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Abstract—Since COVID-19 appeared in December 2019, sci-
entists are researching new ways to improve the management
of the disease. Considering machine learning approaches have
proven to be very useful tools to discover hidden patterns in
data, we propose in this paper to apply a Self Organizing Map
(SOM) to characterize the health-status evolution of COVID-
19 patients. The SOM is a neural network whose neurons can
be represented as cells in a bi-dimensional grid preserving the
mapping from the original space to the map units. We consider
real-world data of hospitalized COVID-19 patients in a Spanish
hospital during the first wave of the pandemic. Patients are
represented by six blood tests (leukocytes and D-dimer, among
others) in a daily basis. Besides, each patient is associated with
one of two different health-status: favorable evolution (discharged
home) and unfavorable evolution (exitus or admission to the
intensive care unit). We show the potential of our approach by
detailing the mapping of the health trajectory associated with
different particular cases and drawing their trajectory on the
bi-dimensional map of the SOM.

Index Terms—SOM, machine learning, COVID-19, disease
progression, blood biomarker.

I. INTRODUCTION

The first case affected by Severe Acute Respiratory Syn-
drome Coronavirus 2 outside of China was registered in
January 2020 [1]. Rapidly, numerous people around the world
started communicating symptoms related to this coronavirus.
A new coronavirus disease named COVID-19 had started
to quickly spread, producing an epidemic with important
health and economic consequences [2]. Since that moment,
the scientific community is doing research to improve the
management of the COVID-19 disease. In this scenario, the
design of models through machine learning (ML) approaches
can provide with advanced techniques to extract relevant
knowledge from clinical data. However, because of the lack
of clinical protocols in the pandemic outbreak, data were not
usually collected in a controlled manner. Both pharmacological
treatments and the results of blood tests stand out among those
data collected more regularly. Owing to the fast changes in

the drug treatments during the first wave of the pandemic [3],
produced by the insufficient number of studies, we focus here
in the analysis of blood tests. In fact, blood tests continue
being for practitioners the main source to know the patient
health status [4] and make a decision about their treatment.

To contribute to the COVID-19 research from a data analytic
perspective, we propose in this paper to use ML approaches,
specifically artificial neural networks driven by the results of
blood tests. Our goal is to gain knowledge about the health-
status evolution (related to the disease progression) of patients
hospitalized with COVID-19. Specifically, we propose the use
of blood tests to build a Self Organizing Map (SOM) [5]
where each neuron is potentially associated with a health-
status. On the one hand, patients with Favorable Evolution
(FE) are those who are discharged home with no previous
admission in the Intensive Care Unit (ICU). On the other hand,
we consider patients with Unfavorable Evolution (UE) as those
either admitted to the ICU or who died (exitus, non survival)
with no ICU admission. Medical practitioners have considered
appropriate to include the ICU patients in the group of UE
patients (regardless of the outcome), since the ICU admission
is caused by a poor health status. In this paper, we call as
“event day” the medical discharge day for patients with FE,
and the day of ICU admission or exitus for patients with UE.

It is important to remark here that the SOM is characterized
because it preserves the mapping from the high dimensional
space to the map units [6]. Therefore, by identifying neurons
with health-statuses, it is possible to use the SOM topology
to show the progression of the patient health-status as a tour
on a bidimensional map, what we named health trajectory.

The rest of the paper is structured as follows. Section II
presents a description of the dataset collected by the Hospital
Universitario del Sureste (HUS, Madrid, Spain), and the
pre-processing applied for using these data in the proposed
approach. In Section III, we detail the procedure for the SOM
training and its application on our data, presenting also the

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 B

io
in

fo
rm

at
ic

s a
nd

 B
io

m
ed

ic
in

e 
(B

IB
M

) |
 9

78
-1

-6
65

4-
01

26
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

B
IB

M
52

61
5.

20
21

.9
66

97
06



1252

model for mapping the health status evolution. In Section IV,
we show the health trajectories of several patients when
mapped on the SOM, together with their clinical interpretation.
Conclusions and future work are presented in Section V.

II. DATASET AND PRE-PROCESSING

We start this section by describing our dataset. Then, we
explain the process to adequate the data to the SOM training
and to characterize the disease progression.

A. Dataset Description

Data were collected during the first wave of the COVID-19
pandemic by the HUS, a Spanish public hospital encompass-
ing 200,000 citizens. Patients considered in this work were
hospitalized between March 3 and June 28. However, those
transferred to another hospital were discarded because lack of
access to data collected by other hospitals.

For the health trajectory characterization, our dataset is
composed of patients who presented more than one laboratory
result (each result in a different day) for each blood test. In
particular, only the blood tests registered while the patient
was hospitalized with a COVID-19 diagnosis have been con-
sidered. This time goes from the admission date to: i) the
discharge date for patients with FE, and ii) either the ICU
admission date or the exitus date for patients with UE.

Based on the clinical knowledge of practitioners and some
works in the literature [4], the following collection of six blood
biomarkers (features) have been considered:

• Leukocytes (F1). They are blood cells whose function is
to defend the body [7]. Their level increases in response
to both viral and bacterial infections [8] [9].

• Lymphocytes in % (F2). They are a type of leukocyte
(F1) which level decreases in cases of viral infections
and malnutrition [7] [8] [9].

• D-Dimer (F3). This is one of the protein fragments
produced when blood clotting is activated [7]. In a normal
health situation, values are almost undetectable [8] [9].

• Lactate dehydrogenase (F4). It is an enzyme found in
tissues of internal organs such as the heart, lungs or
liver [9]. High levels are linked with organic damage [8].

• Aspartate transaminase (F5). This is also an enzyme,
normally presented in the liver an the heart cells, which a
high level indicating damage in those two organs [8] [9].

• C-Reactive Proteine (F6). It is a protein, made by the
liver [9], which increases when there is an inflammatory
process (in any part of the body).

With the above considerations, the total number of patients
in the dataset was 367: 328 with FE and 39 with UE (12
patients in ICU and 27 non-survival patients). For features F2,
F4 and F6 and group of patients (FE and UE), a descriptive
analysis of the first blood tests (label “First”) and of those
obtained in the nearest previous date to the “event day” (label
“Last”) is presented in Fig. 1. Note that the three features show
differences in their distributions. It can be observed that F2 has
a very characteristic pattern, since the most unfavorable cases
generally present a lower value, both in the first and in the last

blood test. This result is in line with the clinical knowledge
in case of viral infections. For F4, values are usually lower
for patients with FE. Regarding F6, one of the inflammation
and organic damage indicators, it also shows values consistent
with the known effects of the virus. Indeed, values of F6 are
lower for patients with FE, showing remarkable differences
between the first and the last blood tests also in FE patients.

Fig. 1. Boxplot of the first and last blood test result for patients with FE
(FE-First and FE-Last) and for those with UE (UE-First and UE-Last). Each
panel shows a blood test: F2 (left), F4 (middle) and F6 (right).

Apart from the high imbalance in the number of patients
with FE and UE, our analysis revealed that there were also
differences in their age distributions. To avoid that this skew
is transformed in a bias in the model learned when using ML
approaches [10], we apply here an undersampling strategy on
the set of patients with FE. The undersampling was randomly
performed so that the age distribution of the overrepresented
group (those with FE) is similar to that of the underrepresented
group (patients with UE). As a consequence, the final dataset
resulted in 78 patients (39/39 patients with FE/UE).

B. Data Preparation
We explain here the two techniques applied on the final

dataset: imputation and normalization. They are necessary for
both training the neural network and for a subsequent mapping
of the patient’s health trajectory.

As previously mentioned, there was no well-defined medical
protocol in the early months of the COVID-19 pandemic and
some of the blood tests in Subsection II-A were not routinely
collected. Although laboratory testing was recommended with
a periodicity of 48-72 hours for stable patients, which might be
reduced according to the patient’s health progression [11], it is
necessary to have one value per day and feature for mapping
the health status on a daily basis.

In the final dataset, blood tests F1 and F2 (usually jointly
provided) have the highest percentage of registered data: about
45.8% of days before the “event day”, i.e. almost every 48
hours. Very similar percentages are obtained for F5 and F6,
with 44.9% and 44.7% of the days, respectively. Finally, F4

and F3 covered the lowest rate of daily blood test values (40%
and 37.9%), maybe because they were incorporated into the
HUS protocol at the end of the considered period of time.

According to the previous analysis, we decided to impute
missing values [12] to work with data on a daily basis.
For the imputation, we applied the “last observation carried
forward” [12] strategy, commonly used in the clinical liter-
ature [13] because of its simplicity. Similarly to a scenario
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in which clinicians makes their decisions based on the last
results, Fig. 2 illustrates the imputation process associated with
six different blood test of a particular patient. Note that each
blood test can be taken in a different day. For each day d with
no new blood test result, the value registered for the same
patient and blood test in the nearest previous day (circle) is
copied (diamond) in the day d. For this particular case, our
approach would allow us to analyze the health trajectory from
06/Apr (left vertical dotted line) to 12/Apr (right dotted line),
since this time interval has values for the six blood tests.

Fig. 2. Scheme for imputing on a daily basis the six blood tests (F1 to
F6, in colour) for a particular patient. Original values are depicted as circles,
while imputed values are diamonds. Horizontal segments represent the carry
forward imputation process. Vertical dotted lines indicate the date of the first
and last day when all tests have a value (original or imputed).

It is a common practice in ML to normalize numerical
features [14] to avoid that those with higher dynamic range
have more influence in the model. This is particularly im-
portant when considering distance-based algorithms such as
SOM. The presence of outliers in the blood tests (see Fig. 1),
suggests the use of a robust normalization procedure to scale
the original features to a standard range. This is similar to
the transformation using a sigmoid function for normaliza-
tion [15], but with no strict saturation in the extremes, just
to get the original values from the transformed ones. Though
this recovery is not necessary in our approach, it may help the
practitioner to analyse the patient’s health-status evolution. fect
the model used to map the trajectory.

Thus, for the i-th blood test Fi, we take the values of
the closest day before the “event day” and compute both the
median (Medi) and the median absolute deviation about the
median (MADi), according to [16]. Next, values of Fi in the
interval [Medi−k ·MADi, Medi+k ·MADi] are shifted around
zero and linearly scaled using F ′

i = (Fi − Medi) /MADi. We
used k = 4 as a reasonable value, empirically chosen after
examining the feature distributions. To mitigate the influence
of outliers, and trying to approximate a sigmoid function
using a piecewise linear transformation, the values of Fi

outside the previous interval are quasi-saturated using a linear
transformation with a very small slope in the extremes.

III. SELF ORGANIZING MAP

We start this section with a brief explanation about SOM
and its training process with the data presented in Section II.
Then, we interpret the results from a clinical viewpoint.

A. SOM Explanation and Model Training
The SOM is a neural network proposed by Kohonen [5]. Its

design is based on statistical learning principles from a set X
of N observations, i.e. X =

{
x(1),x(2), ...,x(N)

}
. The i-th

observation is expressed by a D-dimensional vector such as
x(i) =

[
x
(i)
1 , x

(i)
2 , ..., x

(i)
D

]
, with D = 6 (number of features)

in this work. Regardless of the value of D, the SOM can be
represented by a bidimensional grid of neurons (also named
cells). A very important aspect of SOM refers to its topological
properties, since similar observations in the original space
are positioned in the same cell or in two very near cells of
the map. This property is very important in our particular
scenario, facilitating the interpretation of the patient’s health
trajectory. It is important to remark here that the SOM training
is unsupervised, i.e., no information about the health-status of
the patient is considered during training.

The size of the SOM (number of neurons G in the grid)
must be established before training, since each observation
in X is assigned to the closest neuron in the feature space.
Though the most appropriate value depends on the specific
scenario and dataset, authors in [17] propose G ≈

√
N/2

as a rule of thumb. As our dataset is composed of N = 78
patients, we considered G = 6 cells. Each cell is characterized
by a representative vector also named codebook vector c(j),
with j = 1, . . . , G. The codebook values are obtained by
averaging features of the observations associated with the
corresponding neuron. Thus, the design of the SOM is an
iterative process where observations are assigned to one or
other of the codebook vectors, which values are updated for
T iterations. As proposed in [18], the number of iterations is
determined as T ≈ 500G, resulting in 3, 000 iterations.

For each iteration t, an observation x(i)(t) ∈ X is ran-
domly selected, and the Euclidean distance to every code-
book vector is computed. Then, the nearest codebook (e.g.
c(b)(t)), called the Best Matching Unit (BMU), is identified
and its features are updated by also considering features
of the neighbouring codebooks. The nearest neurons to the
BMU are more influential in the change than those which
are further. This process is modeled by the neighbourhood
function hbj(t) = exp

(
− ||rb−rj ||2

2σ2(t)

)
, where rb and rj are

the positions of the nodes in R2, and σ(t) is the width of the
neighbourhood function, which decreases monotonically with
the number of iterations. In [18], Kohonen also recommends
to start with, at least, half the diameter of the network. This
way, the codebooks update goes from a global environment
(initial iterations) to a local one (final iterations, since σ is
progressively reduced). Thus, the codebooks are updated as

c(j)(t+1) = c(j)(t)+α(t)hbj(t)
[
x(i)(t)− c(j)(t)

]
∀j = 1, ...G

where α(t) is the learning rate controlling the difference
between two consecutive updates of the same codebook. As
indicated in [19], the learning rate should be also a decreasing
function with the number of iterations.

To characterize the health progression, we considered for
the SOM training the collection of N = 78 observations that,
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potentially, more discriminate the patient’s health condition.
Thus, just the feature values associated with one day before
the “event day” have been considered in training.

B. Interpretation of the Trained Model

The bidimensional grid of the SOM and the number and
distribution of FE/UE patients per neuron after training is
shown in Fig. 3. Though no information about the health status
has been provided during training, note that patients assigned
to neurons 1 and 6 (located far away in the grid) have the
opposite health status (but homogeneous in the same neuron,
“pure” neurons). The rest of neurons have assigned patients
with both health statuses (non-pure neuron). Thus, neuron 2
is mostly represented by patients with FE (64% of patients),
whilst neurons 3, 4 and 5 have a higher proportion of patients
with UE (61, 5%, 81, 8% and 66, 6%, respectively).

Fig. 3. SOM topology, with the neuron number embedded in a red circle.
The total number of patients associated with each neuron and the distribution
between FE and UE are indicated inside the neuron.

To interpret each neuron from a clinical perspective, we
present in Fig. 4 the numerical value of each feature in the
codebook vector (circles in black), with one panel per neuron.
The 75% empirical confidence interval (CI) for each feature
and health status, obtained from patients assigned to each
neuron, is also represented: the CI depicted in blue/red is
associated with FE/UE patients. For each neuron and feature,
the median is represented as a dot inside the corresponding
CI. Next, we provide a detailed analysis for each neuron.

As previously indicated, since neurons 1 and 6 just en-
compass patients with the same health status, values of the
codebook features are inside the CI (see Fig. 4). Note, how-
ever, that mean (codebook) and median (marked inside the CI)
might not coincide. Though just the normalized features are
presented here, we have checked that de-normalized values
are in accordance with what is expected in the literature [4].
This means that patients with FE in neuron 1 have moderate
values of F ′

1 and high for F ′
2, while the opposite happens for

patients with UE in neuron 6. With respect to F ′
3, F ′

4 and F ′
6,

the values for UE patients (neuron 6) are higher than those for
FE patients (neuron 1). There is not a significant difference
for both groups of patients when considering F ′

5.
With regard to neuron 5, the analysis of the CI reveals that

both groups of patients show similar values in the blood test
associated with F ′

1, F ′
3 and F ′

6. However, the CI of both groups

Fig. 4. Statistical description of the normalized features associated with each
neuron after the SOM training. The arrangement of neurons (one per panel)
is the same as in Fig. 3. The numerical value of each feature in the codebook
vector is represented as a black circle. The 75% empirical CI associated with
FE patients are in blue, while those of UE patients are in red.

is different for F ′
2, F ′

4 and F ′
5, suggesting that these features

have been very decisive for prognosis.
As for neuron 4, note that the number of patients with

FE is only two. Therefore, it does not seem adequate to
draw conclusive conclusions about differences in the values
of features in both groups of patients. Despite the above, note
that the CI of both groups do not overlap when considering
F ′
6. Associated also with the reduced number of patients with

FE, is the dispersion of values in features F ′
1, F ′

2, F ′
3 and F ′

5,
which is higher for the UE patients than for the FE ones.

Regarding neuron 3, although features F ′
3 to F ′

6 seem to
have similar values to those associated with a FE health status
(as in pure neuron 1), most of the patients assigned to neuron
3 have an UE, likely due to the values of F ′

1 and F ′
2.

Finally, note that the CI of features linked to patients
encompassed by neuron 2 are similar for both groups. Note
also that the CI associated with most of the features of patients
with FE are similar to those of neuron 1. This might justify
why both neurons are closely located in the topological grid.

IV. MAPPING THE PATIENT’S HEALTH TRAJECTORY

We present in this section how the SOM can be used to
map the patient’s health progression as a trajectory in a two-
dimensional grid. For this purpose, we take into account the
blood tests on a daily basis, starting for each patient from the
date with original or imputed values for all the considered
blood test. Thus, for each day d and patient i, the observation
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Fig. 5. Mapping of the health trajectory for each patient in Table I: (a) FE, (b) UE (ICU) and (c) UE (exitus before ICU admission). The beginning of the
path is marked with the circle, while the star is placed on the neuron linked to the day before the event.

vector x(i,d) =
[
x
(i,d)
1 , x

(i,d)
2 , ..., x

(i,d)
6

]
is constructed, and

the normalization is performed. Then, the closest codebook
vector to x(i,d) is found, i.e. the BMU, and x(i,d) is assigned
to it. By considering consecutive days and creating the list of
corresponding BMUs, the health trajectory can be drawn on
the grid. Note that most of the values used to represent the
trajectory have not been used in training.

For interpreting the health trajectory, we present in this
section three representative cases. For each case, we show: (i)
a list in Table I with the date, the values of the non-normalized
features (Fi) and the neuron number (#Neur) the observation
is assigned to; (ii) a sketch in of the grid (see Fig. 5) and the
neurons where the observations are associated with as time
evolves, going for each case from the first date in the list
(circle in the graph) to the last one (star).

The first part of Table I and Fig. 5 (a) show the case of a
patient with FE. From 21/Mar to 27/Mar, observations are in
neuron 1: values of all blood tests, excepting F3 and F4 which
are a bit high, are in the range associated with FE patients.
From 28 to 31 March, the patient’s health status changes
to neuron 2: F1 increases though it continues within values
associated with FE patients, F2 is halved and F3 is almost
doubled, moreover, there is a slight increment of F4 and F6.
The next change in the trajectory, to neuron 6, is justified by an
increase in F1, a decrease in F2 and, specially, a high change
in F3 (the value is tripled). The decrease of values in F4 and
F6, could be the reason for a better health status on 04/Apr,
changing from neuron 6 to neuron 5. The change from neuron
6 to neuron 2 in the last days of the trajectory is due to the
progressive increase of F2, while F1, F3 and F6 decrease. It
is interesting to remark that the last neuron in every trajectory
is linked to the day before the “event day”. It may therefore
be possible that the favourable evolution when the patient is
discharged home, could lead the observation to neuron 1. One
might think that the final health status is worse than the initial
one, since neuron 2 encompasses patients from both groups,
while neuron 1 only have patients with FE. However, it must
be taken into account that the first day presented in Table I
and drew in the trajectory corresponds to the first day during
hospitalization with values for the six blood tests. In other

TABLE I
HEALTH TRAJECTORIES FOR THREE DIFFERENT PATIENTS: WITH FE, UE

(ICU ADMISSION) AND UE (EXITUS BEFORE ICU ADMISSION)

Patient Date F1 F2 F3 F4 F5 F6 # Neur.

FE

21/Mar. 3.24 21.3 950 304 35 31.2 1
22/Mar. 3.24 21.3 950 304 35 31.2 1
23/Mar. 4.03 24.6 2760 467 58 67.4 1
24/Mar. 4.93 24.6 2760 467 58 67.4 1
25/Mar. 5.23 25 760 542 51 79.7 1
26/Mar. 5.23 25 760 542 51 79.7 1
27/Mar. 5.23 25 760 542 51 79.7 1
28/Mar. 6.59 11.8 1370 555 38 196.1 2
29/Mar. 6.59 11.8 1370 555 38 196.1 2
30/Mar. 7.64 12.6 1370 502 28 249.6 2
31/Mar. 7.64 12.6 1370 502 28 249.6 2
01/Apr. 9.02 10.9 4550 410 27 259.9 6
02/Apr. 9.02 10.9 4550 410 27 259.9 6
03/Apr. 9.02 10.9 4550 410 27 259.9 6
04/Apr. 9.41 10.8 4570 262 24 100 5
05/Apr. 9.41 10.8 4570 262 24 100 5
06/Apr. 9.41 10.8 4020 345 23 167.9 6
07/Apr. 9.41 10.8 4020 345 23 167.9 6
08/Apr. 8.73 14.7 4020 331 29 165.1 2
09/Apr. 8.73 14.7 4020 331 29 165.1 2
10/Apr. 7.95 18.4 2400 242 25 115.2 2
23/Mar. 4.04 22.1 590 397 55 58.9 1
24/Mar. 3.97 13.8 460 365 42 81.9 2

UE (ICU 25/Mar. 3.97 13.8 460 365 42 81.9 2
admis.) 26/Mar. 6.74 6 540 497 77 139.7 4

27/Mar. 7.97 5.7 580 566 61 194.1 4
01/Apr. 15.55 8.3 890 526 63 108.6 3
02/Apr. 15.55 8.3 890 526 63 108.6 3
03/Apr. 12.06 9.6 1100 509 94 208.5 4
04/Apr. 12.06 9.6 1100 509 94 208.5 4
05/Apr. 11.1 6.9 2050 390 106 145.8 4

UE (Exitus 06/Apr. 11.1 6.9 2050 390 106 145.8 4
before ICU 07/Apr. 26.46 2.1 2670 429 49 217.3 6

admis.) 08/Apr. 26.22 2 2180 382 61 76.5 3
09/Apr. 26.22 2 2180 382 61 76.5 3
10/Apr. 20.73 4.3 4510 506 139 18.9 5
11/Apr. 20.73 4.3 4510 506 139 18.9 5
12/Apr. 20.73 4.3 4510 506 139 18.9 5

words, the patient may have been hospitalized several days
before the first date indicated in Table I, since one or more of
the six blood tests have not been taken. Thus, the first days
of the hospitalization could have not been considered.

The health evolution of a patient with UE (ICU admission)
is presented in Table I and Fig. 5 (b). Note that on 23/Mar the
observation vector associated with the patient’s health status
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is in neuron 1 (just with patients with FE). On 24/Mar, values
of F1 and F2 decrease while that of F6 increases, leading the
change to neuron 2. On 26/Mar there is another considerable
decrease in F2 and a substantial increase in F1 and F6. It is
also accompanied by an increase in F3, F4 and F5, which
produces the movement from neuron 1 to neuron 4.

The third case corresponds to an UE patient (exitus before
ICU admission). As indicated in the final part of Table I, the
first day in the trajectory (01/Apr) starts in neuron 3: F1 is
above 10, F2 is low compared to standard blood test values,
and the other four features have high values. On the 03/Apr,
F1 decreases and F2 and F3 increase while F6 doubles. This
moves the observation of the patient’s health status from
neuron 3 to neuron 4, which is a worse health status. Though
F2 decreases and F3 doubles on 05/Apr, observations remains
in neuron 4, most likely because the decrease on values of F4

and F6. On 07/Apr, the patient’s health worsens even more: F1

doubles again, F2 is 2, F3 and F6 also increase. This blood test
results make the observation vector being assigned to neuron 6.
On the day 08/Apr, the patient’s health status seems to worsen
because, even when the value of F6 decrease considerably,
making the observation vector changes to neuron 3, the rest
are very similar to the previous day. The last blood test of the
patient before the “event day”, registered on 10/Apr, indicates
a health status in accordance with neuron 6: very high levels
at F1, blood tests F2, F3, F4 and F6 very low and F5 very
high too. The trajectory is depicted in Fig. 5 (c).

V. CONCLUSIONS AND FUTURE WORK

The use of the SOM as a tool for characterizing the
patient’s health progression has been validated. For this pur-
pose, we have considered a real-world dataset composed of
blood tests associated with hospitalized COVID-19 patients.
Special attention has been paid to consider patients with
similar demographic characteristics. In spite of the reduction
performed in the number of patients to deal with the imbalance
problem, what limits the grid size, this paper shows promising
results to use the SOM in the clinical setting. We consider
that the description of the patient’s health trajectory, both
on the map and in relation with the values of the patient’s
features, is a valuable tool to gain intuition about the patient’s
health progression. Our work is a first approach which could
be considered as a proof of concept, with many potential
extensions even to other scenarios.

Several lines are opened as future work. Firstly, we propose
to apply oversampling of the minority group instead of under-
sampling of the majority one. By increasing the size of the
training observations, e.g. by applying the SMOTE approach,
it is expected that the grid size (number of neurons) increases,
leading to more specific neurons from a clinical viewpoint.
As a consequence, it is likely that observations can change
the associated neuron even in consecutive days, potentially
leading to highly diverse health trajectories.

In this work we have considered the majority group as that
identifying the “representative” health status in a neuron. Our

second line of work is to perform a probabilistic characteriza-
tion of the health status linked to each neuron. In particular,
we propose to design a Maximum A Posteriori classifier [15]
per neuron by using the Naı̈ve-Bayes technique to capture the
diversity in non-pure neurons.

The successful implementation of the previous lines of work
would lead to a design discriminating several groups of health
status: home-discharged patients and non-survival patients,
in both cases with and without ICU admission, separately.
The consideration of additional features (e.g. age, sex, drug
treatment, vital signs or even vaccination events) could also
provide very useful insights to support clinical decisions.
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