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Abstract

The healthcare landscape is moving from the reactive interventions focused on symptoms
treatment to a more proactive prevention, from one-size-fits-all to personalized medicine,
and from centralized to distributed paradigms. Wearable IoT devices and novel algorithms
for continuous monitoring are essential components of this transition. Hyperdimensional
(HD) computing is an emerging ML paradigm inspired by neuroscience research with various
aspects interesting for IoT devices and biomedical applications. Here we explore the not yet
addressed topic of optimal encoding of spatio-temporal data, such as electroencephalogram
(EEG) signals, and all information it entails to the HD vectors. Further, we demonstrate
how the HD computing framework can be used to perform feature selection by choosing
an adequate encoding. To the best of our knowledge, this is the first approach to perform
feature selection using HD computing in the literature. As a result, we believe it can support
the ML community to further foster the research in multiple directions related to feature
and channels selection, as well as model interpretability.

1. Introduction

Hyperdimensional (HD) computing is an emerging ML paradigm inspired by neuroscience
research, pointing towards the power of computation with massively distributed and redun-
dant systems. Instead of representing data as conventional numbers, representing/projecting
it to thousands (or millions) of neurons/numbers brings new perspectives. More specifically,
HD computing or vector-symbolic architectures represent data in the shape of vectors with
high dimensions, hypervectors, with usually more than 10000 values. This change in the data
representation paradigm brings various advantages from a learning and hardware implementa-
tion perspective. From a learning perspective, it opens new paths for semi-supervised Imani
et al. (2019a), distributed Imani et al. (2019b), continuous online learning Moin et al. (2021);
Benatti et al. (2019), or multi-centroid learning Pale et al. (2022b). From the hardware
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HD computing for feature selection

implementation perspective, possibilities for parallelization, open paths for designing efficient
accelerators Imani et al. (2021) or in-memory computations Karunaratne et al. (2020, 2021).
Its lower energy and memory requirements Burrello et al. (2021); Asgarinejad et al. (2020);
Imani et al. (2019c) makes it an attractive solution for learning on less powerful devices,
such as wearable and IoT systems.

Due to the advantages mentioned above, HD computing is drawing a lot of attention for
biomedical applications, and has indeed been tested for electromyogram (EMG), gesture
recognition Rahimi et al. (2016), EEG error-related potentials detection Rahimi et al. (2020),
emotion recognition from GSR (galvanic-skin response) and electrocardiogram (ECG) and
electroencephalogram (EEG) Chang et al. (2019), and epileptic seizure detection from
EEG Burrello et al. (2019); Asgarinejad et al. (2020) among others.

EEG (iEEG) and EMG are spatio-temporal, noisy and non-stationary data, whose
efficient encoding to HD vectors poses an essential part of the quality of HD learning.
However, how to encode channel and feature information has not yet been systematically
explored in the literature. In most of the existing literature utilizing EMG or EEG data,
only raw data or local-binary-patterns (LBPs, Kaya et al. (2014), have been used as features
encoded to vectors. Yet, similarly to standard ML approaches, the possibility to add more
features can significantly improve the power of the models. In Pale et al. (2021), the authors
showed that utilizing a wider variety of statistical, time, or frequency features with HD
computing for epileptic seizure, the final detection score outperforms simple raw signal
encoding. Thus, in this paper, we discuss possibilities on how to encode information about
channels and various possible features one might need to extract from data, to capture all
the relevant aspects.

As we shown later in this work, encoding can also enable analyzing performance, corre-
lations, and learning capabilities of individual features. In Burrello et al. (2021) authors
explored a similar idea using several individual HD classifiers for three different features.
Analyzing various aspects of individual features is a crucial step for a) feature selection, as
demonstrated in this paper, and b) for further interpretability of model decisions (which
will not be discussed in the scope of this paper). Indeed, feature selection is crucial in
designing wearable applications as it helps remove noisy and non-informative features while
also directly leading to more lightweight models. To the best of our knowledge, a clear,
straightforward methodology for feature selection using HD computing has not been so far
presented in the literature.

In this paper, we assess our approaches in the context of epileptic seizure detection.
Epileptic seizures are a chronic neurological disorder characterized by the unpredictable
occurrence of seizures that affects a significant portion of the world population (0.6 to
0.8%) Mormann et al. (2007). Due to its high inter-patient variability, unpredictable nature
and not yet completely understood origins, it still poses an open research question. Despite
pharmacological treatments, one-third of patients still suffer from seizures Schmidt and
Sillanpää (2012) and are being subject to serious health risks and many restrictions in
daily life. There is no yet available wearable device for epilepsy prediction, detection, or
continuous monitoring for outpatient environments. HD computing has been utilized for
epilepsy detection due to its attractive properties, and only with various improvements to
standard HD learning, it can reach the performance of state-of-the-art algorithms Pale et al.
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Figure 1: Simple illustration showing the HD computing workflow and learning process from
windows of seizure and non-seizure data.

(2022a). Thus, further exploration on how to optimize HD computing and encoding for
better performance is of high interest for epilepsy detection.

Speaking more broadly, the healthcare landscape is moving from reactive disease in-
tervention to proactive prevention Waldman and Terzic (2019), as it is not only more
cost-effective, but it usually leads to better quality of life Goetzel (2009). At the same time
it is shifting from one-size-fits-all to personalized medicine Chan and Ginsburg (2011) and
institution-centered to decentralized Puri et al. (2021). For all these aspects, novel algorithms
design and optimization for lightweight and wearable IoT devices are essential Tricoli et al.
(2017). Thus, even though we focus our work on epilepsy detection, proposed approaches
and results are applicable for more general continuous monitoring, early detection of diseases,
and preventive healthcare.

Generalizable Insights about ML in the Context of Healthcare

This paper demonstrates how a novel HD computing approach can be used as an alternative
to standard state-of-the-art machine learning (ML) approaches in the use case of epileptic
seizure detection. We explore not yet addressed topic of optimal encoding of spatio-temporal
data, such as EEG, and all information it entails to the HD vectors. Computational efficiency
is critical for developing wearable devices for continuous monitoring of diseases such as
epilepsy, making long battery lifetimes feasible and moving towards preventive healthcare.
Further, we demonstrate an example of how we can utilize the HD computing framework to
perform feature selection by choosing an adequate encoding. To the best of our knowledge,
this is the first proposal of the feature selection using HD computing in the literature, and
we trust it can foster research in the ML community for further development in this direction.
From the clinical perspective, tools and models that can improve the interpretability of
the models can lead not only to better service to the patients, but also to help as decision
support for the doctors and caregivers.

2. Related Work

HD computing has been applied so far in several applications where spatio-temporal data
such as EEG, iEEG Asgarinejad et al. (2020); Burrello et al. (2021) or EMG Rahimi et al.
(2016); Benatti et al. (2019); Moin et al. (2019); Rahimi et al. (2020) was utilized. The
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Figure 2: Illustration of encoding one data window to HD vector representing it.

majority of works used raw signal values or short local-binary-patterns (LBPs) to describe
the changes of the signal in time and map it directly to HD vectors Rahimi et al. (2016);
Benatti et al. (2019); Moin et al. (2019); Burrello et al. (2019); Asgarinejad et al. (2020);
Rahimi et al. (2020). This enables combining channel and value (raw signal or LBP value)
together and then further combining all samples belonging to the same class, similarly as
illustrated on Fig. 1. Some of them have also encoded time information between neighboring
samples by utilizing vector permutation. Furthermore, in Karunaratne et al. (2021) authors
propose energy-efficient in-memory encoding for this way of encoding spatio-temporal signals.
This is an interesting approach in its simplicity as it use directly raw signal values. However,
it is limited to only mapping one type of information to HD vectors (i.e., raw signal amplitude
or/and signal change trends).

In Pale et al. (2021) authors test, on a use-case of epilepsy seizure detection, how different
feature types regularly used in non-HD ML classifiers for epilepsy detection perform in the
HD computing framework. They show that, indeed, utilizing more different statistical, time,
or frequency features outperforms simple raw signal encoding. Further, in recent Burrello
et al. (2021), authors extend their previous work Burrello et al. (2019) by adding mean
amplitude and line length features to LPB values. They resolved the problem of encoding
more features to HD vectors by having three independent classifiers, each with its own model
vectors. Predictions are merged using a simple linear layer that gives a final prediction based
on distances from class models of each feature. This is a promising approach that enables
the performance comparison for the different features.

In Ge and Parhi (2021), authors explored epileptic seizure detection using power-spectral
features from iEEG data, and encountered similar problems as we point out here. They
explored three different encoding approaches: 1) concatenating feature HD vectors to generate
long HD vectors, 2) using multiple classifiers (one for each feature) and then integrating
their predictions by majority voting, and 3) training one classifier using all features. In the
last approach, vectors representing features and their values are combined in the first place,
and then united with channel information. These approaches are highly interesting due to
the broad spectrum of feature characteristics that are integrated. However, unfortunately,
in Ge and Parhi (2021) they were not systematically compared from performance, memory
or complexity aspects.
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Figure 3: Schematic of different possibilities to encode information about channels, features
and their values to HD vectors. Five different encoding approaches tested in the
paper are illustrated.

3. Methods

3.1. Encoding spatio-temporal data for HD computing

Typical spatio-temporal data, such as EMG or EEG, is 2D data. It consists of several
channels positioned in different physical locations (which can have specific relations between
them) and recorded during time frames of various lengths. After preprocessing the signals,
features are typically extracted in time, using time windows shifted by some time step. As
this is repeated for each of the channels, this leads to 3D data containing information on the
feature, channel, and time, as illustrated in Fig. 2. Within the HD computing workflow, this
means that we need to define initial vectors that represent each of these entities: HD vectors
representing each feature (FeatID as in Fig. 2), and vectors representing each possible value
of features (FeatChV AL), and channels (ChID). As feature values of various features might
not have the same range and are not usually integer values, they need to be normalized and
discretized to a specific number of bins.

The question that we address in this work is how to encode all this information into HD
vectors. Moreover, we assess the different possible methods from several perspectives, which
include classification performance, memory and computational complexity. The last two
metrics are very relevant in the design of the next generation of smart wearable systems.
Therefore, in Fig. 3 we illustrate different possibilities considered in this paper to encode
the time window of data to an HD vector. The time window contains information on all
features and their values calculated from each of the channels.

Although HD vectors can be binary (containing only 0 or 1), bipolar (containing -1
and 1), ternary (containing -1, 0 or 1), integer or even floating point, the most memory
friendly and commonly used are binary HD vectors. Three basic arithmetic operations that
are performed on the vectors are: 1) bundling or bitwise summation, 2) binding or bitwise
XOR, and 3) thresholding to binarize vectors after summation. Bundling operation leads to
a vector that is with high probability very similar to summed vectors, while on the other
hand, binding leads to the vector that is orthogonal to the bound vectors. Thresholding is
necessary to keep the final vector again in binary (bipolar or tertiary form) after summation.
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A typical approach in the literature dealing with simpler, non-spatial data is to bind
feature vectors with feature value vectors and then bundle (and threshold) them. Translating
this approach to EEG data leads to two options: 1) Feat× V al and 2) ChFeatComb× V al.
The difference between them is, as illustrated in Fig. 3 and formulated by (1 and 2), that
Feat×V al does not include information about channels but simply bundles (and normalizes)
features (FeatID) and feature values from each channel (FeatChV AL). On the other side,
ChFeatComb× V al approach treats each feature and channel combination as an individual
feature and gives it an independent HD vector (FeatChID). This approach distinguishes
between channels as formulated in (2), but can lead to significantly large memory maps to
store all initial HD vectors. This could happen in case data contains many channels (such
as iEEG data) or when many features are extracted from each channel.

As this can be problematic from a memory perspective viewpoint in the context of
wearable medical devices, we propose other more EEG-inspired approaches: 3) Feat ×
Ch× V al and 4) Ch× Feat× V al. Both approaches first initialize vectors for each channel
(ChID), each feature (FeatID), and possible feature values (FeatChV AL). The difference is,
in the order of bundling information. For Feat×Ch×V al, as formulated by (3), in the first
step, channels (ChID) and feature values on that channels (FeatChV AL) are bundled. Then,
in the second step, the bundling with feature ID’s (FeatID) follows. In Ch× Feat× V al
approach order of bundling is opposite, as formulated in (4).

Feat× V al =
⌊ numCh∗numFeat∑

i=1

FeatIDi ⊕ FeatChV ALi

⌋
(1)

ChFeatComb× V al =
⌊ numCh∗numFeat∑

i=1

FeatChIDi ⊕ FeatChV ALi

⌋
(2)

Feat× Ch× V al =

⌊ numFeat∑
i=1

FeatIDi ⊕
⌊ numCh∑

j=1

ChIDj ⊕ FeatChV ALij

⌋⌋
(3)

Ch× Feat× V al =

⌊ numCh∑
i=1

ChIDi ⊕
⌊ numFeat∑

j=1

FeatIDj ⊕ FeatChV ALij

⌋⌋
(4)

The last approach, called FeatAppend, is designed with the goal to make it easier to
interpret encoded vectors and determine which part of them comes from different features. In
this approach, as illustrated in Fig. 3, channels and feature values are bound, bundled, and
thresholded to get a vector representing the encoded sub-vector for each feature. Instead of
binding it with other feature sub-vectors as in Feat× Ch× V al these vectors are appended
one after another, as formulated in (5). In order to get the same final vector dimension,
initialized sub-vectors have, in this case, smaller dimensions. This encoding organization
enables to analyze vectors for every single feature. For example, in this paper, we analyze
what the separability of classes for each of the features is, as well as the predictions of
individual features, and how confident they are with respect to other features. These
measures are defined in next section and allow us to perform additional features selection
steps.
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FeatAppend =
⌊ numCh∑

j=1

ChIDj ⊕ Feat1ChV ALj

⌋
...
⌊ numCh∑

j=1

ChIDj ⊕ FeatnumFeatChV ALj

⌋
(5)

3.2. Feature selection

In the FeatAppend approach, it is known which part of the final encoded vector comes from
each feature, which enables analysis per individual feature. In this paper, we define and
measure several metrics for each feature:

• Prediction: Using only d = D/numFeat bits corresponding to the feature of interest,
we can determine the prediction for each sample using only that feature. A decision is
made in the same way as when the whole vector is used; the label of the most similar
class vector is given. As we use binary HD vectors, hamming distance is used as our
similarity metric measure.

• Feature certainty : For each time moment, we can also quantify the certainty of each
feature’s label based on distances from both class vectors. The certainty is calculated
as the difference between distances from two classes, divided by the average absolute
distance for all features in the same time moment, as in formula (6).

Cf =
|distSf − distNSf |

1
numFeat

∑numFeat
i=1 (|distSi − distNSi|)

(6)

• Correlation: Based on the predictions of each feature in time, it is possible to measure
the correlation between predictions of different features and take it into account later
for feature selection.

• Class separability : For binary HD vectors, separability (Sf ) is measured as the relative
hamming distance between class vectors (HDS , HDNs) when using only the bits of
the corresponding feature. This measurement is obtained using equation (7). Based on
the separability measure it is also possible to estimate the usefulness of each feature.

Sf = hamming

(
HDS

[
f ∗D

numFeat
:

(f + 1) ∗D
numFeat

]
, HDNS

[
f ∗D

numFeat
:

(f + 1) ∗D
numFeat

])
(7)

Metrics measured per feature on a training set can then be used to perform feature
selection, as shown in Fig. 4. In this paper, we demonstrate three ways to do it. Each
approach starts by ordering features based on specific quality measures:

• Feature performance: Based on the predictions for each sample and the true labels,
we can measure the performance of each feature. The exact performance metric of
choice can depend on the application, and for epilepsy detection we define them later
in Sec. 4.4.2.
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Figure 4: Feature selection workflow with detailed steps.

• Feature confidence: Based on the certainty values and predictions per feature, as well
as true labels per time moment, from the training set, features can be ordered based
on the highest confidence. Confidence per feature is calculated as how much more
certain is that feature during correct predictions (Cf |TP ) versus wrong predictions
(Cf |FP ) and is calculated by the formula (8).

Conff =
Cf |TP − Cf |FP

Cf |FP
(8)

• Feature performance and correlation: If selection is made based only on the feature
performance, it might lead to selecting features that are performing well but are highly
correlated and thus maybe redundant. In this approach, we select features one by
one by evaluating in each step how the performance changes when adding one of the
not yet used features. This is a slower process (and computationally more complex)
than sorting features based on different direct quality metrics, as in the previous two
approaches. Nonetheless, it leads to a more elaborate order of features, which also
includes the novelty each feature brings.

After features are ordered, the performance on the train and test set is assessed when
increasing the number of features until all features are included. Prediction when using n
features is given by summing up distances from seizure and non-seizure model vectors of
individual features as in the formula (9). If the final distance is positive, the prediction
(Vote) is seizure, otherwise non-seizure. From the performance curve of the training set, the
optimal number of features is chosen as the number of features giving maximal performance
(or the smallest number of features without loss in the performance when compared to using
all features). In the end, as shown in Fig. 4, performance on the test set is measured for the
chosen, reduced set of features. Then, we compare it with the case without feature selection.

V ote = sign

[numFeat∑
i=1

(
distNSi − distSi

)]
(9)
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4. Experimental setup

4.1. Dataset

For the analysis, we use the CHB-MIT database. It consists of 24 subjects with medically-
resistant seizures ranging in age from 1.5 to 22 years Shoeb (2009); Goldberger Ary L. et al.
(2000). It is an EEG database collected by the Children’s Hospital of Boston and MIT, and
contains 183 seizures overall, with an average of 7.6 ± 5.8 seizures per subject. We use the
18 channels (i.e., FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4,
F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ) that are common to
all patients.

The original dataset contains more than 980 hours of recordings that are divided in
approximately one hour-long files. Even if the common approach in literature is using
balanced data preparation, it can lead to highly overestimated performance Pale et al.
(2022b). Further, training on the full dataset using HD computing is not feasible due to its
complexity. Thus, as proposed in Pale et al. (2022a), we use a data selection approach that
contains all seizure segments and ten times more non-seizure data. Data is arranged in such
a way that for each seizure file, seizure data is extracted and surrounded by non-seizure
data, which was randomly selected from one of the files not containing any seizure. In this
way, each file contains an equal ratio of seizure and non-seizure data, and can be easily used
for leave-one-file-out cross-validation.

4.2. Feature Choices

In previous papers applying HD computing for epileptic seizure detection Pale et al. (2022b,a,
2021), 45 features were used for classification, including mean-amplitude, 37 entropy features
and 8 relative frequency domain features. Based on a literature review by Siddiqui et al.
(2020) discussing the importance of various features, frequency features, as well as line-
length were reportedly the most useful. Thus, in this paper, we keep the mean-amplitude
(mean ampl) and use both relative and absolute values of power spectral density in the five
common brain wave frequency bands: delta: [0.5-4] Hz (p delta and p delta rel), theta: [4-8]
Hz (p theta and p theta rel), alpha: [8-12] Hz (p alpha and p alpha rel), beta: [12-30] Hz
(p beta and p beta rel), gamma: [30-45] Hz (p gamma and p gamma rel), and low-frequency
components: [0-0.5] Hz (p dc and p dc rel) and [0.1-0.5] Hz (p mov and p mov rel). To
calculate the relative values, we divide the absolute values by the total power (p tot). In
this case, we do not to use entropy features, as a preliminary analysis and the literature
showed a very small discriminative power. In the end, we included the line-length feature
(line length), as introduced in Esteller et al. (2001), and which showed a high discriminative
power in the preliminary analysis. Thus, in total, we extract 19 features. Before extracting
the features, the data is filtered with a zero-phase, 4th order Butterworth band-pass filter
between [1, 20] Hz. Features are extracted from data segmented into 4-second windows with
a 0.5-second step.

4.3. HD Learning Workflow

The standard HD computing workflow consists of a single-pass training, where HD vectors
representing different data windows (in this case, four-second windows) from the same
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label class are bundled all together to form a model HD vector representing that class
(illustrated in Fig. 1). This approach is simple and fast. However, all data windows are
equally important, which can, in highly imbalanced datasets such as epilepsy ones, lead to
the domination of more common patterns in the final vectors. As shown in Pale et al. (2022a),
this situation leads to an under-representation of less common patterns and ultimately lowers
the performance. OnlineHD was proposed in Hernández-Cano et al. (2021) as an alternative,
where each window vector is multiplied with a weight before being added to the model
vector. The weight is defined by the similarity of the current vector to the current prototype
vectors; the higher the similarity, the lower the weight, which helps in identifying more
repeating patterns and lowers model saturation with them. In Pale et al. (2022a) standard
HD and OnlineHD have been compared for the exact use case of epileptic seizure detection,
and OnlineHD has shown to have higher performance. An essential step of OnlineHD is
that, when a new sample vector is added, it is also subtracted from the opposite class if it
is more similar. These steps help to make model vectors more separable and improve the
performance.

4.4. Validation

4.4.1. Feature comparison

A standard approach to compare features individually is the Kullback-Leibler or Jensen-
Shannon divergences, which analyses the distance between the distributions of feature values
for the different classes. As explained in Sec. 3.2 FeatAppend appending approach enables
various other ways to compare features. For example, it is possible to compare predictions
if the model only has individual features and their certainties in time. Moreover, the final
performance per feature, confidence, correlation, and class separability can be assessed too.

4.4.2. Performance evaluation

Training and evaluation are done independently for each individual due to the subject-
specific nature of epileptic seizures. For each person, we perform leave-one-seizure out
cross-validation and report the performance as the average across all cross-validation runs.
In the end, we report performance as average over all subjects.

The performance of the classifier is evaluated with respect to seizure episode detection and
duration-based (window-based) detection. There is an active discussion in the community on
which performance measures to use to increase the interpretability of performance Ziyabari
et al. (2019); Shah et al. (2020). Here we use the same metrics as in Pale et al. (2022b).
More specifically, we measure sensitivity, predictivity, and F1 score on the level of episode
detection, as well as on the level of episode duration. The performance at the episode level
groups the signal into blocks of seizure and non-seizure. The performance at the duration
level, on the other hand, cares about the correct prediction of each window, meaning that
seizures need to be predicted correctly during their whole duration. Finally, to have one
single final metric, we combine F1 scores for episodes (F1E and F1D) using the geometric
mean as F1DEgmean.

In epilepsy detection, raw label predictions often lead to an unrealistic behavior of seizure
dynamics (e.g., seizures lasting only a few seconds, or seizures that are only a few seconds
apart). Thus, label post-processing is an integral part of the whole pipeline. Here we,
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Figure 5: Jensen-Shannon divergence of features.

Figure 6: Comparison of features based on FeatAppend approach. The averaged values
over all subjects are shown.

post-process raw label predictions by performing a moving average with majority voting,
using a window size of 5s.

5. Results

5.1. Feature comparison

Fig. 5 shows Jensen-Shannon divergence of 19 features we used and their distribution over all
channels for all subjects. There is a clear difference between features, where mean amplitude,
line length, total energy, and absolute spectral powers of the delta, theta, alpha, beta, and
middle-range are quite discriminative. Relative powers seem to be less discriminative than
absolute values.
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Figure 7: Performance of different EEG encoding approaches.

Fig. 6 shows comparison of the features based on measures extracted using FeatAppend
approach. More specifically, the separability of vectors for the two classes are shown
for each feature, average confidence of each feature, and the performance (F1 score for
episodes, duration, and their gmean) when using only individual features. In the subplot of
performance, the horizontal line shows the performance achieved when using all the features.
It is visible that no single feature reaches the performance of all features, but some of them
get quite close to it (i.e., mean amplitude, line length, total power, and power of delta and
theta). In the bottom row, the correlation between confidence and performance, separability
and performance, and separability and confidence are plotted, showing high correlation
values. This confirms that the FeatAppend approach can indeed be used to investigate
different properties of individual features.

5.2. Encoding comparison

Next, as FeatAppend is one of the possible approaches to encode all EEG data aspects
into the vectors to use them for HD learning, we compare it with other possible encoding
approaches. Fig. 7 shows the average performance for all subjects without any post-processing.
Performances on the level of seizure episodes and seizure duration are shown. TPR or true
positive ratio is the measure of sensitivity, PPV or positive predictive value is the measure
of precision, and F1 score is gmean between TPR and PPV.

Feat× V al encoding, which does not takes channel information into account, leads to
lower performance encoding types that take channel information into account. There is
no significant difference in performance between the three approaches that include channel
information: Feat×Ch×V al, Ch×Feat×V al and ChFeatComb×V al. The FeatAppend
approach, even if including channel information, yields a smaller performance than the
three approaches that utilize channel information, probably due to the smaller number of
dimensions per feature. Yet, performance is not worse than the Feat× V al approach.

Fig. 8 shows the memory needed to store all HD vectors (for channels, features, and
values) for each of the approaches is shown. Relative ratios are shown as memory directly
depends on the chosen dimension D (in this case 19000) and whether HD vectors are
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Figure 8: Comparison of encoding approaches in terms of memory needed and number of
binding and bundling operations needed to encode one data window.

binary or not. Due to the large number of combinations of features and channels, the
ChFeatComb × V al approach is the most memory-demanding one, and scales the worst.
FeatAppend approach is the approach that requires the least amount of memory as base
vectors have lower D/numFeat dimensions.

Further, the relative number of bundling and binding operations needed to encode one
window of data to the HD vector representing it is shown as well in Fig. 8. The FeatAppend
approach requires significantly less operations due to the effectively smaller number of
dimensions per vector for each feature. From other approaches, ChFeatComb× V al and
Feat× V al require slightly less operations then Feat× Ch× V al anr Ch× Feat× V al.

5.3. Feature selection

Fig. 9 shows the performance when adding features one-by-one, for each of the three methods
described in Sec. 9. The difference between approaches relies in how features are ordered. In
the first row of Fig. 9 features are ordered based on their performance metric (in this case,
their F1DE performance) and in the second row based on average feature confidences given
by equation (8). Finally, in the third row, features are added one by one choosing the best
feature to increase performance when added to previously chosen features. This approach
can be referred to as more optimal order and choice of features, as it takes into account
correlation between features. In this case, performance increases and reaches performance
higher than when using the first two approaches.

The last column shows the boxplots of feature orders for each feature selection method,
for all subjects. The smaller the ranking number, the sooner that feature was chosen in the
incremental feature selection. What can be noticed is that the ranking of features in the
first two approaches when using solely feature performance or feature confidence is similar
to the results given by the discriminative power analysis shown in Fig. 5. In the last case of
more optimal feature selection, feature order is slightly different due to feature correlations
that were taken into account.

Fig. 10 shows the results of optimal feature selection for every subject. The first graph
shows the chosen number of features per subject and average for all subjects, which is shown
with the horizontal line. The following two graphs show the performance improvement (or
decrease), i.e., F1 for episodes and gmean of F1 for episodes and duration, for the training
and testing set. In the title of the figures, we provide the average performance for all subjects
on the test set. A significant variability exists between the number of features chosen per
subject, ranging from 1 to 10 features, with an average of 5.8 or 30% of features.
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Figure 9: Performance evolution by incrementally adding one-by-one new feature for three
approaches: based on feature performance, feature confidence and both feature
performance and correlation.

In Table 1 shows more detailed results. More precisely, results for all three feature
selection methods are given. For each of the methods, we show results when we optimized
the F1 score only for episodes (F1E), or when the F1 score for seizure duration is also
taken into account (F1DE). Further, in the table, average F1 and F1DE performances for
both train and test are shown before and after label post-processing. What can be noticed
is that when optimizing only F1E, fewer features are needed, but it usually leads to a
smaller performance increase for F1DE. When F1DE is optimized, this leads to a significant
performance increase both for F1DE and F1E but at the price of a slightly higher number
of features chosen. In general, the performance increase is smaller on the test set than on
the train set, which is reasonable as the optimal number of features was chosen based on
the train set without knowledge about the test set. Yet, the performance increase is not
negligible, ranging up to 7% for the test set.

When comparing the three different feature selection approaches, there are slight dif-
ferences in the optimal number of features chosen and the performance gained. Feature
selection based only on the performance or confidence leads to a slightly higher number of
features but not a higher performance increase. This is due to information about feature
correlations that are missing.
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Figure 10: Optimal number of features and performance after feature selection. Example is
showed for feature selection using both feature performances and correlations.
The horizontal lines represent the average for all subjects.

Table 1: Optimal number of features and performance change for different feature selection
approaches.

Feat. selection Perf. Nr. Train Raw Train Post Test Raw Test Post
approach used Feat. F1E F1DE F1E F1DE F1E F1DE F1E F1DE

Feature F1E 2.84 12.29 4.63 6.75 1.43 4.78 -1.40 -0.27 -4.53
performance F1DE 6.99 9.41 7.49 6.60 5.39 4.94 3.69 3.64 1.90

Feature F1E 5.98 10.92 8.55 6.59 5.56 4.00 3.75 2.90 2.28
confidence F1DE 6.62 9.44 10.26 6.60 7.81 3.56 6.03 3.43 4.82

Feat F1E 2.65 14.61 8.91 9.35 5.45 5.84 1.88 1.79 -1.06
perf and corr F1DE 5.81 13.29 14.07 9.44 10.84 2.45 6.54 5.27 6.96

Finally, the code and data required to reproduce the presented results are available
online as open-source (link will be available after the double-blind peer-review process).

6. Discussion

This paper draws attention to not yet discussed and properly explored topics of mapping and
encoding spatio-temporal data such as EEG or EMG to HD vectors. Although HD computing
has been utilized and has shown promising results for various biomedical applications (in
particular utilizing EEG and EMG), most works in the literature only use raw data (or
LBP values), namely, only one feature per channel. Thus, the optimal encoding when more
features per channel or more available data modalities are used remained unclear.

In this work, we propose five alternatives to encode feature values for all channels of
one data window into an HD vector and test it on epileptic seizure detection. Our results
show that including channel information is beneficial for epileptic detection performance,
but that the order in which features and channels are mapped to corresponding values is
not relevant. Further, we show that the ChFeatComb× V al approach is the most memory
demanding and that Feat× Ch× V al, ChxFeat× V al and FeatAppend are comparable
and more appropriate. FeatAppend requires the least amount of memory and operations
to encode vectors due to the effectively smaller number of dimensions per feature vector.
By creating individual vectors for each feature and appending them next to each other, in
FeatAppend performance is slightly reduced. This situation is probably due to fewer HD
dimensions used per feature. Thus, it could be improved by increasing the total dimension
of vectors, but this also leads to higher memory requirements, which could make it less
friendly for wearable devices.
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By utilizing the FeatAppend approach, we present, to the best of our knowledge, for
the first time in the literature, a way to perform feature selection using HD computing.
An incremental feature approach was tested with three different methods to determine the
order of features to be added. All approaches led to a significant reduction of features while
keeping or even significantly improving the performance compared to using all features. In
the future, approaches using feature elimination could be similarly tested.

FeatAppend is interesting not only from a feature selection perspective but also from the
clinical perspective of a deeper understanding of various features and their properties. For
example, we investigated several measures per feature: performance, probabilities of decisions,
confidences, correlation, and separability of classes, which can all lead to knowledge discovery
related to the usefulness of features. This approach can be adapted to ChannelAppend
and be used in an analogous way for channel comparison, channel selection, and potentially
seizure localization.

Thus we hope that in the future, this work will serve as inspiration for further research
and novel ideas in the direction of feature exploration, feature and prediction interpretability,
and channel selection. More specifically, for epileptic seizure detection, seizure localization
and more detailed feature quality assessment for different seizure-type classifications could
be research venues.

Limitations As the majority of works dealing with large and unbalanced databases, such
as epilepsy ones, this work was done only on a sub-selection of the of CHB-MIT database
due to computational limitations. Namely, training on the whole database takes an extensive
amount of time. Thus, by using a random selection of non-seizure data and 10 times more
non-seizure than seizure data, we tried to minimize the negative effects of not using the
whole database. Still, in the future, it would be interesting to optimize and adapt the code
for GPU processors and reproduce the analysis with the whole database.

The encoding approach based on feature appending is simple and enables a detailed
comparison of each feature, but it has the drawback that the dimension of the HD vectors
scales with the number of features, potentially making it more memory and time-consuming.
At the same time, reducing the number of dimensions per feature lowers the information
capacity that can be stored and ultimately lowers the performance. Thus, different approaches
that enable the comparison of a high number of features without limiting the number of
dimensions per feature should be designed in the future.

7. Conclusion

In this paper, we have demonstrated how a novel approach of hyperdimensional computing
(HD) can be used as an alternative to standard state-of-the-art ML approaches in the use
case of epileptic seizure detection. We explored the not yet addressed topic of optimal
encoding of spatio-temporal data, such as EEG, and all the information it entails, into
the HD vectors. We compared different approaches with respect to their memory and
computational complexity, as these metrics are of high interest for wearable devices for
continuous monitoring of diseases, such as epilepsy or stress conditions. Hence, those
approaches with lower complexity could make longer battery lifetimes feasible and make a
step towards a preventive healthcare.
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In addition, we have demonstrated how HD computing framework can be utilized to
perform feature selection by choosing an adequate encoding. Three approaches were tested
and led to a significant reduction of features, while keeping or even significantly improving
the performance compared to using all the features. Overall, we expect that this work can
serve as inspiration for further research and novel ideas in the direction of feature exploration,
feature and prediction interpretability, and channel selection.
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