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Abstract—Post-acute sequelae of SARS-CoV-2 infection
(PASC) or Long COVID is an emerging medical condition that
has been observed in several patients with a positive diagnosis
for COVID-19. Historical Electronic Health Records (EHR) like
diagnosis codes, lab results and clinical notes have been analyzed
using deep learning and have been used to predict future clinical
events. In this paper, we propose an interpretable deep learning
approach to analyze historical diagnosis code data from the
National COVID Cohort Collective (N3C)1 to find the risk factors
contributing to developing Long COVID. Using our deep learning
approach, we are able to predict if a patient is suffering from
Long COVID from a temporally ordered list of diagnosis codes
up to 45 days post the first COVID positive test or diagnosis for
each patient, with an accuracy of 70.48%. We are then able
to examine the trained model using Gradient-weighted Class
Activation Mapping (GradCAM) to give each input diagnoses
a score. The highest scored diagnosis were deemed to be the
most important for making the correct prediction for a patient.
We also propose a way to summarize these top diagnoses for
each patient in our cohort and look at their temporal trends
to determine which codes contribute towards a positive Long
COVID diagnosis.

Index Terms—COVID-19, EHR, deep learning, GradCAM

I. INTRODUCTION

Some people infected with the COVID-19 virus have
demonstrated a wide range of health problems that can last
a long time post infection, which has been termed Long
COVID. According to the World Health Organization (WHO),
approximately 10-20% of the people infected with COVID-19
experience a variety of health conditions in the mid to long
term after they recover from the initial illness. According to the
NIH REsearching COVID to Enhance Recovery (RECOVER)2

program, which seeks to understand, treat, and prevent PASC,
this condition generally refers to ongoing health effects, new
or existing symptoms and other health problems that occur
after the acute phase of SARS-Cov-2 infection (i.e., present

1https://ncats.nih.gov/n3c
2For more information on RECOVER, visit https://recovercovid.org/

four or more weeks after the acute infection). Therefore, it has
become necessary to identify risk factors in a patient’s medical
history that can lead to them experiencing Long COVID.

The N3C repository contains records of patients with a
newly introduced ICD-103 U09.9 code (”Post COVID-19 con-
dition”) that is being used to refer to patients being diagnosed
with Long COVID [1]. The N3C repository also contains
conditions, measurements and other medical records for these
patients. We focus our analysis on all the recorded medical
conditions recorded in the form of ICD-10 codes, for these
patients up to 45 days post the first COVID diagnosis.

Previous efforts have focused on feature creation based
on comorbidities, demographics, medication and healthcare
utilization derived from the EHR data to develop machine
learning models that can predict if a patient will develop Long
Covid [2]. In this work, we incorporate all conditions rather
than limiting features to a pre-defined list of comorbidities
to build a deep learning model to capture a more complete
picture of a patient’s medical history to find risk factors asso-
ciated with Long COVID. We test different architectures for
analyzing longitudinal data using all diagnosis codes present
in a patient’s medical history arranged temporally, and then
use interpretability methods to identify conditions associated
with the risk of developing Long COVID.

II. RELATED WORK

Many previous works have analyzed temporal EHR data
in different settings like predicting clinical events and risk
stratification [3]. They have focused on Long Short Term
Memory (LSTM) networks, a form of RNNs, to model
longitudinal data [4]. RNNs are a class of neural network
with looping connections between nodes such that temporal
information persists [5] [6]. This makes them very useful to
analyze time series data or applications where sequences have
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to be analyzed like speech recognition, language modeling etc.
However, RNNs, by their nature, cannot remember long term
dependencies in a sequence [7]. LSTMs are a special kind of
RNN that are architected to remember long term dependencies
[5]. An LSTM unit consists of a cell and three gates: input,
output and forget. The cell remembers information at each
time step and the gates control the flow of information, that
is, to either pass on or discard information to the next time
step.

Zhang et al. [8] use an LSTM based model to generate rep-
resentations for a cohort of Parkinson’s disease patients. The
input is a temporally ordered list of features {x1, x2...xNp

}
at different times, extracted from the patient’s EHR. A set of
features are selected as prediction targets. At each time step ti,
the input is passed through two LSTM layers and the hidden
state output of the final LSTM layer is used for calculating
the loss functions.

An LSTM network is unidirectional, as in, it only preserves
information from the past because it has only seen that part
of the sequence. A bidirectional LSTM (BiLSTM), on the
other hand, sees the input both ways, that is, backwards (past)
to forward (future) and forwards (future) to backward (past).
Therefore, at any given time, we are able to use information
from both the past and the future [6]. BiLSTM has been
successfully used to analyze a patient’s neuropsychological
test scale data, genetic data and tomographic data in first, six
and twelve months used to predict Alzheimer’s Disease [9].

Attention has been used in addition to an LSTM network in
[10]. It works by extracting the hidden states from an LSTM
network and calculating an attention score αt that can help
weight the inputs by training an additional attention layer. We
can later extract these attention weights during inference to
understand which part of the input was given a higher weight
during classification.

2D Convolutional Neural Networks (CNN) have been pri-
marily used for computer vision applications, where multiple
filters are trained to detect different input image features. 1D
CNNs have been shown to work on time series problems
like longitudinal EHR data [11]. 1D Convolution works over
the temporal dimension with different filter sizes, where the
different filters learn different temporal patterns. This process
produces feature vectors which are then passed through a non-
linear layer like a Rectified Linear Unit (ReLU) or Tanh.

Gradient-weighted Class Activation Mapping (GradCAM)
has been used to examine 1D CNN based models that analyze
protein sequences and find regions in the input sequences that
help the model make the correct prediction [12]. GradCAM
is generally used in computer vision to generate localization
maps for a given concept (class) in the input image [13]. These
maps are made by finding the gradient of the predicted class
in the activation map of the final layer, pooling them channel
wise, and the resultant activation channels are weighted with
the corresponding gradients which can then be inspected to
find which parts of the input helped in the classification.

Therefore, deep learning in general has been shown to
provide value while analyzing clinical EHR data in a variety

of areas. In the following sections, we define our methodology
for analyzing the same in the N3C cohort.

III. METHODOLOGY

A. Dataset

The N3C data transfer to NCATS is performed under a
Johns Hopkins University Reliance Protocol # IRB00249128
or individual site agreements with NIH. The N3C repository
contains N=14,026,265 number of patients out of which
X=5,409,269 are COVID-19 positive [14]. COVID cases are
defined as per CDC guidance [15]. We construct our Long
COVID positive cohort using patients with an existing U09.9
code or a long COVID clinic visit. The controls were con-
structed by choosing 5 random patients with the same site
and within 90 days of the long COVID patient. At the end,
we have 49,950 total patients, of which there were 7,511 Long
COVID patients and 38,649 Control patients.

B. Data pre-processing

The N3C EHR repository contains all historical medical
diagnosis codes stored using the Systematic Nomenclature
of Medicine - Clinical Terms (SNOMED-CT) vocabulary for
all patients. SNOMED-CT is a clinical terminology, widely
used by healthcare providers for documentation and reporting
within health systems [16]. Therefore, for each patient, we
have a list of these diagnosis codes along with the date when
the code was recorded. Since our goal is to find risk factors
that can pre-dispose a patient to suffer from Long COVID,
we focus on all conditions, not including the Long COVID
diagnosis, in the patient’s diagnostic history up to 45 days
post the first COVID diagnosis or positive test, which we used
as the acute phase cut off. We arrange all these conditions
in an ordered list from the earliest to the latest. We also
ensure that we insert only one record in the ordered list for
all conditions that were repeatedly recorded in a single day,
which can occur when one patient can have multiple tests
or diagnoses in a single day. At the end of this process, each
patient pi has an ordered list of diagnosis codes [d1, d2, ...dK ],
where K = 1000. We select K = 1000 as the upper limit for
the length of the list of diagnosis codes as we found that 99%
of our patients had less than 1000 diagnosis codes present in
their medical history. We add padding using ”padding tokens”
([PAD]) to make all inputs of length shorter than 1000 of
uniform length. For those conditions for which we do not have
prior embeddings, we replace with [UNK] tokens.

C. Pre-trained SNOMED-CT embeddings

Prior work focuses on embedded vector representation
learning to make medical concepts analyzable via mathemat-
ical models and subsequently building models for analysis
[3]. To analyze these temporal patterns in an ordered list of
concept codes using deep learning, we first have to transform
them into their equivalent vector representations that also
capture semantic meaning and similarities between different
diagnoses. We used 200-dimensional SNOMED embeddings
trained using SNOMED2Vec, a graph based representation



learning method on SNOMED-CT, to generate meaningful
representations [16]. This will help us capture more meaning
in these embeddings than randomly initializing the embedding
layer and training from scratch. In effect, for each diagnosis
code, di we have a representation vector, vi. For [PAD] >
tokens, we initialize the embeddings as all 0s and for [UNK]
tokens, we initialize them as the mean of all embeddings.

D. One level roll-up in SNOMED-CT hierarchy

Due to the recent nature of the disease, we do not have a
pre-trained embedding for the ”COVID-19” diagnosis code.
Being the reason for Long COVID, we need to capture that
information in our analysis. Therefore, we do a one level roll-
up in the SNOMED hierarchy for ”Coronavirus Infection” for
which we do have a pre-trained embedding provided in [16].
We do this roll-up for all diagnosis codes in our dataset to
prevent mixing hierarchical information. Since ”Coronavirus
Infection” encompasses all the different forms of the virus,
we remove all such instances in a patient’s record and insert
only the first recorded positive COVID-19 infection in the
temporally ordered list. Since a patient could have more than
one COVID test or diagnosis, we remove the repetitions and
insert only the earliest COVID diagnosis or test in the ordered
list. We term the date of the earliest COVID diagnosis or test
as the COVID index date.

E. Modeling

Fig. 1. Overview of training. Patients Pi have diagnoses Di at times Ti.

Here we provide the details of the different architectures
we used to analyze our data. The size of the LSTM refers
to the dimensions of the hidden layer as defined in the
PyTorch documentation. For each model tested, we initialized
the embedding layer using the 200-dimensional pre-trained
SNOMED-CT embeddings provided by [16], and froze it
during training to preserve the embeddings. At each training
epoch, all patient input sequences [d1, d2, ...dK ] are passed
through the embedding layer, and subsequent layers defined
below, and the cross entropy loss is evaluated against target
Long COVID labels for those patients.

1) 2 layer unidirectional LSTM: We used a 2 layer LSTM
each of size 128 and then added an output linear layer to build
a binary classification model.

2) 2 Layer bidirectional LSTM: We used a 2 layer bidirec-
tional LSTM each of size 128 and then added an output linear
layer to build a binary classification model.

3) 2 Layer Bidirectional LSTM with attention layer: We
use a self attention layer in between the LSTM layer and the
output linear layer, drawing inspiration from [10]. Given a
hidden layer representation from the LSTM, ht, we calculate
attention using the following equations:

ut = tanh(Wht + b)

αt = softmax(vTut)

s =

M∑
t=1

αtht

(1)

where αt are the attention weights that help the network
focus on specific parts of the input to generate the correct
output, M is the length of the input sentence and vt is the
learned vector during training. ut could be thought of as a
non-linear projection of ht.

4) 2 Layer Bidirectional LSTM with a 1D CNN unit: We
add a convolution unit consisting o a 1D-CNN layer, a batch
norm layer and ReLU non-linearity layer. The CNN outputs
256 dimensional features and the kernel size is 3. We also
add a max pool layer of size 2 to aggregate the feature maps,
between the output and LSTM layers (Figure 2).

Fig. 2. BiLSTM CNN architecture.

F. Training details

We split the data in training, validation and testing in the
ratio of 75:15:10 and use a batch size of 64. Since we are doing
binary classification, we label Long COVID patients as 1 and
the Controls as 0 and use the cross entropy loss function to
calculate the loss. For training, we use Adadelta optimization
algorithm with a learning rate of 0.01. We decay the learning
rate by a factor of 0.8 if the validation loss does not decrease
for 8 consecutive epochs. RNNs can suffer from the exploding
gradient problem, in which the updates to the weights can be
very large due to multiple updates during the time steps for
which we use gradient clipping, where we specify lower and
upper bounds for a gradient [17]. We set the bounds as (-5,5)
during training.



Fig. 3. ROC Curves for different architectures tested. A: 2 layer Unidirectional LSTM, B: 2 Layer Bidirectional LSTM, C: 2 Layer Bidirectional LSTM with
1D CNN, D: 2 Layer Bidirectional LSTM with attention layer

G. GradCAM calculation and analysis

We calculate the GradCAM heatmap values by first calcu-
lating the gradients from the conv 1d layer with respect to
the correct prediction of Long COVID from the forward pass
of the model [13]. We extract the activation map from the
CNN layer and weight them using the pooled gradients and
average over all channels. We pass these through a Rectified
Linear Unit (ReLU) function and normalize the values using
max scaling to generate the scores for each input diagnosis.

We use GradCAM to assign scores to each input diagnosis
code for each patient that our model correctly predicts as
having Long COVID. We then pick the diagnosis code with
the highest GradCAM score and calculate the time separation
(in days) from when the diagnosis code was recorded to the
COVID index date. We do this for all patients and capture
the distribution of the time separation to understand when the
highest scored diagnosis was made across different patients at
different sites.

IV. RESULTS

Since the dataset is imbalanced, we use Area Under the
Receiver Operating Characteristic (AUC) curve to determine
the effectiveness of the model. We present the mean AUC
scores of the 3-fold stratified cross validation for all models
tested in Table I. Refer to Figure 3 for ROC curves. We choose
the model with the highest test AUC and calculate the best
classification threshold using Youden’s J statistic [18]. This
results in a 70.48 % classification accuracy in our test set for
the fold with the best AUC, which was 0.75.

TABLE I
RESULTS

Model Mean AUC (3-fold CV)
Unidirectional LSTM 0.74 ± 0.01
Bidirectional LSTM 0.73 ± 0.01
Bidirectional LSTM with 1D CNN unit 0.75 ± 0.01
Bidirectional LSTM with attention layer 0.62 ± 0.00

V. ANALYSIS

Based on the results in Table I, we pick the model with
the highest mean AUC, which is the BiLSTM with 1D CNN
model. We calculate the GradCAM scores for each input

condition for a correctly classified Long COVID patient and
look at the condition which received the highest score. We
also find the time separation (in days) of the highest score
condition from the COVID index date. If Condition A occurred
t days before the index date, the time separation is noted
as −t, and +t if it occurred t days after. We then look at
the distribution of these diagnosis codes over all correctly
predicted patients in our cohort (see Figure 5). In Figure
4 we present a visualization of the GradCAM values of
a correctly classified patient’s diagnosis history with darker
shades representing higher values. This can help a physician
determine what the model thought of as important for making
its classification. We can use this to investigate the model and
provide a guidance to physicians that which diagnoses in a
patient’s history to take a closer look at. We defer a more
detailed clinical analysis for subsequent papers.

Hence, our proposed method is able to analyze all historical
patient diagnostic data and provide interpretable results that
can be used to identify risk factors that can contribute (pending
further clinical analysis) to a Long COVID diagnosis.

VI. LIMITATIONS AND FUTURE WORK

While we define our Control patients as those without a
U09.9 code or Long COVID clinic visit, we cannot be sure that
those patients were definitely not suffering from Long COVID.
This introduces noise in the dataset. We defer a more involved
clinical analysis for future work as the focus of this paper
is to summarize the methodology used to identify historical
conditions in N3C data. Future work would focus on Positive
Unlabeled or PU learning, where we know our positive labels,
but our negative labels are unknown [19]. Future efforts will
be made to incorporate more recent deep learning approaches
for uneven temporal sequences, like self-attention based Trans-
formers, to analyze this data [20]. Secondary use of medical
record data is always subject to bias, as patient events are only
represented as captured in medical records of participating
sites. N3C data is heterogeneous across contributing sites due
to variation in local care practices, EHR encoding, and clinical
data model mapping. We randomized our data partitioning,
but further work can be done to investigate the effect of
site data heterogeneity. Hence, this analysis does not reflect
a representative sample of all patients, but rather a subset of
facts collected by participating academic medical institutions.



Fig. 4. GradCAM visualization of correctly classified Long COVID patients.

Fig. 5. Distribution of time separation (in days) of the top 9 (by number of
patients) diagnosis codes over all correctly predicted patients from the COVID
index date (0-line).
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