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Abstract—We propose to apply non-linear representation
learning to voxelwise rs-fMRI data. Learning the non-linear
representations is done using a variational autoencoder (VAE).
The goal is to use a VAE trained on voxelwise rs-fMRI data to
perform non-linear dimensionality reduction that retains mean-
ingful information. The retention of information in the model’s
representations is evaluated using downstream age regression and
sex classification tasks for the UK Biobank dataset. The results on
these tasks are highly encouraging and a linear regressor trained
with the representations of our unsupervised model performs
almost as well as a supervised neural network, trained specifically
for age regression on the same dataset. Another important quality
of our model is that the representations with which age regression
and sex classification are performed are the same. This implies
that the representations can retain information about both the
sex classification and age regression tasks, something a supervised
model would have to specifically be trained for with multi-task
learning and signifies its potential as a dimensionality reduction
method.

The model is also evaluated with a schizophrenia diagnosis
prediction task, to assess its feasibility as a dimensionality reduc-
tion method for neuropsychiatric datasets. These results highlight
the potential for pre-training on a larger set of individuals
who do not have mental illness, to improve the downstream
neuropsychiatric task results. The pre-trained model is fine-tuned
for a variable number of epochs on a schizophrenia dataset
and we find that fine-tuning for 1 epoch yields the best results.
This work therefore not only opens up non-linear dimensionality
reduction for voxelwise rs-fMRI data but also shows that pre-
training a deep learning model on voxelwise rs-fMRI datasets
greatly increases performance even on smaller datasets. It also
opens up the ability to look at the distribution of rs-fMRI
time series in the latent space of the VAE for heterogeneous
neuropsychiatric disorders like schizophrenia in future work.
This can be complemented with the generative aspect of the model
that allows us to reconstruct points from the model’s latent space
back into brain space and obtain an improved understanding of
the relation that the VAE learns between subjects, timepoints,
and a subject’s characteristics.

Index Terms—Neuroimaging, variational autoencoders, spatio-
temporal, deep learning, unsupervised learning.
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I. INTRODUCTION

A. Context

Mental disorders are studied through multiple neuroimaging
techniques, but resting-state functional MRI (rs-fMRI) has
become increasingly important because it allows researchers to
image the functional dynamics of a subject’s resting brain over
time. Progress in the understanding of mental disorders from
rs-fMRI data has largely been achieved through linear repre-
sentation learning techniques, such as independent component
analysis (ICA) [1]. These techniques have opened up the
ability to study large-scale functional connectivity differences
in complex mental disorders such as autism spectrum disorder
(ASD) and schizophrenia, either statically or dynamically [2].
The success of linear representation learning and the increased
use of deep learning methods in the field of neuroimaging
paves the way towards analyzing these functional differences
using deep learning techniques. Findings obtained with deep
learning analyses can be complemented with previous re-
search and linear representation learning to move towards
individualized predictions [3], a better understanding of mental
disorders, and more effective individualized treatment.

Deep learning methods in fields other than rs-fMRI analysis
are often applied to minimally processed data. An important
side note here is that these non-fMRI datasets are often also
one or two magnitudes larger than many rs-fMRI datasets. The
application of deep learning techniques to rs-fMRI data gen-
erally involves a dimensionality reduction step after which a
supervised neural network is trained to perform classification.
Supervised classification is attractive because neural networks
gained attention for their outstanding classification perfor-
mance, most famously on ImageNet [4]. The non-linearities
that neural networks can model are likely interesting in our
understanding of mental disorders as well. A 3-dimensional
adaptation of supervised convolutional neural networks was
able to obtain robust discriminative neuroimaging biomarkers
[5].

The methods that are used to perform dimensionality re-
duction, like independent component analysis (ICA) and prin-
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cipal component analysis (PCA), are unsupervised however.
These methods assume that the data is generated through
some unseen factors. In case of ICA, these factors are often
referred to as intrinsic networks because they are spatially
independent and interpretable as separate localized functional
networks in the brain. Data-driven methods that are used to
find these generative factors, like ICA and PCA, have been
extended to restricted Boltzmann machines (RBMs) [6], which
is a precursor to contemporary unsupervised deep learning
models like variational autoencoders (VAEs) [7]. VAEs have
recently been popularized for non-rs-fMRI data and gained
attention due to their interpretable latent space and ability to
variationally learn generative factors that fit a certain prior.
Previous work evaluates representation learning with VAEs on
rs-fMRI data that has first undergone dimensionality reduction
[8]–[11]. These dimensionality reductions may incur overly
specific inductive biases and, as a result, limit the expressivity
of deep learning methods, especially since neural networks are
considered universal function approximators. [12].

B. Problem statement

This work looks at whether unsupervised deep learning
methods can learn informative representations from minimally
processed voxelwise rs-fMRI data that has not undergone
spatial dimensionality reduction(s). Given the high dimension-
ality of rs-fMRI data, it is useful to be able to reduce the
data dimensionality in such a way that we retain information
about the variables we want to study. This work, therefore,
evaluates the validity and usefulness of the proposed non-
linear dimensionality reduction by evaluating the model’s
latent representations on downstream age regression and sex
prediction tasks. Due to its success as an unsupervised rep-
resentation learning technique, this work uses a variational
autoencoder (VAE) [7]. VAEs learns to maximize the lower
bound on the marginal likelihood of the training data.

One of the main reasons that this work considers the age
regression and sex prediction task as the main downstream
tasks, is the availability of a large rs-fMRI dataset that records
both demographic factors. In this work, we find that large
datasets can be important for representation learning from
minimally processed rs-fMRI data. The introduced method is
also evaluated on a schizophrenia diagnosis prediction task,
with and without first pre-training the model on the larger
age regression and sex prediction dataset to study whether
pre-training improves downstream performance [14], [15]. To
evaluate the effect of the dimensionality of the representations
on downstream task performance, the age and sex prediction
tasks are performed with representations of varying sizes.
These results are compared to a linear baseline that performs
principal component analysis (PCA) with the same varying
number of components.

II. RELATED WORK

Some interesting prior work has used variational autoen-
coders to analyze rs-fMRI data. Such work has focused on

modeling functional brain networks and ADHD identifica-
tion [16], representation learning [10], automatically cluster-
ing connectivity patterns [8], schizophrenia, bipolar disorder
and autism spectrum disorder classification [9], and spatio-
temporal trajectory identification [11]. It is important to note
however that each of these methods performs spatial and
sometimes temporal dimensionality reduction before they use
the data as input for their VAE. The non-linear dimensionality
reduction on voxelwise rs-fMRI data, that we propose, may
however lead to larger gains in terms of meaningful informa-
tion retention. Using minimally preprocessed data is often seen
as the norm in other deep learning fields because it simplifies
the data acquisition process and does not reduce any of the
potential information in the data.

III. VARIATIONAL AUTOENCODERS

VAEs have become an important model architecture for
unsupervised representation learning. Variational methods are
a way of describing an unknown probability density function
that is hard to sample from and/or approximate, byways of
parametrizing a simpler probability distribution, such as a
Gaussian, in such a way that it can approximate the un-
known distribution [17]. VAEs provide a neural network-
based autoencoder perspective to this problem. Since VAEs are
generative models, their goal is to find the underlying latent
factors that generate the data. This ties back to the assumption
in methods like independent component analysis (ICA) and
principal component analysis (PCA), that the dimensionality
of the latent factors is smaller than the original dimensionality
of the data. Both of these methods are often used to reduce
the dimensionality of rs-fMRI data.

The problem can formally be set as having an rs-fMRI
dataset {X(i) = {x(i,0), . . . , x(i,T )}}i=1,. . . ,N with T time-
points and N subjects. Each x(i,t) is generated from an
unknown conditional distribution pθ(x

(i,t)|z(i,t)), where z(i,t)

is assumed to be a random unseen continuous-valued variable
sampled from a prior distribution pθ(z) [7]. Both the prior
distribution and the conditional distribution are unknown and
the integral over the marginal probability of x̄: pθ(x̄) =∫
pθ(z̄)pθ(x̄|z̄)dz̄ is therefore intractable. Bayesian variational

methods can be used to tackle this problem and VAEs have
become a common non-linear method to do so [7].

VAEs approximate the intractable posterior distribution
pθ(z

i,t|xi,t) using a recognition model, parameterized as a
neural network, qφ(zi,t|xi,t) [7], which can be thought of as an
encoder from a coding theory perspective. The conditional dis-
tribution pθ(x

i,t|zi,t), also parameterized as a neural network,
can then be thought of as a decoder. This allows us to perform
optimization using the evidence lower bound (ELBO), which
is a lower bound on the marginal likelihood of a data point
x(i,t) and is explained in detail in the original VAE paper
[7]. The objective function, with which the VAE is trained,
is the average over all of the data points in a dataset. The
loss can then be split into two parts, the first part minimizes
the KL-divergence between an apriori selected prior and the
distribution that is parameterized by the encoder. Although



there is no clear consensus, rs-fMRI data is often seen as or
assumed to be normally distributed [18]. The prior (pθ(z))
we thus choose is a diagonal multivariate normal distribution,
where each of the dimensions of the normal distribution does
not explicitly depend on each other. The second part of then
maximizes the log-likelihood of a data point x(i,t) given an
estimated latent variable z(i,t). Although each rs-fMRI time
point is assumed to be an i.i.d. sample when training the VAE,
the temporal relation between the latent variables for a single
subject (z(i,0), ..., z(i,T )) is considered during each prediction
task.

IV. DATA

This work uses multiple datasets, one large dataset to do
age regression and sex prediction with. The other dataset is
used to perform the schizophrenia diagnosis prediction task
on.

A. Age and sex dataset

The rs-fMRI data that is used for age and sex prediction
are subjects without any diagnoses or self-reported illnesses
(n = 12, 314). These subjects were selected from the 22,392
subjects that were available in the UK Biobank repository on
April 7th, 2019 [19]. The subjects have a mean age of 62.58
with a standard deviation of 7.41, 49.6% are female. The
youngest subject is 45 years old and the oldest is 80. The scan-
ning parameters are explained in greater depth in the original
UK Biobank paper [19], however, an important parameter in
this work is the repetition time (TR = 0.735 seconds). With an
acquisition time of 6 minutes, the UK Biobank data acquires
a total of 490 time points. The data is minimally preprocessed
with the Melodic pipeline [19] and registered to the MNI EPI
template with the help of FMRIB’s Linear Image Registration
Tool (FLIRT). The registration is followed by normalization in
SPM12, after which it is smoothed with a 6mm wide FWHM
Gaussian kernel. This results in rs-fMRI volumes with a size of
53 x 63 x 52 voxels, and 490 timepoints per subject. The size
of the volumes and the number of timepoints lead to large
memory requirements during training and rs-fMRI data can
be noisy. To tackle both problems simultaneously, we use a
piecewise aggregate approximation (PAA) to reduce the noise
and memory consumption, while still keeping the trend of the
time series. PAA takes the average over points in consecutive
windows with a certain window size. For the UK Biobank
dataset, the window size is set to 15, which is equivalent to
taking the average over a period of about 11 seconds. This
reduces the number of time points to 33.

B. FBIRN

The dataset that is used to evaluate whether meaningful
information about a mental illness is retained in the repre-
sentations is the FBIRN study [20]. The dataset is processed
using the NeuroMark preprocessing pipeline [21] to obtain
rs-fMRI volumes with a size of 53 x 63 x 52 voxels. The
repetition time for FBIRN is 2 seconds. To stay in line with
the temporal preprocessing that is done for the UK Biobank

dataset, we apply PAA to FBIRN as well, but to account for
the different repetition times, the window size that is used is
5. This corresponds to a period of 10 seconds.

V. METHODOLOGY

The downstream task performances will be compared to a
linear baseline method. There is not much previous work that
looks at voxelwise rs-fMRI representation learning, although
other work focuses on supervised sex classification and age re-
gression on the same dataset used in this work [13]. Supervised
methods are however not a comparable baseline, although it is
insightful as a bound to strive towards. A linear dimensionality
reduction method that is in some sense comparable to VAE
in terms of what components it tends to learn is principal
component analysis (PCA) [22]. Given that PCA and a VAE
are comparable and that there are online versions of PCA
[23] that do not have large memory requirements, the linear
baseline used in this work is IncrementalPCA [23], [24].

Since one dataset is significantly smaller and is prone to
overfitting, this work also evaluates whether a model that is
pre-trained on a large dataset like UK Biobank (n=12, 314)
can be fine-tuned on FBIRN (n=325) to improve representa-
tions for schizophrenia diagnosis prediction. We compare pre-
trained models that have been fine-tuned for a variable number
of epochs on the FBIRN dataset.

A. Model architecture

The architecture of the model is based on a ResNet [25].
Each residual block in the encoder and decoder has a skip
connection. These skip connections allow the network to learn
longer dependencies and have been used in VAEs before [26]
to improve their variational inference. The activations that
are used in the network are exponential linear units (ELUs)
[27]. Instead of batch normalization, the network uses weight
normalization [28]. Both the activation function and weight
normalization are considered best practices when training
VAEs [28]. Batch normalization may lead to drift during
inference in a VAE which can cause unstable results.

The encoder consists of five residual blocks, with 16, 32,
64, 128, and 256 output channels for each block, respectively.
These blocks all downscale their original inputs by two until
the last residual block produces an output feature map of 256
x 2 x 2 x 2, which is flattened to 2048 features. These features
are then used to learn the mean and variance of the multivariate
Gaussian in the latent space from which latent variable z is
sampled. The layer computes the square root of the natural
logarithm of the variance instead of the standard deviation
to increase the stability of training the network and to make
sure variations due to gradient updates have a smaller effect
on standard deviations near zero. This allows the network to
model the standard deviations near zero more accurately. The
first layer in the decoder is a linear layer that maps latent
variable z to 2048 features, which are then reshaped to a 256
x 2 x 2 x 2 feature map. We use trilinear interpolations on
the feature maps with a scale of two to double the size. The
rest of the decoder consists of five residual blocks, where



each residual block is preceded by a trilinear interpolation
layer. The final layer is a 1 x 1 x 1 transpose convolutional
layer, without an activation function. In earlier iterations of
this work we tried to use a sigmoid activation on the last
layer, this leads to instability, because the combination of the
mean squared error (MSE) as a loss function and a sigmoid
leads to a non-convex objective function. Each of the layers is
initialized according to work that proposed ResNets [25], this
initialization is also used in the original ELU paper [27]. The
VAE is trained for 100 epochs using the ADAM optimizer
[29] with a learning rate of 5E − 4. Before the input data is
used it is first rescaled to be between [0, 1], values below 0.05
are then thresholded to remove possible background noise.

B. Regression and classification

After training the VAE, there are multiple ways to eval-
uate what information is contained in the representations
(z(i,0), . . . , z(i,T )). To evaluate whether the temporal infor-
mation improves classification and regression with simple
machine learning classifiers, these classifiers are trained with
a subject’s latent temporal average z(i,µ) and also with a
subject’s concatenated latent time series. The machine learning
classifiers that are used in this work are a support vector ma-
chine (SVM) and a k-nearest neighbor classifier (kNN) for the
classification tasks and a support vector regression (SVR) and
k-neighbor regressor (kNR) for the age regression task. These
classifiers give us insight into the linear separability of the
representations (SVM) or how well they are clustered (kNN).
To take the temporal information between the representations
into account more specifically, we also train a long-short term
memory (LSTM) [30] on the full latent time series. The LSTM
is either trained with a mean squared error (MSE) for the
regression task or a binary cross-entropy (BCE) loss for the
classification task. The hidden size for the hidden states in
the LSTM (h(0), . . . , h(T )) are twice the size of the input
representations, and all of the hidden states in the LSTM are
concatenated together to form a feature vector that is then
mapped to a prediction using a linear layer. This allows the
model to learn from the hidden state at each timestep more
directly. The size of that feature vector can be quite big, so
we apply dropout to that last linear layer. This is a common
technique to counter overfitting and promote a more robust
prediction model [31].

C. Evaluation measures

To be able to compare the results obtained using each of
the methods, we use multiple evaluation measures. The first
measure is used for the classification tasks and computes the
area under the receiver operating characteristic (ROC-AUC),
which is a more complete way of comparing binary classifiers.
To evaluate the regression task, we use three measures, the
first is the mean average error (MAE) which is the L1-norm
between the predicted age and the correct age. The second
measure is the R2-score, which is also referred to as the
coefficient of determination. The last measure is the Pearson

product-moment correlation between the predicted ages and
the true ages.

VI. EXPERIMENTS

The code for the VAE was implemented by the authors in
PyTorch [32], training was performed with Catalyst [33] and
TorchIO [34], and the regression and classification pipelines
were implemented using RAPIDS-AI [35], scikit-learn [24],
and NumPy [36]. To minimize costly transfers between the
CPU and the GPU, most of the classifications were done using
RAPIDS-AI [35] , to make sure the computed representations
could be kept in GPU memory without any copies or transfers
from or to the CPU. All of the experiments were performed
on an NVIDIA DGX-1 V100. Due to time restrictions, the
UK Biobank experiments could only be performed on one
train and test split, because each VAE epoch takes around 45
minutes on a single GPU. Training on multiple training and
test folds is essential for the schizophrenia diagnosis prediction
task because the variance between predictions can be large,
especially for deep learning models. The schizophrenia results
are thus trained over 5-folds, where one fold is used as the
held-out set and the other four folds are used as a training
and validation set. To make sure the model does not overfit,
we use an early stopping criterion that stops the model if its
loss objective has not improved on the validation set for 20
epochs. Further, instead of taking the z that is sampled from
the distribution that the encoder outputs, we use the mean
of that distribution. This is to reduce the stochasticity during
inference. The reason we do not use the standard deviation is
that it did not improve our preliminary results.

To determine the effect that the size of the representa-
tions has on the performance of the age regression and sex
classification tasks, the model is trained with multiple latent
dimensionalities, specifically: 64, 128, 256, and 512. These
tests are done on the UK Biobank dataset because we noticed
that training on a larger dataset is more stable.

We tested whether initializing a model for the schizophrenia
classification task with a pre-trained model on UK Biobank
improves the results on that task. The number of latent
dimensions that are used is 256. The fine-tuning is evaluated
for 0, 1, 2, 5, 10, 50, and 100 epochs and compared to a
non-pre-trained model, and the baseline.

The baseline for this work is IncrementalPCA, which is
implemented in scikit-learn [24]. Similar to the VAE, the
principal components are obtained for each volume in a sub-
ject’s time series independently. The components are whitened
and temporally averaged. They are then used as input to the
downstream classifiers/regressors.

VII. RESULTS

The age and sex downstream tasks are evaluated for multiple
latent dimensionalities and compared with a baseline PCA
that has the same number of components. The classification
methods are referred to as SVM/SVR and kNN/kNR when the
representations for each timestep are concatenated to create
a single feature vector (z(i,0), ..., z(i,t)) for each subject.



Classifiers mSVM/mSVR and mkNN/mkNR take the average
representation over the timesteps as input for each subject.
The 128-dimensional VAE did not converge well which led
to worse results for that specific model. It is also important
to recognize that the representations used to perform age re-
gression are the same as the ones used to do sex classification.
The model is thus able to retain information about both the sex
classification and age regression tasks, something a supervised
model would have to specifically be trained for with multi-task
learning.

A. Age regression results

The age regression task is evaluated using three measures,
the mean absolute error (MAE) is seen as most important
in this work, the results for the task are shown in Figure
1. All of the VAE models, even the non-converging 128-
dimensional VAE, outperforms the baseline PCA method. The
best performing model is the 512-dimensional VAE-SVR with
an MAE of 4.014 years, an R2 score of 0.5288, and a corre-
lation between the predicted and ground truth ages of 0.727.
The general trend for the number of latent dimensions is that
more latent dimensions improve the downstream performance
on the age regression task. The difference between the 256-
dimensional VAE and the 512-dimensional VAE is however
significantly smaller than between the two smaller latent
dimensionalities. Another interesting result is that the SVR
and mSVR always outperform the kNR and mkNR, which
suggests that the latent space is linearly separable for the age
regression task, as opposed to being clustered based on age.
Furthermore, the SVR and mSVR also outperform the LSTM.
The LSTM is a sequential method and is therefore good at
representing temporal data, it may struggle with data where
temporal relations do not aid in regression improvements.
The LSTM does perform well on the correlation between the
predicted and ground truth ages. The lower performance of the
LSTM and the near equivalent performance of the mSVR and
SVR may imply that there is no (linear) temporal relationship
between age and the VAE’s representations.

Comparatively, previous work [13] reports that on the same
dataset, a voxelwise supervised deep learning model achieves
an MAE of 3.54 years, an R2 score of 0.65, and a correlation
of 0.82. It is important to note that the VAE model in this work
received no supervised signal to model the features necessary
to achieve its downstream age regression results. Further, the
same previous work [13] finds that using the ICA time series
achieves an MAE of 4.66, highlighting the benefits of using
our proposed dimensionality reduction because it outperforms
the ICA time series. Further, they find that taking the mean
over the temporal dimension before using the input for the
classification task improves performance, which seems to be
the same in this work.

B. Sex classification results

The results in Figure 2 show that the age classification
task for this dataset is fairly trivial and the baseline performs
only slightly worse than the VAE-SVM and VAE-mSVM. The

baseline outperforms the 128-dimensional VAE because it did
not converge well.

All of the models improve with increasing latent dimension-
ality, although the model only slightly improves with more
than 256 dimensions. Interestingly, in contrast to the age
regression results, the LSTM performs only slightly worse
than the mSVM and SVM. The mkNN and kNN are always
outperformed by the mSVM, SVM, and LSTM. The best
performing model is the 512-dimensional VAE-mSVM with
an ROC-AUC of 0.994. In general, except for the 128-
dimensional VAE, the mSVM outperforms the SVM, which
suggests that the temporal information for each subject does
not help with the linear separability of sex in the latent space.
The differences between the SVM and the mSVM are likely
insignificant in terms of determining which one is better, but
the SVM does not seem to have any performance gain over
the mSVM.

C. Schizophrenia classification results

The downstream schizophrenia diagnosis classification task
is evaluated for a pre-trained (PT) and a non-pre-trained model
(NPT). The pre-trained model is the same for every run but
is fine-tuned on the schizophrenia diagnosis prediction task
for a variable number of epochs. It turns out that fine-tuning
the pre-trained model for 1 epoch in combination with the
downstream LSTM yields the best (an average ROC-AUC of
0.7452) and least variable results over multiple folds. It is clear
from Figure 3 that, especially in combination with the LSTM,
fine-tuning with more epochs leads to worse downstream
performance. This is likely because the model starts to overfit
on FBIRN, which is likely due it being a much smaller
dataset. It is also notable that the pre-trained model that is
fine-tuned for 100 epochs on FBIRN in combination with the
LSTM still performs better than the model that is only trained
on FBIRN for 100 epochs. Further, the fact that the LSTM
performs the best indicates that the temporal information in
the representations is related to the schizophrenia diagnosis
of the subjects. It may also imply that the information about
schizophrenia diagnosis is non-linearly entangled in the repre-
sentations. The mSVM does generally outperform the SVM,
which may further suggest that the temporal information in the
representations is at least not linearly related to a schizophrenia
diagnosis. We also find that the kNN-based classifiers are
consistently outperformed by the other classifiers and that the
baseline ranks lowest in terms of performance.

To compare this to other work, we look at Whole MILC
[14], which uses a novel form of pre-training. Their best
supervised classification model achieves an average ROC-
AUC on FBIRN of roughly 0.79-0.80, which is not that much
higher than what we have achieved with our unsupervised
representations. Note that they utilize data that has under-
gone dimensionality reduction using ICA with a spatially
constrained prior [38]. Our pre-training results are also similar
in that we both find an improvement in downstream task
performance after pre-training, although they do not use an



Fig. 1. This figure portrays the results for the downstream age regression task, evaluated using three metrics, MAE (mean absolute error), the R2 score, and
the correlation (Corr) between the predictions and the ground truth values. Each bar plot shows all of the models at the 4 different latent dimensionalities:
64, 128, 256, 512 on the x-axis. The run with a 128-dimensional VAE did not converge well, an anomaly, which leads to worse results but, a VAE-SVR
performs best overall. Note that for the MAE lower is better, and for the R2 score and correlation higher is better. The baseline performs significantly worse
on all three of the metrics. Further, the VAE-LSTM performs relatively well on the correlation metrics but significantly underperforms on the MAE and the
R2 score. The R2-scores for the baseline are cut out of this figure because they are too low and displaying them would reduce the interpretability of the
figure, those values are roughly −5.

Fig. 2. The results for the downstream sex classification task, the area under
the curve of the receiver operating characteristic (ROC-AUC) is shown on the
y-axis. The 4 different latent dimensionalities are shown on the x-axis: 64,
128, 256, and 512. The run with a 128-dimensional VAE did not converge
well. The models perform similarly to the baseline, although the VAE-mSVM
and VAE-SVM perform slightly better. The highest ROC-AUC is achieved
using a 512-dimensional VAE-mSVM: 0.994

unsupervised autoencoder as the primary model that they
propose in their work.

D. Sex-based group differences voxel space

A VAE is a generative model and is thus capable of
reconstructing locations from the latent space. To visualize
the differences in the VAE models between males and females
in its latent space, the average representation for both groups
is decoded back into the voxel space and the reconstruction
for males is subtracted from the reconstruction for females.
The resulting volume is then thresholded at the highest 80th
quantile absolute value and the differences are shown in Figure

Fig. 3. The results for the downstream schizophrenia classification task, the
area under the curve of the receiver operating characteristic (ROC-AUC) is
shown on the y-axis. The baseline (PCA), pre-trained (PT), and non-pre-
trained (NPT) models are shown on the x-axis. Pre-training seems to generally
improve the ROC-AUC, especially for the VAE-LSTM. The longer the model
is fine-tuned on FBIRN, the more it seems to overfit, which leads to worse
results. Fine-tuning for one epoch seems to be optimal.

4. The decoded group-wise differences show that women on
average have increased rs-fMRI activation in a large area
of the prefrontal cortex, which has been reported in the
literature before [37]. There also appears to be some increased
average activity in the left and right inferior parietal lobules.
The activity in the inferior parietal lobules and between the
occipital lobe and the cerebellum looks more like noise and
does not persist when higher thresholds are used.

VIII. CONCLUSION

This work investigated whether unsupervised deep learning
techniques, more specifically a VAE, can learn robust rep-



Fig. 4. The brain differences in females compared to males, calculated by
subtracting the reconstructed average latent representation for males from
the reconstructed average latent representation for females. The volume is
then thresholded at the highest 80th quantile absolute value. The visualization
shows significantly higher activation in the prefrontal cortex and some small
increased activation in the parietal lobules and between the cerebellum and
occipital lobe.

resentations that can be used in downstream neuroimaging
tasks from minimally preprocessed voxelwise rs-fMRI data.
The representations learned by a VAE were evaluated on
multiple downstream tasks and for multiple different latent
dimensionalities on the UK Biobank dataset. The larger the
dimensionality, the better the performance. It turned out that
the sex classification task was rather trivial, but the difference
between the baseline and our model became clear on the age
regression task. The model was also evaluated on FBIRN, a
schizophrenia dataset, both without and with pre-training on
UK Biobank first. The optimal number of fine-tuning epochs
on FBIRN turned out to be 1 epoch. Our results open up more
work into non-linear dimensionality reduction of voxelwise
rs-fMRI data with unsupervised deep learning methods while
retaining meaningful information.

IX. DISCUSSION

The results in this work show that there is great potential
for voxelwise rs-fMRI representation learning with a VAE.
The representations that are learned by the VAE contain
information that allows linear classifiers and regressors to
predict the sex and age of a subject with high precision. The
model also performed well on a downstream schizophrenia
diagnosis prediction task. The results on the latter especially
opened up more work into the pre-training of unsupervised
models like the one proposed in this work. The pre-trained
model is first trained on a larger dataset before fine-tuning
it on neuropsychiatric datasets for a few epochs and using
the final model to encode low-dimensional representations.
Even without fine-tuning our pre-trained model outperformed
a model that was trained only on FBIRN.

Important future considerations include the need for a more
efficient solution in terms of computational runtime. An impor-
tant bottleneck during this project was loading the large data
files onto the GPU. Improving data movement and transfer will
make experimentation more feasible and may also address the
shortcomings that smaller batch sizes may have on the training
dynamics of a neural network. If training times can be reduced,
it is also possible to train on even larger datasets and perform
hyperparameter tuning on a large scale. Larger datasets will
likely improve the results on all of the downstream tasks, sim-
ilar to the improvements pre-training had on the schizophrenia

diagnosis prediction task’s performance. Smaller datasets are
more likely to lead to overfitting, especially since voxelwise
rs-fMRI data is highly noisy. Not only should future work
look at larger datasets, but also move towards models that
more efficiently use the information available in (smaller)
datasets. Models that incorporate inductive biases and/or forms
of regularization are required to move towards meaningful
non-linear representations for mental illnesses from voxelwise
rs-fMRI data.

It is also relevant to look at the manifold that our model
has learned, especially in terms of the schizophrenia diagnosis
prediction task. The inherent generative quality of this model
supplies us with a wide range of possible interpretability
analyses, because representations can be mapped back into
brain space using the model’s decoder. One simple example of
a generative interpretability analysis was provided in Section
VII-D. More complex, temporal, analyses should be designed
for complex neuropsychiatric disorders like schizophrenia.
Complex neuropsychiatric disorders could also benefit from
studying a single subject representation, that combines the
temporal information in a subject’s time series into a single
vector.

REFERENCES

[1] MCKEOWN, Martin J.; SEJNOWSKI, Terrence J. Independent compo-
nent analysis of fMRI data: examining the assumptions. Human brain
mapping, 1998, 6.5-6: 368-372.

[2] DAMARAJU, Eswar, et al. Dynamic functional connectivity analysis
reveals transient states of dysconnectivity in schizophrenia. NeuroImage:
Clinical, 2014, 5: 298-308.

[3] SUI, Jing, et al. Neuroimaging-based individualized prediction of cogni-
tion and behavior for mental disorders and health: methods and promises.
Biological psychiatry, 2020, 88.11: 818-828.

[4] Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. Imagenet clas-
sification with deep convolutional neural networks. Advances in neural
information processing systems, 2012, 25: 1097-1105.

[5] ABROL, Anees, et al. Deep learning encodes robust discriminative
neuroimaging representations to outperform standard machine learning.
Nature communications, 2021, 12.1: 1-17.

[6] Hjelm, R. Devon, et al. Restricted Boltzmann machines for neuroimag-
ing: an application in identifying intrinsic networks. NeuroImage, 2014,
96: 245-260.

[7] Kingma, Diederik P.; Welling, Max. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

[8] Zhao, Qingyu, et al. Variational autoencoder with truncated mixture of
gaussians for functional connectivity analysis. In: International Confer-
ence on Information Processing in Medical Imaging. Springer, Cham,
2019. p. 867-879.

[9] Matsubara, Takashi, et al. Deep generative model of individual vari-
ability in fmri images of psychiatric patients. IEEE Transactions on
Biomedical Engineering, 2020, 68.2: 592-605.

[10] Kim, Jung-Hoon, et al. Representation learning of resting state fMRI
with variational autoencoder. NeuroImage, 2021, 241: 118423.

[11] Zhang, Xiaodi; MALTBIE, Eric; KEILHOLZ, Shella. Spatiotemporal
Trajectories in Resting-state FMRI Revealed by Convolutional Varia-
tional Autoencoder. bioRxiv, 2021.

[12] Hornik, Kurt; Stinchcombe, Maxwell; White, Halbert. Multilayer feed-
forward networks are universal approximators. Neural networks, 1989,
2.5: 359-366.

[13] Abrol, Anees; Hassanzadeh, Reihaneh; Calhoun, Vince. Deep learning
in resting-state fMRI. Proceedings of the 43rd annual conference of the
IEEE Engineering in Medicine and Biology Society, 2021.

[14] Mahmood, Usman, et al. Whole MILC: generalizing learned dynamics
across tasks, datasets, and populations. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention.
Springer, Cham, 2020. p. 407-417.

http://arxiv.org/abs/1312.6114


[15] Erhan, Dumitru, et al. Why does unsupervised pre-training help deep
learning?. In: Proceedings of the thirteenth international conference on
artificial intelligence and statistics. JMLR Workshop and Conference
Proceedings, 2010. p. 201-208.

[16] Qiang, Ning, et al. Deep Variational Autoencoder for Modeling Func-
tional Brain Networks and ADHD Identification. In: 2020 IEEE 17th
International Symposium on Biomedical Imaging (ISBI). IEEE, 2020.
p. 554-557.

[17] Mackay, David JC. Information theory, inference and learning algo-
rithms. Cambridge university press, 2003.

[18] Laumann, Timothy O., et al. On the stability of BOLD fMRI correla-
tions. Cerebral cortex, 2017, 27.10: 4719-4732.

[19] Miller, Karla L., et al. Multimodal population brain imaging in the UK
Biobank prospective epidemiological study. Nature neuroscience, 2016,
19.11: 1523-1536.

[20] Keator, David B., et al. The function biomedical informatics research
network data repository. Neuroimage, 2016, 124: 1074-1079.

[21] Du, Yuhui, et al. NeuroMark: An automated and adaptive ICA based
pipeline to identify reproducible fMRI markers of brain disorders.
NeuroImage: Clinical, 2020, 28: 102375.

[22] Rolinek, Michal; Zietlow, Dominik; Martius, Georg. Variational au-
toencoders pursue pca directions (by accident). In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019. p. 12406-12415.

[23] Artac, Matej; Jogan, Matjaz; Leonardis, Ales. Incremental PCA for on-
line visual learning and recognition. In: Object recognition supported by
user interaction for service robots. IEEE, 2002. p. 781-784.

[24] Pedregosa, Fabian, et al. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research, 2011, 12: 2825-2830.

[25] He, Kaiming, et al. Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016. p. 770-778.

[26] Kingma, Durk P., et al. Improved variational inference with inverse
autoregressive flow. Advances in neural information processing systems,
2016, 29: 4743-4751.
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[34] Pérez-Garcı́a, Fernando; Sparks, Rachel; Ourselin, Sebastien. TorchIO:
a Python library for efficient loading, preprocessing, augmentation and
patch-based sampling of medical images in deep learning. Computer
Methods and Programs in Biomedicine, 2021, 106236.

[35] Team, R. D. RAPIDS: Collection of libraries for end to end GPU data
science. NVIDIA, Santa Clara, CA, USA, 2018.

[36] Van der Walt, Stefan; Colbert, S. Chris; Varoquax, Gael. The NumPy
array: a structure for efficient numerical computation. Computing in
science & engineering, 2011, 13.2: 22-30.

[37] Hill, Ashley C.; Laird, Angela R.; Robinson, Jennifer L. Gender
differences in working memory networks: a BrainMap meta-analysis.
Biological psychology, 2014, 102: 18-29.

[38] Fu, Zening, et al. Altered static and dynamic functional network
connectivity in Alzheimer’s disease and subcortical ischemic vascular
disease: shared and specific brain connectivity abnormalities. Human
brain mapping, 2019, 40.11: 3203-3221.

http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1412.6980
https://github.com/catalyst-team/catalyst

	I Introduction
	I-A Context
	I-B Problem statement

	II Related work
	III Variational Autoencoders
	IV Data
	IV-A Age and sex dataset
	IV-B FBIRN

	V Methodology
	V-A Model architecture
	V-B Regression and classification
	V-C Evaluation measures

	VI Experiments
	VII Results
	VII-A Age regression results
	VII-B Sex classification results
	VII-C Schizophrenia classification results
	VII-D Sex-based group differences voxel space

	VIII Conclusion
	IX Discussion
	References

