. Comparison with Existing Methods

We conducted experiments on both single- and multi-nuclei
patch datasets. In the single-nuclei patch segmentation, we
conducted comparative experiments under all three kinds of
noise. The experimental results are shown in Table [[I, "U-Net
FT’ means using noisy data for training and then fine-tuning
on the clean meta-data. *U-Net Clean’ represents optimal
performance that the segmentation model can achieve if there
is no noise in the supervised scenario’s training data. We
chose two latest medical image segmentation methods based
on meta-learning, MCPM and spatial reweighting(termed SR)
for comparison. According to the above-mentioned noisy



TABLE II
COMPARISON RESULTS UNDER DIFFERENT NOISY TYPES

Dataset S-ccRCC

S-MoNuSeg

Noise Bounding box Dilation

Partial

Bounding box Dilation

Metric Dice Tou Dice Tou Dice

Tou Dice Tou Dice

U-net FT
SR
MCPM
MMC
U-net Clean

0.5423 | 0.3747
0.6185 | 0.4159
0.7016 | 0.5426
0.8395 | 0.7244
0.8599 | 0.7557

0.6349 | 0.4683
0.7079 | 0.5534
0.7449 | 0.5955
0.8642 | 0.7619
0.8599 | 0.7557

0.6133
0.6256
0.7497
0.8696
0.8599

0.4454
0.4763
0.6014
0.7700
0.7557

0.5371 | 0.3926
0.6281 | 0.4611
0.6172 | 0.4472
0.6887 | 0.5271
0.7896 | 0.6537

0.6537
0.6820
0.7483
0.7837
0.7896

generation method, we add 40% noise for each condition. Our
method achieves the best results under both the Dice and Iou
metrics at S-ccRCC. For bounding box, dilation, and partial
gold noise, our method’s Dice value has achieved performance
improvements of 0.1397, 0.1194, and 0.1199 respectively. Our
method even achieved better results than training with clean
data in the supervised scenario for dilation and partial gold
noise. In bounding box noise, the performance gap between
our method and *U-Net supervised’ is just about 2 percent.
Our method also achieves the best result at the S-MoNuSeg
dataset. In the partial gold noise condition, the segmentation
result is shown in Fig. [3| The contour of nuclei segmented by
our method is more accurate. This shows that our method can
better suppress the influence of noise labels in the training
data under the condition of only a small amount of fine-
grained annotations and can train a model with satisfactory
segmentation performance.

In the multi-nuclei patch segmentation experiment, our
method still achieved the best performance under three kinds
of noisy types, as shown in Table For bounding box,
dilation, and partial gold noise, our method’s Dice value has
achieved performance improvements of 0.0494, 0.0925, and
0.0572, respectively. The segmentation results of the multi-
nuclei patch are shown in Fig. f] Our method can better
suppress the influence of noise, and has a higher recognition
ability for foreground and background.

We also verified the influence of different meta-model
structures on the segmentation performance. From the Table
it can be seen that in the condition of partial gold noise,
when the meta-model structure has two convolutional layers
with kernel in size of 3x3 and 1x1, our method achieves the
best performance.

TABLE III
M-cCRCC EXPERIMENT RESULTS

M-ccRCC  Bounding box
MCPM 0.6732
MMC 0.7228

Partial
0.6967
0.7539

Dilation
0.6780
0.7705

TABLE IV
THE INFLUENCE OF META-MODEL STRUCTURES

S-ccRCC
0.8696
0.8114
0.7464

Meta-model
3%3 + %]
3%3 + 3%3 + [*]
3%3 + 5%5 + [*]

S-MoNuSeg
0.8069
0.7296
0.7277

(2)

Fig. 3. S-ccRCC segmentation result. (a) original image, (b) pixel-level
ground truth, (c) spatial reweighting, (d) MCPM, (e) MMC.

MCPM MMC

Fig. 4. M-ccRCC segmentation result. Red box marked places show the
advantages of MMC.

IV. CONCLUSION

This paper proposes a novel meta-learning method MMC
to learn an automated nuclei segmentation model with noisy
annotation. Only a very small amount of high-quality and
pixel-level annotation is needed, and the meta-model can map
a large number of noisy masks to corrected masks, which
supervises the main segmentation model training to achieve
good performance. The parameters of the main segmentation
model and meta-model adopt a bi-level optimization strategy.
Extensive experimental results on two datasets show that
MMC has superior performance compared with the latest loss-
weighted methods. It even exceeds the performance of the



model trained on clean data in the supervised scenario in some
settings.

V. DISCUSSION

The proposed method in this paper solves how to suppress
the influence of noise in the nuclei segmentation problem and
achieves the best results. However, the bi-level optimization
method adopted by MMC requires three times the training
time compared to the traditional training method. The paper
uses ResNet-32 for feature extraction during the experiment.
When the backbone is replaced with a structure with stronger
feature extraction capability, the performance of MMC can
be further improved. The proposed method is also universal,
and the segmentation model can be easily replaced with any
structure.
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