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Abstract—Electronic health records (EHRs) contain patients’
heterogeneous data that are collected from medical providers
involved in the patient’s care, including medical notes, clinical
events, laboratory test results, symptoms, and diagnoses. In the
field of modern healthcare, predicting whether patients would
experience any risks based on their EHRs has emerged as a
promising research area, in which artificial intelligence (AI)
plays a key role. To make AI models practically applicable, it
is required that the prediction results should be both accurate
and interpretable. To achieve this goal, this paper proposed a
label-dependent and event-guided risk prediction model (LERP)
to predict the presence of multiple disease risks by mainly
extracting information from unstructured medical notes. Our
model is featured in the following aspects. First, we adopt a
label-dependent mechanism that gives greater attention to words
from medical notes that are semantically similar to the names of
risk labels. Secondly, as the clinical events (e.g., treatments and
drugs) can also indicate the health status of patients, our model
utilizes the information from events and uses them to generate
an event-guided representation of medical notes. Thirdly, both
label-dependent and event-guided representations are integrated
to make a robust prediction, in which the interpretability is
enabled by the attention weights over words from medical notes.
To demonstrate the applicability of the proposed method, we
apply it to the MIMIC-III dataset, which contains real-world
EHRs collected from hospitals. Our method is evaluated in both
quantitative and qualitative ways.

Index Terms—Label-dependent prediction, Event-guided pre-
diction, Cross-attention mechanism, Disease risk prediction.

I. INTRODUCTION

Artificial intelligence (AI) is being increasingly applied to
extract information from electronic health records (EHRs) for
implementing various prediction tasks, such as ICU staying
time estimation [13], disease diagnosis [4], [8], statistical
phenotype prediction [4], and etc. EHRs collect heterogeneous
information about the patients from medical providers involved
in the patients’ care, including medical notes, laboratory
observations, treatments, clinical events, electrocardiogram
waveforms (ECG), and medication.

With rapid advances in deep learning, many methods like
attention-based RNN [13] and convolutional neural networks
(CNN) [2] are being developed to predict disease risks using
EHRs. To make these models practically useful, the predictive
model is required to generate interpretable results while still
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retaining predictive power. However, for rare diseases, afore-
mentioned approaches would not be applicable due to the lack
of prior knowledge.

This paper aims to develop an AI model to fulfil the disease
risk prediction task, and we are interested in utilizing attention-
based methods to achieve interpretability for the task of risk
prediction using medical notes. Our approach is different
from self-attention-based methods [11] which did not use any
external information to learn the important weights of words in
medical notes. We propose a label-dependent and event-guided
risk prediction (LERP) model that both names of disease risk
labels and clinical events would be used to determine the
importance of different words from medical notes. Apart from
using the names of disease risk labels, we also use clinical
events to set the attention weights of words from medical
notes. Clinical events are treatments received from clinicians,
and thus can be very informative in reflecting the patient health
status. Our contributions can be summarized as follows:

• We propose a cross-attention mechanism to learn the
attention weights of words in medical notes by measuring
their semantic similarities with names of disease risk
labels and clinical events.

• To encode textual information, we apply a pre-trained
biomedical language model, Clinical-BERT [1], for
jointly embedding names of disease risk labels, clinical
events, and medical notes such that information learned
from a large biomedical corpus can naturally be incor-
porated into the model. Label names, clinical events,
and words in medical notes with similar meanings will
be assigned with similar embedding vectors by Clinical-
BERT.

II. RELATED WORK

A. Label-dependent Predictive Modelling

Label-dependent predictive models are being developed
in various domains, such as computer vision (CV) (e.g.,
object detection [7]) and modern healthcare (e.g., disease
codes prediction [8]). In the medical healthcare domain, [8]
first proposed the convolutional attention for a multi-label
classification model (CAML) and deep CAML to predict
multiple diseases by introducing the label information via a
attention layer. Following the work of CAML, [12] proposed
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the label-embedding attentive model (LEAM) to jointly learn
the embeddings of medical notes and label names in the same
latent space.

B. Using Clinical Events for Disease Prediction

Clinical events recorded in EHRs indicate treatments that
were given to patients based on their own clinical condi-
tions. Many researchers attempted to use clinical events for
predictive model construction. [13] treated clinical events
as interventions and also adopted the attention mechanism
to generate the weighted embedding of electrocardiogram
(ECG) for patients’ mortality prediction. [3] adopted the gated
recurrent units (GRUs) to detect relationships among various
time-stamped events for the heart failure prediction.

III. METHODS

A. Problem Definition and Notations

In this work, we focus on using medical notes and clinical
events to predict whether patients would experience some
disease risks. Let us first define the vocabulary of words that
occurred across all EHRs as V , whose size is represented
as |V |. The information from each EHR used for the risk
prediction is defined as X = {M ,LE ,LY }. Here, M =
{m1, ...,mNM

} contains a sequence of words from a medical
note; LE = {l1, ..., lNE

} refers to a set of clinical events;
and LY = {l1, ..., lNY

} represents the names of disease risk
labels. Each element from M , LE , LY is a |V |-dimensional
one-hot vector for representing a word, an event and the name
of a risk label, respectively. Please note that for each EHR,
M and LE are different but LY is identical. This is because
LY just encodes names of disease risk labels and does not
indicate their presence. A sample from the training dataset is
represented as (X,y), where y ∈ Y is a NY -dimensional
vector with elements equal to 1 or 0 indicating the presence
of different disease risks. The goal for disease risk prediction
is to learn a mapping function f : X → Y by minimizing the
prediction loss.

B. Model Overview

Fig. 1 shows the details of our proposed model, LERP. The
text encoder based on Clinical-BERT first converts the medical
note M , the sequence of clinical events LE , and the names
of disease risk labels LY into embedding matrices EM , EE ,
and EY , respectively. Then the cross-attention mechanism is
introduced to generate attention matrices αE and αY . αE

measures the similarities between elements from EM and
EE , while αY is similarly calculated for EY and EM . With
these two attention matrices, the model obtains two weighted
representations of the medical note, denoted as zE and zY .
Our model uses the information encoded in zE and zY to
predict the presence of NY different disease risks.

C. Embedding Layer

First, M , LE , and LY are passed through an embedding
layer f0 to get EM ∈ RD×NM , EE ∈ RD×NE and
EY ∈ RD×NY , where D is the embedding size. In our model,

Fig. 1. The structure of the LERP Model. It takes the information from
medical notes, clinical events and names of disease risk labels as the inputs.
LERP is composed of embedding layers for textual information embedding,
cross-attention layer for learning weighted representations of the medical note,
and the fusion layer together with the output layer to predict the presence of
different disease risks.

f0 is implemented by Clinical-BERT [6]. To get embedding
matrices EY and EE , we use the averaged embeddings of
input tokens to represent the overall embedding of an event or
the name of a disease risk label. To generate EM , Clinical-
BERT encodes medical notes and returns NM embedding
vectors for all NM words.

D. Cross-attention Layer

The cross-attention layer is illustrated in the middle part of
Fig. 1, where EM , EE , and EY are the inputs. We first apply
a fully connected layer f1 to reduce the embedding dimension
of EM , EE , and EY from D to F . The outputs of f1 are
then used to compute the scaled-dot similarity matrices GE ∈
RNM×NE and GY ∈ RNM×NY :

GE = ScaledDot(f1(E
M ), f1(E

E)) =
(f1(E

M ))T ∗ f1(EE)√
F

(1)
where the (.)T is the transpose operator and ∗ is the matrix
product operator. We use the same equation to calculate GY

with the input of EY and EM .
We use a one-dimensional (1-D) CNN with a max-pooling

(MP) layer to better capture the relative spatial information
of successive words and to increase the ability of implicit
information extraction:

uE =MaxPool(ReLU(Conv(GE , k1, q)), k2) (2)

where ReLU is the nonlinear activation layer, k1 is the kernel
width (N-Gram) of CNN, q is the padding size of CNN (set to



‘same padding’ in our implementation), and k2 is the kernel
width of MP. The uY is generated by the same formula as
uE with input of GY .

The outputs uE ∈ RNM and uY ∈ RNY are then normal-
ized by a SoftMax function to generate αE and αY . With αE

and αY , we can obtain the two weighted representations of
the medical note as follows:

zE , zY =

NM∑
n=1

αE
nE

M
n ,

NM∑
n=1

αY
nE

M
n (3)

where EM
n ∈ RD is the nth column of EM , αE

n and αY
n

are the nth elements from αE and αY respectively.

E. Fusion and output Layers

After we have obtained zE and zY , we combine them into
one vector via fully connected layers f1, f2, and f3:

ŷ = Sigmoid(f3(f1(f2(z
E ⊕ zY ))), (4)

where ⊕ is the concatenation operator and ŷ ∈ NY .

F. Model Training

To train our model, the loss for each EHR is defined as
follows:

Loss = − 1

NY

NY∑
j=1

(yj · log(ŷj)) + (1− yj) · log(1− ŷj)),

(5)
where yj ∈ {0, 1} indicates the presence of the jth disease
risk.

IV. EXPERIMENTS

A. Experimental Dataset

We evaluate the performance of our proposed LERP model
on a public EHR dataset, MIMIC-III [6]. In this paper, for
disease risk prediction we only focus on using the information
from medical notes of the discharge summary and clinical
events. We choose 25 types of disease risks (defined in [4])
as our prediction tasks, where some of them are clinically
different. Across all EHRs, there are 1,152 distinct clinical
events. The MIMIC-III dataset contains 58,976 EHRs from
46,520 patients. We select 31,484 unique EHRs with no
missing information. The data pre-processing approach used
in CAML is adopted to analyze the unstructured medical
notes. For performance evaluation, we follow the data splitting
strategy as used in [4] to get 25,190 training and 6,294 testing
samples (80% for training and 20% for validation).

B. Comparative Methods and Implementation Details

In order to make a comprehensive comparison, we compare
our model with other comparative methods as described below:

• LEAM: LEAM is a cutting-edge deep learning model
that was created specifically for ICD-9 code prediction by
utilizing textual information of medical notes. We select
the default setting of LEAM as implemented in 1 for
comparison.

1https://github.com/guoyinwang/LEAM

• TS: This baseline model applies Clinical-BERT [5] to
embed medical notes. The self-attention mechanism [11]
is adopted to encode information from the medical notes
for disease risk prediction.

• LERP: Our LERP model2 is a label-dependent and event-
guided approach to make interpretable risk predictions.
Medical notes, names of disease risk labels, and clini-
cal events are embedded by Clinical-BERT. The cross-
attention mechanism is introduced to assign attention
weights to words from medical notes based on the se-
mantic similarities among words, events, and names of
disease risk labels.

• LERP−: This is a modified version of LERP that clinical
events are not included in the risk prediction model.
Attentions of words from medical notes are determined
by their semantic similarities with names of disease risk
labels.

C. Quantitative analysis

The performance of all comparative models is evaluated
using the following metrics: precision, recall, and ROC AUC
score. We compute both micro- and macro-averages for these
metrics. Table I shows the results of all comparative methods,
from which we have the following observations:

• Compared with LEAM which does not use Clinical-
BERT for textual information embedding, our LERP
model returns higher values for most evaluation metrics.
Especially, LEAM has much lower recall values. This is
because Clinical-BERT can be useful in learning seman-
tic representations of medical textual information. This
observation demonstrates the power of incorporating the
pretrained language model for the risk prediction.

• Compared with TS which is not label-dependent, LERP
returns higher values in most evaluation metrics as well.
This observation indicates that the cross-attention mech-
anism, making the predictive model label-dependent,
would work better than the self-attention mechanism.

• Compared with LERP− which does not use the infor-
mation from clinical events, the values of evaluation
metrics obtained from our full model are slightly lower
but the difference in ROC AUC values is trivial. This

TABLE I
PERFORMANCE OF COMPARATIVE METHODS

Evaluation Metrics
Models Micro Precision Macro Precision Micro Recall
LEAM 0.7526 0.6308 0.4958

TS 0.7256 0.6533 0.5968
LERP 0.7231 0.6645 0.6075

LERP− 0.7075 0.6598 0.6305
Models Macro Recall Micro ROC AUC Macro ROC AUC
LEAM 0.4347 0.8898 0.8587

TS 0.5404 0.8969 0.8642
LERP 0.5424 0.9001 0.8729

LERP− 0.581 0.9013 0.8737

2https://github.com/finnickniu/LERP

https://github.com/guoyinwang/LEAM
https://github.com/finnickniu/LERP


is because LERP− learns the attentions of words from
medical notes fully dependent on the prediction tasks.
In our full LERP model, attentions are also guided by
clinical events. Although our full model has sacrificed a
little bit of performance, it would give better interpretable
results which will be shown in the following subsection.

D. Qualitative analysis

In this subsection, we carried out case studies to show the
interpretability of our model by investigating which words
from medical notes have gained high attention from our model
and checking whether these words are clinically relevant to
the risks. Three EHRs for patients with different disease risks
have been randomly selected from the MIMIC-III dataset.
Fig. 2 shows fragments of medical notes, clinical events,
and risks that have been recorded in each EHR. Words from
EHR fragments are highlighted in red, whose darkness are
determined by their attention scores derived from the cross-
attention mechanism. Clinical events and disease risks that are
associated with the given medical note fragments are given
as well. To show whether the event-guided approach would
improve interpretability, we compare results from LERP with
LERP−.

The patient recorded in ‘EHR 1’ has the risks of ‘Coronary
atherosclerosis ...’ and ‘Cardiac dysrhythmias’. By comparing
the results from LERP− and LERP, we can find that LERP,
for example, gives higher attentions to the following two
words from medical notes: ‘Amiodarone’ and ‘hypotensive’.
‘Amiodarone’ is a medicine frequently used to treat both
‘Coronary atherosclerosis ...’ and ‘Cardiac dysrhythmias’ (

Fig. 2. Case studies to compare the interpretable results from LERP and
LERP−. The colour map on the top of this figure maps the colours to
normalized attention scores (ranging from 0% to 100%). In the result table,
the second/third column contains the clinical events/disease risks associated
with the selected fragments of medical notes.

[10]), while ‘hypotensive’ is a typical symptom of these risks
[9]. For the rest cases, we can also find similar result that
LERP can capture more related clinical phases than LERP−.

V. CONCLUSIONS

This study presents an interpretable label-dependent and
event-guided prediction model to predict the presence of
various disease risks by using the names of disease risks,
clinical events, and medical notes from EHRs. We employ
Clinical-BERT as an embedding layer to assist our LERP
model in extracting information from raw textual data. With
the adoption of the cross-attention mechanism, representations
of medical notes are generated by learning attention influenced
by both clinical events and names of disease risk labels. We
evaluate our model LERP using the MIMIC-III dataset to
show its predictive power and interpretability. Case studies
have been conducted to show that the medical terms that
are clinically relevant to the disease risks gain high attention
weights. In the future, we will invite domain experts to
manually annotate our results, for example, to specify which
words from medical notes are relevant to risk labels. As such,
we can quantitatively evaluate the degree of interpretability.
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