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Abstract— Sepsis is an important cause of mortality, 

especially in intensive care unit (ICU) patients. Developing novel 

methods to identify early mortality is critical for improving 

survival outcomes in sepsis patients. Using the MIMIC-III 

database, we integrated demographic data, physiological 

measurements and clinical notes. We built and applied several 

machine learning models to predict the risk of hospital mortality 

and 30-day mortality in sepsis patients. From the clinical notes, 

we generated clinically meaningful word representations and 

embeddings. Supervised learning classifiers and a deep learning 

architecture were used to construct prediction models. The 

configurations that utilized both structured and unstructured 

clinical features yielded competitive F-measure of 0.512. Our 

results showed that the approaches integrating both structured 

and unstructured clinical features can be effectively applied to 

assist clinicians in identifying the risk of mortality in sepsis 

patients upon admission to the ICU. 
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I. INTRODUCTION 

Sepsis is a life-threatening organ dysfunction and a major 
public health issue. It is a common and economically 
important disease leading to 5.3 million death annually. The 
estimated overall mortality of sepsis patients is 30% [1-3]. 
Recently, sepsis was defined as a “life-threatening organ 
dysfunction caused by a dysregulated host response to 
infection” by The European Society of Intensive Care 
Medicine/Society of Critical Care Medicine Third 
International Consensus Definitions for Sepsis and Septic 
Shock task force (The Sepsis-3 task force) [2]. 

Early diagnosis and identification of sepsis are important 
to evaluate the patients’ status and improve their survival 
outcomes. Furthermore, because of the vague definitions of 
sepsis syndrome, unknown infection sources, and higher risk 
of mortality, developing an effective and reliable prognostic 
prediction model for sepsis patients is important. Such models 
could help to predict the prognosis of the patients more 
efficiently, inform the allocation of public health resources, 
and support clinical decision-making.  

Due to the increasing usage of electronic health records 
(EHRs), it is becoming easier to access comprehensive and 
extensive clinical data to predict health outcomes in the 
population. There are also many previous studies predicting 

mortality in patients [4-7]. However, many studies have 
largely focused on predicting  mortality in specific population, 
such as elderly or patients who had cardiovascular surgery. 
These approaches could also draw meaningful conclusions in 
specific population, but it is also needed to build a mortality 
prediction model in general sepsis patients. Furthermore, 
many previous studies used several algorithm methods but did 
not include various laboratory information that is known to be 
effective for predicting the disease [8]. Finally, many of the 
mortality prediction studies have been conducted based solely 
on structured EHR data and did not incorporate unstructured 
clinical notes which could be ubiquitously utilized in other 
medical institutions as well [9].  

Therefore, in this study we included a wide array of 
predictors including demographic characteristics and various 
physiological factors from the laboratory test that are recorded 
in the EHR, to predict mortality in sepsis-3 patients. 
Moreover, we used structural data (e.g., physiological 
variables) as well as unstructured intensive care unit (ICU) 
clinical notes data to construct the prediction model. These 
clinical notes are written by many clinical experts, including 
physicians and nurses, and could provide a comprehensive 
picture of patients’ pathological statuses and aid in the 
development of a powerful model to predict the mortality in 
sepsis patients. 

II. METHODS 

A. Database and Study Population 

Data for this study were acquired from Medical 
Information Mart for Intensive Care III (MIMIC-III). MIMIC-
III captures de-identified health information for more than 
46,000 patients admitted to the critical care units at Beth Israel 
Medical Center between 2001 and 2012 [10]. We 
retrospectively defined the cohort for this study as patients 
meeting the criteria for sepsis-3, which is the new criteria 
evaluating sepsis: score equal or greater than 2 in Sequential 
Organ Failure Assessment (SOFA), in a defined context of 
suspected infection [2, 11]. The participants were admitted 
from 2008 to 2012 as in previous research. This is because of 
the accessibility of antibiotic prescriptions and explicit sepsis 
codes. Furthermore, the group of admissions were easily 
identifiable between 2008 to 2012 [12]. The initial ICU 
admission of patients was used to only focus on the first 
admission of patients with multiple admissions. The following 
exclusion criteria [12] were applied: 1) age less than 16 years, 



2) previous cardiac surgery experience, 3) suspected infection 
more than 24 hours before and after the admission to the ICU. 

B. Demographic and Physiological Structured Features 

We developed an SQL script to extract the patients and 
various characteristics of the patients, including demographic 
factors, physiological measurements, and clinical notes, from 
the database [13]. For the demographic characteristics, we 
extracted patients’ age, gender, ethnicity, SOFA score 
assessed during their first ICU day, presence of metastatic 
cancer or diabetes, and so on. We included these factors in the 
structured model since these demographic factors might affect 
to the incidence of sepsis and mortality related to infection 
[14]. For the physiological measurements, we selected 
potential physiological variables related to mortality and 
extracted the first measurements of the patients after their ICU 
admission. Using the first measurements to build prediction 
model could be helpful to alert clinicians to predict the high 
risk of mortality soon after ICU admission. A total of 31 
physiological items and 13 demographic characteristics were 
selected, and 44 items were selected as final structured 
features in the analysis (Table I). We excluded the 
physiological measurement outliers using the previously 
established reasonable range of measurements provided by the 
source code of Harutyunyan et al [15]. There were no missing 
values in the demographic characteristics except for body 
mass index (BMI), so we performed multiple imputations of 
physiological measurements and BMI using the “mice” 
package in R software version 4.0.5 [16]. Except the BMI 
(48%, proportion of missing values), aspartate 
aminotransferase (41%), base excess (35%), blood total 

bilirubin (39%), carbon dioxide (35%), international 
normalized ratio (11%), lactate (33%), ph (33%), partial 
thromboplastin time (11%), and albumin (48%), other 
physiological measurements had missing values of less than 
2% before using the imputation method. 

C. Natural Language Processing of the Unstructured 

Clinical Notes 

We extracted the clinical notes data during the first day of 
ICU admission and excluded the notes from the discharge 
summary category. After excluding patients who did not have 
any notes record, 5,396 patients were included in the final 
analysis. To handle and interpret the clinical notes, we first 
performed preprocessing steps. Masked protected health 
information (PHI) was removed from the clinical notes, and 
then the notes were converted into structured features for use 
with the machine learning classifier. 

We utilized the unigram bag-of-words model to convert 
the unstructured notes to normalized lexical variants. 
Following NCBI guideline, 313 stop words are applied, and 
features with less than a 10-document-frequency were 
removed to reduce the noise. We also applied term frequency-
inverse document frequency (tf-idf) weighting adjustment 
[17]. After the pre-processing steps, 7248 words were kept in 
the dictionary of the text corpus, and 7248 bag-of-words 
vectors were created for each patient’s clinical notes. We used 
these features for the unstructured features model, but we also 
concatenated those vector features with structured features 
and created combined feature vectors. 

TABLE I.  UNIVARIATE CHARACTERISTICS FOR DEMOGRAPHIC AND PHYSIOLOGICAL CHARACTERISTICS (N=5,396) 

Variable Value Variable Value Variable Value 

Age, years 65.5±17.6 Race  Chloride (mEq/L) 105±6.85 

Sex  White 392 (72.7) Carbon dioxide (mEq/L) 24.6±5.77 

Male 2382 (44.1) Black 473 (8.77) Diastolic blood pressure (mmHg) 66.7±17.5 

Female 3014 (55.9) Hispanic 182 (3.37) Glasgow coma scale motor 4.92±1.80 

Metastatic cancer  Asian 167 (3.09) Glucose (mg/dL) 148±72.1 

Yes 311 (5.76) Other 654 (12.1) Heart rate (bpm) 91.1±20.4 

No 5085 (94.2) Marital status  Hematocrit (%) 32.3±6.17 

Diabetes  Divorce 328 (6.08) Hemoglobin (g/dL) 10.8±2.09 

Yes 1530 (28.4) Married 2379 (44.1) International normalized ratio 1.50±0.75 

No 3866 (71.7) Single 1536 (28.5) Lactate (mmol/L) 2.16±1.74 

BMI 28.6±8.55 Widowed 795 (14.7) Magnesium (mg/dL) 1.92±0.44 

Elixhauser score 3.80±7.00 Unknown 358 (6.63) Mean arterial blood pressure (mmHg) 82.0±18.5 

Mechanical Ventilation  Admission type  Ph (unit) 7.36±0.10 

Yes 2586 (47.9) Elective 310 (5.74) Platelet count (K/uL) 214±116 

No 2810 (52.1) Emergency 5026 (93.1) Partial thromboplastin time (sec) 36.8±21.7 

SOFA 4.61±3.10 Urgent 60 (1.11) Red blood cell count (m/uL) 3.58±0.71 

SIRS 2.92±0.93 Aspartate aminotransferase (IU/L) 191±837 Respiration rate (insp/min) 19.4±6.64 

Insurance type  Base excess (mEq/L) -1.52±5.45 Blood oxygen saturation (%) 96.7±4.47 

Government 157 (2.91) Bicarbonate (mEq/L) 22.9±4.95 Systolic blood pressure (mmHg) 124±25.1 

Medicaid 532 (9.86) Blood serum creatinine(mg/dL) 1.55±1.64 Temperature (Celsius) 36.6±1.03 

Medicare 3123 (57.9) Blood serum potassium (mEq/L) 4.18±0.79 Urine output (ml) 214±207 

Private 1538 (28.5) Blood sodium (mEq/L) 138±5.66 White blood cell count (K/uL) 12.7±12.7 

Self-pay 46 (0.85) Blood total bilirubin (mg/dL) 1.56±3.38 Blood albumin (g/dL) 3.01±0.61 

Blood urea nitrogen (mg/dL) 29.0±24.1 

Data are presented as mean±SD, number (%) 
Abbreviations: SD, standard deviation; BMI, body mass index; SOFA, sequential organ failure assessment; SIRS, systemic inflammatory response 
syndrome 



D. Machine Learning Classifiers and Convolutional Neural 

Networks 

We built and applied various machine learning classifiers, 
including L1- and L2- regularized logistic regression (LR), 
random forest (RF), L1- and L2- regularized support vector 
machine (SVM) with linear kernel [18], XGBoost and multi-
layer perceptron (MLP). Machine learning classifiers were 
generated using the Scikit-learn packages of Python to find the 
best prediction model [19].  

We used two clinical outcomes for the prediction: hospital 
mortality and 30-day mortality of the sepsis-3 patients. 
Overall data sets were split into training and test set, and the 
split ratio was 7:3. The hospital mortality rate in the overall 
dataset was 12.94%, while the 30-day mortality rate was 
16.51% (Table II). Since our mortality outcomes are 
imbalanced, we used the ‘class_weight’ parameter to down 
weight the majority class and balance the outcomes in the LR, 
RF, SVM models. We also used ‘imblearn’ library to apply 
random under-sampling as 1:4 ratio and compared the results 
with the model that did not use under-sampling method and 
only used ‘class_weight’ parameter. To avoid the overfitting 
and tune the model parameters, we performed five-fold cross-
validation on the training set, and the best parameters were 
applied to the test set to assess the prediction performance of 
each model. 

We also used convolutional neural networks (CNN) to 
integrate unstructured features and structured features. First, 
three one-dimensional convolutional layers with different 
filter sizes were built on the pre-trained word embedding. 
Max-pooling was used to select the most important features 
with the highest value in each of the three convolutional 
feature maps. Then, the pooling results were concatenated 
with the structured features. The concatenated hidden features 
were then fed into two fully connected layers, each followed 
by a dropout and ReLU activation layer. Finally, softmax 
function was applied to yield the probability distribution of the 
mortality labels. The models were trained with a learning rate 
of 0.0005; the batch size was 32; and the max epoch number 
was set to 20 with early stopping conditioned on the validation 
split, which was 10% randomly sampled from the training 
split. The word-embedding was pretrained on MIMIC-III 
dataset. We also used random under-sampling method in the 
CNN training to address the class imbalance issue. CNN 
model which only used word features was also performed with 
the same parameters. 

TABLE II.  MORTALITY DISTRIBUTION OVERALL AND IN TRAINING 

AND TEST SETS. 

Outcome Set Total 

number Yes No 
Mortality 

rate 

Died in the 
hospital 

Overall 5396 698 4698 12.94% 

Training 3777 483 3294 12.79% 

Test 1619 215 1404 13.28% 

Died within 
30 daysa 

Overall 5396 891 4505 16.51% 

Training 3777 631 3146 16.71% 

Test 1619 260 1359 16.06% 

a30-day mortality after ICU admission 

 

To evaluate the model’s performance, we reported the area 
under the receiver (AUC), precision, recall, and F1-measure 
score of each model predicting hospital mortality and 30-day 

mortality. Furthermore, a permutation test was applied and 
repeated 1,000 times to identify whether the AUC was 
significantly different between the best machine learning 
classifiers with different features. P-value less than 0.05 was 
considered significant. 

III. RESULTS 

The performance of the supervised machine learning 
classifiers (LR, RF, SVM, XGBoost, MLP) and CNN models 
in predicting mortality in sepsis patients is reported in this 
section. Table III shows the results for each machine learning 
model using structured features only. The baseline predictor 
of each representation using the RF algorithm yielded an AUC 
in the range of 0.80 to 0.83 and an F-measure ranging from 
0.46 to 0.48. The L1-regularized SVM model predicting 30-
day mortality showed the best F-measure compared to the 
other models (AUC of 0.822, F-measure of 0.508), and the 
model predicting hospital mortality showed better AUC when 
compared to the same model predicting 30-day mortality.  

TABLE III.  MACHINE LEARNING MODEL RESULTS FOR EACH MACHINE 

LEARNING ALGORITHM USING STRUCTURED FEATURES ONLY 

Outcome Under 

sampling  
ALGa AUC P R F 

Hospital 
mortality 

N/A L1-LR 0.836 0.336 0.730 0.460 

L2-LR 0.835 0.335 0.726 0.458 

RF 0.824 0.364 0.633 0.462 

L1-SVM 0.836 0.344 0.744 0.471 

L2-SVM 0.833 0.259 0.800 0.391 

XGBOOST 0.802 0.525 0.242 0.331 

MLP 0.827 0.552 0.247 0.341 

1:4 L1-LR 0.836 0.344 0.726 0.466 

L2-LR 0.835 0.342 0.726 0.465 

RF 0.825 0.371 0.633 0.467 

L1-SVM 0.835 0.351 0.730 0.474 

L2-SVM 0.833 0.342 0.716 0.463 

XGBOOST 0.807 0.457 0.349 0.396 

MLP 0.810 0.497 0.405 0.446 

30-day 
mortality 

N/A L1-LR 0.825 0.367 0.742 0.491 

L2-LR 0.825 0.370 0.746 0.494 

RF 0.800 0.374 0.635 0.471 

L1-SVM 0.821 0.380 0.742 0.503 

L2-SVM 0.824 0.369 0.750 0.495 

XGBOOST 0.805 0.528 0.323 0.401 

MLP 0.775 0.547 0.292 0.381 

1:4 L1-LR 0.825 0.370 0.746 0.494 

L2-LR 0.825 0.370 0.750 0.496 

RF 0.808 0.414 0.562 0.476 

L1-SVM 0.822 0.383 0.754 0.508 

L2-SVM 0.825 0.368 0.750 0.494 

XGBOOST 0.809 0.503 0.350 0.413 

MLP 0.795 0.467 0.323 0.382 

Abbreviations: ALG, algorithm; L1-/L2-, L1/L2 regularization; LR, 
Logistic Regression; RF, Random Forest; SVM, Support Vector Machine; 
MLR, multi-layer perceptron; P, Precision; R, Recall; F, F-measure;  
aBest F-measure in each survival outcome and under-sampling model are 
marked in bold 

 

Table IV shows the machine learning model results using 
unstructured clinical notes only, which used bag-of-words 
features. Models predicting hospital mortality generally 
showed better AUC than those predicting 30-day mortality. 
For example, the L2-regularized SVM model predicting 30-
day mortality had an AUC of 0.747. However, the L2-
regularized SVM model that did not use the under-sampling 
method showed the best performance in predicting hospital 
mortality (AUC of 0.760, F-measure of 0.413). Moreover, the 
model that only used unstructured clinical notes did not lead 



to better AUC or F-measure when compared to the models 
using only structured features. 

Table V shows the model results using both structured 
features and unstructured clinical notes. The results indicate 
higher performance compared to the same LR and L2-SVM 
models shown in Table III and IV, which only used 
unstructured clinical notes or structured features. The L2-
regularized LR model which did not use the under-sampling 
method and constructed using combined features yielded the 
highest F-measure in 30-day mortality prediction (AUC of 
0.842, F-measure of 0.512).  

TABLE IV.  MACHINE LEARNING MODEL RESULTS FOR EACH MACHINE 

LEARNING ALGORITHM USING UNSTRUCTURED CLINICAL NOTES ONLY 

Outcome Under 

sampling  
ALGa AUC P R Fa 

Hospital 
mortality 

N/A L1-LR 0.747 0.276 0.586 0.376 

L2-LR 0.761 0.320 0.577 0.412 

RF 0.728 0.284 0.460 0.351 

L1-SVM 0.726 0.255 0.577 0.354 

L2-SVM 0.760 0.320 0.581 0.413 

XGBOOST 0.713 0.349 0.102 0.158 

CNN 0.673 0.319 0.102 0.155 

1:4 L1-LR 0.741 0.277 0.628 0.385 

L2-LR 0.759 0.299 0.591 0.397 

RF 0.725 0.259 0.465 0.333 

L1-SVM 0.735 0.261 0.498 0.342 

L2-SVM 0.758 0.295 0.605 0.396 

XGBOOST 0.677 0.387 0.214 0.275 

CNN 0.690 0.275 0.284 0.279 

30-day 
mortality 

N/A L1-LR 0.739 0.304 0.615 0.407 

L2-LR 0.746 0.317 0.592 0.413 

RF 0.694 0.283 0.458 0.349 

L1-SVM 0.695 0.271 0.573 0.368 

L2-SVM 0.747 0.325 0.569 0.413 

XGBOOST 0.696 0.463 0.146 0.222 

CNN 0.679 0.500 0.077 0.133 

1:4 L1-LR 0.736 0.296 0.615 0.400 

L2-LR 0.744 0.317 0.577 0.409 

RF 0.689 0.279 0.450 0.344 

L1-SVM 0.684 0.269 0.565 0.365 

L2-SVM 0.744 0.315 0.588 0.411 

XGBOOST 0.691 0.369 0.200 0.259 

CNN 0.696 0.464 0.123 0.195 

Abbreviations: ALG, algorithm; L1-/L2-, L1/L2 regularization; LR, 
Logistic Regression; RF, Random Forest; SVM, Support Vector Machine; 
CNN, convolutional neural networks; P, Precision; R, Recall; F, F-
measure;  
aBest F-measure in each survival outcome and under-sampling model are 
marked in bold 

 

Our results showed that the random under-sampling 
method did not generally improve the performance of the LR, 
and SVM models, but the performance of XGBoost and CNN 
model did increase after using the random under-sampling 
method. The L2-LR classifiers in combined model, resulted in 
a competitive AUC score over 0.841. In addition, the recall 
score was higher than the precision score for the LR and SVM 
algorithms. Since we are trying to capture as many future 
mortality onsets in sepsis patients and thus could tolerate 
modest false alarm, this result is well suited to the clinical 
application of the mortality alarm. Regarding the CNN result, 
the under-sampled model predicting hospital mortality yielded 
the best F-measure score of 0.291. Although the performance 
of the CNN increased in the under-sampled model when 
compared to the model that did not use under-sampling 
method, all CNN model in this result did not outperform the 
best non-CNN classifiers despite hyperparameter tuning.  

Table VI shows the permutation test results of the best 
models with different features. The AUC of the model that 
used structured features was significantly higher than that of 
the model that used unstructured features regardless of the 
sampling method and survival outcome. Similarly, the AUC 
of the model that used combined features was significantly 
higher than that of the model that used unstructured features. 
When comparing the structured features model and combined 
features model, the AUC of the best models predicting 30-day 
mortality which used under-sampling method differed 
significantly. This result could indicate that the performance 
of combined model is higher than that of structured model. 

TABLE V.  MACHINE LEARNING MODEL RESULTS FOR EACH MACHINE 

LEARNING ALGORITHM USING STRUCTURED FEATURES COMBINED WITH 

UNSTRUCTURED CLINICAL NOTES 

Outcome Under 

sampling  
ALGa AUC P R F 

Hospital 
mortality 

N/A L1-LR 0.847 0.359 0.721 0.479 

L2-LR 0.853 0.384 0.693 0.494 

RF 0.812 0.395 0.535 0.455 

L1-SVM 0.847 0.352 0.744 0.478 

L2-SVM 0.854 0.376 0.684 0.485 

XGBOOST 0.799 0.612 0.242 0.347 

CNN 0.739 0.500 0.098 0.163 

1:4 L1-LR 0.847 0.359 0.744 0.484 

L2-LR 0.853 0.356 0.684 0.468 

RF 0.810 0.354 0.605 0.447 

L1-SVM 0.843 0.345 0.721 0.467 

L2-SVM 0.853 0.359 0.684 0.471 

XGBOOST 0.823 0.535 0.353 0.426 

CNN 0.734 0.403 0.251 0.209 

30-day 
mortality 

N/A L1-LR 0.839 0.388 0.712 0.502 

L2-LR 0.842 0.406 0.692 0.512 

RF 0.790 0.389 0.565 0.461 

L1-SVM 0.831 0.375 0.723 0.494 

L2-SVM 0.842 0.406 0.677 0.507 

XGBOOST 0.783 0.559 0.308 0.397 

CNN 0.761 0.593 0.062 0.112 

1:4 L1-LR 0.839 0.392 0.723 0.508 

L2-LR 0.841 0.402 0.700 0.511 

RF 0.790 0.372 0.585 0.454 

L1-SVM 0.829 0.376 0.735 0.497 

L2-SVM 0.841 0.404 0.700 0.512 

XGBOOST 0.800 0.526 0.346 0.418 

CNN 0.723 0.531 0.200 0.291 

Abbreviations: ALG, algorithm; L1-/L2-, L1/L2 regularization; LR, 
Logistic Regression; RF, Random Forest; SVM, Support Vector Machine; 
CNN, convolutional neural networks; P, Precision; R, Recall; F, F-
measure;  
aBest F-measure in each survival outcome and under-sampling model are 
marked in bold 

IV. DISCUSSION 

In this study, we examined the advantages of using 
combined features in predicting mortality in sepsis patients by 
comparing the performance scores between the models. Our 
results showed that the L2-regularized LR model constructed 
using bag-of words and structured features yielded the highest 
F-measure in 30-day mortality prediction. A logistic 
regression model is a traditional but powerful statistic method 
and it is widely used to predict the mortality and other 
outcomes [20-22].  

We further ranked this L2-regularized LR model’s 
coefficient of structured features to identify important 
demographic and physiological factors predicting sepsis 
mortality. Table VII showed the top structural features 
associated with an increased 30-day mortality risk. 



TABLE VI.  PERMUTATION TEST RESULTS AMONG BEST MACHINE LEARNING MODEL USING DIFFERENT FEATURES 

Outcome 
Under 

sampling 

Str vs. Unstr Str vs. Str + Unstr Unstr vs. Str + Unstr 

Model P-value Model P-value Model P-value 

Hospital 
mortality 

N/A L1-SVM vs. L2-SVM <0.001 L1-SVM vs. L2-LR 0.338 L2-SVM vs. L2-LR <0.001 

1:4 L1-SVM vs. L2-LR 0.003 L1-SVM vs. L1-LR  0.459 L2-LR vs. L1-LR <0.001 

30-day 
mortality 

N/A L1-SVM vs. L2-SVM <0.001 L1-SVM vs. L2-LR 0.211 L2-SVM vs. L2-LR <0.001 

1:4 L1-SVM vs. L2-SVM <0.001 L1-SVM vs. L2-SVM 0.010 L2-SVM vs. L2-SVM <0.001 

Best models marked in bold in Table III, Table IV, and Table V were compared 
AUC score was compared to calculate observed difference and p-value between each model 

Bolded p-values indicate same bolded model showed significantly higher AUC compared to the other model 

Our top feature was metastatic cancer, which is an obvious 
primary cause of the mortality [23]. There is also as a research 
that many of cancer patients are treated by chemotherapy, and 
this treatment could increase the risk of infection and sepsis 
[24]. Mechanical ventilation and hemoglobin are also known 
risk factors of mortality and associated with patients with 
more severe illness or sepsis [25, 26]. Furthermore, blood 
albumin was one of the top 10 structured features in the model. 
Albumin is considered an important factor with regard to 
nutritional status and is also known to be related to inadequate 
dialysis, fluid overload, and infectious diseases [27-29]. 
Several studies have shown that serum albumin decrement is 
an independent predictor of mortality risk and could be useful 
for predicting mortality in clinical settings [30, 31]. 

TABLE VII.  TOP STRUCTURAL FEATURES THAT ARE ASSOCIATED WITH 

INCREASED 30-DAY MORTALITY RISK BY L2-REGULARIZED LOGISTIC 

REGRESSION, USING COMBINED FEATURES 

Structural features Coefficients 

Metastatic cancer 0.923 

Admission 0.533 

Mechanical ventilation 0.378 

Blood albumin -0.342 

Ph 0.312 

Hemoglobin -0.204 

Blood serum creatinine -0.158 

Magnesium 0.155 

SIRS 0.149 

Temperature -0.143 

 

Figure 1 also shows the ranking of the top 50 bag-of-words 
features with its coefficients in the same model, in which the 
font sizes are proportional to the coefficients in the model. 
Many of the selected features show clinically meaningful 
words. For instance, in bag-of-words, ‘arrest’, which had the 
highest coefficient, could mean that the patients had 
previously experienced cardiac arrest. This could have 
occurred in or out of the hospital, but either case could lead to 
a negative survival outcome [32, 33]. The word ‘hemorrhage’ 
could also indicate a representative form extracted from 
‘subarachnoid hemorrhage’ or ‘gastrointestinal hemorrhage’ 
or a hemorrhage in other organs. It is also a meaningful word 
because many studies identified a relationship between 
hemorrhage and mortality risk [34, 35]. The feature also 
included the word ‘metastatic’, which is a similar result to the 
previous top structural features. The words ‘fibrosis’, ‘PICC’ 
(Peripherally inserted central catheter), ‘ascites’ are often used 
regarding critically-ill patients could indicate a higher 
mortality risk [36, 37].  

To handle the missing physiological variables, we used the 
Multivariate Imputation by Chained Equations (MICE) 
method. Since MICE method assumes the missing-at-random 
pattern of the value, it might not match the exact physiological 
value of patients in real clinical practice, as clinicians often 

order tests with certain expectations about the likely results. 
However, many studies have shown that MICE could still be 
an effective imputation and baseline method compared to 
other imputation methods because of its simple 
implementation [38, 39]. 

Fig. 1. Ranked top 50 positive features in Bag-of-words with its coefficients 
as font size in 30-day mortality prediction by L2-regularized logistic 
regression, using combined features 

When working with the clinical note data, we explored the 
bag-of-words method in conventional machine learning 
models and the word-embedding in the CNN model. These 
models showed moderate performance, but the performance 
of the CNN model was lower than that of the other models. 
CNN-based architectures generally work well for datasets 
with short texts, but they may not outperform bag-of-words 
model on corpus with long texts, such as the clinical note 
corpus. Considering that training a CNN model is time-
consuming, it could be more appropriate to utilize the well-
calibrated non-CNN classifier to predict the mortality in our 
case. There are other options for using medical concepts as 
features such as through NLP pipelines including MetaMap 
[40] and clinical Text Analysis. Moreover, there are also other 
deep learning architectures for handling the contents of long 
texts. Future investigation could be conducted using those 
architectures to identify which method is more suitable. 
Improved model performance could imply the potential 
application in the clinical setting in the near future. However, 
more researches and discussions about the model performance 
are needed to integrate the prediction model to the real-world 
decision-making in the clinical setting. 

In conclusion, our study identified that integrating 
structural features including demographic/physiological 
factors and unstructured clinical notes could help to improve 
the prediction of mortality in adult sepsis patients by using 
supervised machine learning method. We identified that 
carefully selected demographic/physiological factors and 
well-represented clinical notes could predict the mortality in 
sepsis patients with an AUC greater than 0.84. Our study 
suggested that the future prospective cohort studies are needed 
to validate whether our approach is effective to predict the 



mortality of the sepsis patients at the early in their hospital and 
initiate the intervention to reduce the mortality risk. 
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