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Abstract—Complex systems are ubiquitous in the real world
and tend to have complicated and poorly understood dynamics.
For their control issues, the challenge is to guarantee accuracy,
robustness, and generalization in such bloated and troubled
environments. Fortunately, a complex system can be divided
into multiple modular structures that human cognition appears
to exploit. Inspired by this cognition, a novel control method,
Causal Coupled Mechanisms (CCMs), is proposed that explores
the cooperation in division and competition in combination.
Our method employs the theory of hierarchical reinforcement
learning (HRL), in which 1) the high-level policy with compet-
itive awareness divides the whole complex system into multiple
functional mechanisms, and 2) the low-level policy finishes the
control task of each mechanism. Specifically for cooperation, a
cascade control module helps the series operation of CCMs, and a
forward coupled reasoning module is used to recover the coupling
information lost in the division process. On both synthetic systems
and a real-world biological regulatory system, the CCM method
achieves robust and state-of-the-art control results even with
unpredictable random noise. Moreover, generalization results
show that reusing prepared specialized CCMs helps to perform
well in environments with different confounders and dynamics.

Index Terms—complex system control, causal reasoning, hier-
archical reinforcement learning

I. INTRODUCTION

Control methods for complex systems are of critical impor-
tance [1]. These complex systems represented by biological
systems, transportation systems, and robotic systems have
some common properties, such as the difficulty of understand-
ing their dynamics and emergencies, which lead to a series
of challenges to control them in our desired way [2]. By
analysing many practical control tasks, we sum up three major
challenges as follows:

* C1: Computational complex dynamics, sometimes even
with emergent properties and notably delays [3], [4];

Fig. 1. Modularization of a glucose-insulin control system. The glucose-
insulin control system can be divided into insulin subsystem, glucose subsys-
tem and other unit process models,and each needs to inform and influence
each other.

* C2: Unpredictable random external noises;
* C3: Heterogeneity among different objects. For example,

different patient groups have different responses to treat-
ment, yet the desired outcome is the same.

To solve the above three challenges for industrial application,
improving the robustness and generalization of the control
method is the core.

One important hallmark of human cognition is to exploit
the modular structures of complex systems, which can be
divided into multiple general and independent units [5]. For
example, the glucose-insulin control system can be divided
into insulin subsystem, glucose subsystem and other unit
process models as shown in Fig. 1 [6], [7]. This cognition
can help humen to better understand and control complex
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systems. The idea of dividing an entire system into inde-
pendent functional mechanisms has also been studied in the
field of causal reasoning, known as ”causal modules”. In
causal reasoning, the independence between causal modules
is a prerequisite for performing the division, and localized
control [8]. However, causal boundary detection based on
independence is intractable for high-dimensional variables.
To simplify the detection of causal boundaries, an automatic
division algorithm to rationalize the control tasks of each
mechanism is necessary. Once agents learn the skills of
controlling each mechanism by localized interventions, they
can also control the entire system by combining and reusing
these atomic skills. Reusing learned skills can solve transfer
problems and achieve a stronger generalization.

After automatically dividing a complex system into multiple
causal modules, how to concatenate these sub-modules to re-
cover the original characteristics of the complex system needs
to be considered. As phased by Aristotle, ”the whole is greater
than the sum of its parts;” properties of complex systems are
not a simple summation of their independent functional mech-
anisms. Since the existing methods (modularity study [5] and
causal reasoning [9], [10]) assume that only sparse interactions
exist between the divided independent mechanisms, there is
little attention to the cooperation between modules. However,
the sparse interaction is a strong assumption that violates the
laws of natural biological systems. As shown in Fig. 1, the liver
can finish the degradation of insulin independently; the insulin
flux which gets into the liver depends on the apportionment
of the total insulin flux between plasma and liver. Plasma and
the liver need to work together to maintain the entire system’s
stability. So agents must consider how to reuse the independent
functional mechanisms and complete their information transfer
in the second step.

In this paper, we propose a control method Causal Cou-
pled Mechanisms (CCMs) with state-of-the-art robustness and
generalization, in which mechanisms contain full competition
and cooperation. Competition and cooperation come from
”The Origin of Species”, which helps each natural biological
community to complete the allocation of natural resources.
In our modelling of a complex system, resources are the
values of observable variables. An agent observes variables
of systems and establishes control methods to assign them
to each CCM (i.e. automatic modularization). Competition
means that when an entire system is modularized, each CCM
competes for resources of the whole system to maintain
their local functional integrity and maintain their steady state
operation. In other words, competition makes each CCM have
the appropriate number of variables. The cooperation pro-
cess considers how to reorganize the independent functional
mechanisms. A hierarchical reinforcement learning (HRL)
architecture is inspired by hierarchical processing information
of human cognition. The high-level policy divides the complex
system into multiple competing CCMs. The low-level policy
focuses on each CCM to maintain its regular operation. In
cooperation processing, a cascade control module is used
for hindsight and feedback regulation and a forward coupled

reasoning (FCR) module recoveries helpful coupling informa-
tion between variables and reduces computational complexity.
We selected a real-world biological regulatory system, the
glucose-insulin system [6], [7], to verify the robustness and
generalization of CCM in control problems faced with the
above three challenges. Generalization experiment is taken in
environments with totally different confounders and dynamics.
In addition, we design three validation experiments to verify
the performance of CCM on the three challenges respectively.
The results show that CCMs results in a diminished and
dispersed effect of uncertainties and improves generalization.
Finally, the visualization results of modularity show that
different mechanisms have different functions.

II. RELATED WORK

In recent years, many advanced methods have been used
for the control of complex systems due to the decreasing
cost of computation and sensors. Model predictive control has
become a dominant control strategy in research on intelligent
operation [11], [12]. However such linear control models may
not be accurate enough since the dynamics can be far from
linear [13]. Mainstream control method often use deep learning
mainly in model-free end-to-end controller settings, such as
control of cyber-physical systems [14], [15]. And much of
the success relies heavily on a reinforcement setup where the
optimal state-action relationship can be learned via a large
number of samples. To our knowledge, there are no high-
performance model-free reinforcement learning (RL) models
on biological control systems.

Recurrent Independent Mechanisms (RIMs) [5] is an im-
petus for this paper. RIMs is an architecture which divides
complex systems into nearly independent transition dynamics,
which communicate only sparingly through the bottleneck of
attention. Such sparse interactions can reduce the difficulty
of learning since few interactions need to be considered at
a time, reducing unnecessary interference when a subsystem
is adapted. Inspired by RIMs, we aim to divide the whole
complex system into multiple functional mechanisms that have
local independence. The key differences are that our CCMs
makes full communication between mechanisms to ensure that
the system formed by reuse can restore the performance of the
original system as much as possible, thereby improving the
overall stability of the system.

Fig. 2. (a) An example of a CGD. The control task is to intervene in the
modifiable variable {A} and maintain the target variable {F} in the goal
range. (b) An example of dividing a CGD. Using {B,C} as the cut, divide
the CGD in Fig. 2 (a). CCM1 is generated by severing the links to its parents
and CCM2 by severing the links to its children.



Fig. 3. Procedure for Causal Coupled Mechanisms. This figure presents the control process for the system in Fig. 2 (a). Competition: Firstly, the high-level
policy πθ divides the entire system into a subsystem CCM ; Then the low-level policy πϕ finishes the control of the CCM . These two steps are under the
HRL framework. Cooperation: Time adjacent CCMs need to contact under the help of two modules: a cascade control module helps the series operation
of CCMs, and a forward coupled reasoning module is used to recover the coupling information lost in the division process.

III. BACKGROUND

This section starts with the introduction to the environment:
1) the first is the modelling approach called ”causal graph dy-
namic”, and 2) the second is the components of environments.
Then we introduce the related theories of HRL.

The environment dynamic is defined as a causal graph
dynamic:

Causal Graph Dynamic (CGD). Agents interact with
vertexes in the environment, leading to global dynamics. A
causal dynamics are caused by neighbour-to-neighbour inter-
actions and with a time-varying neighbourhood. Causal is not
only used to express the cause-effect relationship (as one-way
narrows showing in Fig. 2) but also that the causes must lie
within the past lightcone of the effect [16].

In a CGD, observable variables are divided into three types:
modifiable, target and observed variables. The task of agents
on CGDs is to keep the target variables of the system stable
within the target range. Specifically, agents make actions, i.e.
the control decision, to intervene in modifiable variables and
lead to global dynamics. Finally, the effect of global dynamics
is passed on to the target variable.

Inspired by the human hierarchical cognitive architecture,
we adopt the standard continuous control HRL setting.

Hierarchical Reinforcement Learning. HRL algorithms
automatically learn a set of primitive skills to help an agent
accelerate learning. An HRL algorithm learns a low-level
policy for performing each of the skills together with a
high-level policy for sequencing these skills to complete the
desired task [17]. Referencing the HIerarchical Reinforcement
learning with Off-policy correction (HRIO) [17], a two-level
HRL approach that can learn off-policy, we chiefly improve
the low-level policy so that primitive skills can cooperate. In

addition, many detailed changes make HRIO more applicable
to our tasks.

IV. CAUSAL COUPLED MECHANISMS

The complex dynamical system can be divided into K small
subsystems (or mechanisms), i.e. an entire CGD is divided
into K small CGDs. We call such an independent and fully
functional mechanism CCM which has distinct functions
that are unknown but can be sampled by taking actions. We
propose the Coupled Mechanisms assumption: the causal gen-
erative process of a system’s variables is composed of semi-
autonomous modules that need to inform and influence each
other. The significant difficulty is modularizing automatically.

The HRL architecture is used for automatic modularization
of the whole system. Fig. 3 presents the process of CCM
for the system in Fig. 2 (a). The high-level policy πθ with
competitive awareness divides the whole complex system into
multiple functional modules. Specifically, πθ gives a high-
level action ah according to the observation sh of the whole
system to separate a CCM . The CCM will be used as the
environment of the low-level policy πϕ. There are two works
for low-level policy: 1) controlling the subsystem CCM , and
2) helping coordinate between CCMs. Another two modules
are needed for the cooperation, which is cascade control and
FCR modules (more details can be found in Section IV-B).

A. Competition between CCMs

In the HRL framework, the high-level policy πθ divides
the whole system into multiple CCMs, in which competitive
relationships should remain among CCMs. Firstly, CCMs
should have functional integrity, i.e. CCMs compete to
maintain their size and avoid excessive modularization where
CCMs are too small. Secondly, CCMs should be indepen-
dent, i.e. CCMs should decouple with useless vertexes and



avoid CCMs too big to operate independently even single
CCM is dominant. The low-level policy πϕ finish the control
task on each CCMs.

1) High-level Policy for generating CCMs : The high-level
policy πθ instructs the low-level policy πϕ via high-level
actions ah, which it samples a new every C steps. The high-
level policy πθ optimises itself by evaluating the task effect and
obtaining timely feedback from the low-level policy πϕ. The
feedback is a single-step average reward RL that the low-level
policy πϕ gains at C steps. The high-level RL is formalized
with the quadruple (Sh,Ah,Ph,Rh), whose elements are
elaborated below.

Actions. Actions given by the high-level policy πθ are ver-
tex sets, which are used for the whole system modularization.
The effective idea is to minimize the loss of information in
the modular process. We limit the action ah of the high-level
policy πθ to a minimum vertex cut set between modifiable
variables and target variables for this purpose. As shown in
Fig. 2 (a), the minimum vertex cut set {B,C} is chosen for
modularization. Action space Ah is the set of the minimum
vertex cut set of A→ F .

States. The state sht is the description of the system and
its statistical properties. More specifically, the ith dimension
s
h,(i)
t describes the statistical property of the ith minimum

vertex cut set of A→ F :

s
h,(i)
t = [isCon, dis, num, ...], (1)

where isCon signifies whether the ith minimum vertex cut set
is controllable (i.e. contained in the controllable subsystem),
which is 1 if it is controllable, otherwise it is 0. dis expresses
the distance between the ith minimum vertex cut set and the
target variables; num shows the number of vertexes in the ith
set. Beyond these, sh,(i)t can also contain some other statistical
properties, such as in-degree and out-degree.

Transition. The transition Ph(sht+1|aht , sht ) is the state tran-
sition probability used to identify the probability distribution
of the next state sht+1, which is defined as a map function:
Ph : Sh ×Ah → Sh.

Reward. Three principles are presented to design the re-
ward function: (1) The feedback information given by the
corresponding low-level policy πϕ of the current CCMt, e.g.
RLt = max

πϕ

E[
∑C
i=0[γiRL(slt+i)]/C]; (2) vertexes in CCMt

are all uncontrollable, i.e. no cross between the CCMs; (3)
The episode length shouldn’t be too long, which can cause
CCMs too small.The high-level reward function RHt at time
t can be defined as:

RHt =

{
αRLt +m− n, if isCon = 0

αRLt −m− n, if isCon = 1
, (2)

where m and n are positive real numbers and penalty items
for offending against the principle (2) and (3) separately.

Finally, high-level action aht is used to generate CCMt at
time step t. Referring to the idea of cause-effect reasoning,
the links from set aht to its parents and from set aht−C to
its children are removed. The remained subgraph is current
CCM .

2) Low-level Policy for controlling CCMs : The low-level
policy finishes the control task of a CCM in C steps and
returns a single-step average reward RL. The control goal
gt generated in the cooperation with other CCMs, which
will detail in Section IV-B. In RL architecture, low-level
RL is formalized with the quartuple (Sl,Al,P l,Rl), whose
elements are defined as:

Actions. Agent’s action is to intervene modifiable variables
of CCMs to alt at time step t. In causal theory, intervention
vertexes are the ”do operator”. Low-level action space is the
entire real space.

States. The low-level state slt is the values of vertexs in
CCMt.

Reward. The mission objective is to maintain target vari-
ables in the range of goal gt. The piece-wise reward function
refers to the tip of entity-to-box distance [18] that uses an
empirical approach aimed at maximising the ratio within goal
gt. So the low-level reward function is written as:

RLt = ω − distoutside(slt; q)− υ · distinside(slt; q), (3)

where ω represents a fixed scalar margin, 0 < υ < 1 is
a fixed scalar, q = [qmin, qmax] = [gt − ε, gt + ε] ∈ R2d

is a query box; distoutside(slt; q) = ‖Max(slt − qmax, 0) +
Max(qmin, 0)‖1 and distinside(s

l
t; q) = ‖Cen(q) −

Min(qmax,Max(qmin, s
l
t))‖1; Cen(q) = (qmax + qmin)/2

is the central point of qmax and qmin. If the BG level for
the next state is in the target range, the agent will receive a
positive reward. Otherwise, it will receive a negative reward.

The optimisal low-level policy obtains maximal single-
step average reward RLt = max

πϕ

E[
∑C
i=0[γiRL(slt+i)]/C] and

backwards it to the high-level policy.

B. Cooperation between CCMs

Only with full cooperation among CCMs the whole system
can secure stability. To adaptively schedule tasks and cooper-
ate, a cascade control module and a FCR module are proposed.

1) Cascade Control Module : The agent’s goal is to
complete the system’s stability, which means that the target
variable of CGD is within the goal. Since the whole sys-
tem is divided into multiple subsystems, the sub-goals of
multiple stages are a phased decomposition of the init goal.
The challenging initial goal will eventually be achieved by
guiding agents to achieve periodic goals gradually. Hindsight
experience replay [19] has given us great inspiration for
generating sub-goals. The regenerated goals are generated by
a function m : S → G, i.e. corresponding goal can be
found for any state. Generating appropriate goals is a big
challenge in multi-goal RL but is natural in the setting of
our problem. That is because we cascade CCMs with their
neighbours in space and time, shown on the right-hand side
of Fig. 3. The goal of the previous stage can be sampled
from the state of the later stage. For example, CCM2 is
cascaded with CCM1, in which target variables B,C are the
modifiable variables in CCM1. The goal of target variables
B,C can sample from CCM1, i.e. sample from the optimised
low-level policy gC v πϕ(gC |the state of CCM1, g0).



More formally, low-level policy generates low-level action
alt+i (1 ≤ i ≤ C) according to the state slt+i−1 of CCMt, i.e.
alt+i v πϕ(slt+i−1, gt+i−1), where gt+i−1 is sampled from
πϕ(gt+i−1|the state of CCM1, gt+i−C−1), gi (i ≤ C) is
the init goal used in CCM1, moreover, the goal of the whole
complex system.

2) Forward Coupled Reasoning Module : Some links be-
tween vertex cut set and its parent vertexes are removed during
the generation of CCMs. When the vertex cut set contains
more than one vertexes (i.e. modifiable variables), two issues
arise 1) coupled information between modifiable variables
will be lost, influencing action making; 2) agents need to
control multiple actions simultaneously. Several studies that
are apparently related to the second issue, but are actually
computational complex, including multi-agent [20] and multi-
head [21] RL. We applied a global encoder for the two issues
(shown in the middle part of Fig. 3). The global encoder
learns the coupling relationship between modifiable variables
and reconstructs the other multiple actions according to one
action generated by the policy. More specifically, low-level
action alt+i is the intervention value for the first vertex in aht
at time step t + i. The jth intervention value v(j)t+i is defined
as:

v
(j)
t+i =

{
alt+i, if j = 0

RNN
(
v
(0)
1:t+i, v

(j)
1:t+i−1

)
, if j 6= 0

, (4)

where 0 ≤ j ≤ |ah|, |ah| is number of vertexes in ah, 0 ≤
i ≤ C. Low-level action is v(0)t+i = alt+i v πϕ(slt+i−1, gt+i−1).
RNNξ is an artificial neural network with parameter ξ, i.e.
recurrent neural network. It takes the history values in and
generates the current v(j)t+i.

C. Optimization and Training
In this section, we discuss how to optimize our framework.

The objective function of the low-level policy network is to
maximize the expectation of accumulated rewards of hierar-
chical decisions,

JL(θ) = E
C∑
i=0

γiRLt+i/C. (5)

where C is the maximal low-level episode length. The objec-
tive function of the high-level policy is,

JH(ϕ) = E
T∑
i=0

γiRHt+i/T, (6)

where T is the maximal high-level episode length. Besides, we
use policy gradient methods [22] to optimize both high-level
and low-level policies, and the particularized loss function
varies by different RL methods in the experiments. The
objective function for the FCR module is cross-entropy,

JFCR(ξ) = −
N∑
i=1

(v̄iln(vi) + (v̄i − 1)ln(1− vi)) , (7)

where vi is the output of the global encoder RNNξ, v̄i is the
truth value from environment, and N is the batch size.

Fig. 4. Experiment 1: (a) Average reward earned by the high-level agents in
two environments. (b) The top left of the figure is causal graph for Env 1.
A pointed arrow represents a linear relationship, and w on the pointed arrow
represents a constant. The down left of the figure is the causal graph for
Env 2. We use a dotted arrow to represent a functional relationship, either
activation or repression, with an implied explicit delay. The independent
functional CCMs for Env 1 and Env 2 are in the top right-hand and
bottom right-hand separately.

Fig. 5. Experiment 2: (a) Average reward of high-level agents with external
noises. (b) Top of the figure is the causal graph for Env 3. The more complex
the system, the greater the number of CCM .

V. EXPERIMENTS

The main goal of our experiments is to show that the
use of CCMs improves robustness and generalization across
changing environments and in modular tasks and to explore
how it does so. We set up experiments for the three challenges
mentioned above respectively. Experiment in Section V-A cor-
responds to complex computations of challenge C1; Section
V-B corresponds to random external noise of C2; Section V-D
carries out generalisation verificatio which verifies CCMs
could deal with C3. Besides, an ordinary differential equation
system [6], [7],which contains three challenges, is applied for
robustness and module functional verification in Section V-C
and then used for generalisation verification in Section V-D.

In CCM , we use the Advantage Actor-Critic (A2C) [23] to
optimize both high-level and low-level policies and a Multi-
layer perception (Mlp) to produce the policy, ”CCM A2C-
MlpPolicy” for short. As the baseline, we use several high-
performance non-hierarchical RL algorithms: A2C-MlpPolicy
(an A2C with Mlp policy); A2C-LstmPolicy (an A2C with
long short-term memory policy); PPO-MlpPolicy (an proximal
policy optimization [24] with Mlp policy).

A. Experiment 1: Computational complex dynamics

We adopt two CGDs as environments and verify the impact
of increased complexity (i.e. challenge C1). The maximum
length of an episode is 100 for the two environments.



TABLE I
THE SINGLE-STEP REWARDS FOR THREE EXPERIMENTS. ALL METHODS IN EXPERIMENTS 1 AND 2 HAVE LEARNT HOW TO CONTROL THE SYSTEMS

WELL, BUT THE CCMS MODEL OBTAINED A HIGHER REWARD. IN THE REAL-WORLD SYSTEM (EXPERIMENT 3), THE BASELINES DEGRADED SO MUCH
THAT THEY COULD NOT COMPLETE THE TASK, WHILE THE CCMS STILL OBTAINED A POSITIVE REWARD.

Experiment 1

A2C-MlpPolicy A2C-LstmPolicy PPO-MlpPolicy CCM A2C-MlpPolicy (ours)
CCM1 CCM2 CCM2

Simple 24.00 19.14 23.89 24.00 24.00 –
Direct Hill Regulation 16.43 16.70 14.34 21.54 6.81 –

Experiment 2

A2C-MlpPolicy A2C-LstmPolicy PPO-MlpPolicy CCM A2C-MlpPolicy (ours)
CCM1 CCM2 CCM3

Simple 22.73 20.70 23.01 23.09 22.89 –
Direct Hill Regulation 7.14 8.19 6.91 9.36 7.58 –

Big Direct Hill Regulation 7.26 7.27 7.09 9.92 16.48 22.81

Experiment 3

A2C-LstmPolicy PPO-MlpPolicy CCM A2C-MlpPolicy (ours)
CCM1 CCM2 CCM3 CCM4

Insulin (No noise) -899.93 -1027.29 6.52 15.71 31.66 –
Insulin (Random large noise) -899.93 -1027.29 6.52 3.98 16.12 22.07

Env 1: Simple. This CGD contains five variables. With [25]
as reference, each node xi ∈ R is a Gaussian random vari-
able. Parentless observed variables have distribution N (µ =
0.0, δ = 0.1). A node xi with parents pa(xi) has conditional
distribution p(xi|pa(xi)) = N (µ =

∑
j wijxj , δ = 0.1),

where xj ∈ pa(xj) and wij is a constant. The graph structure
is represented at the top left of Fig. 4 (b).

Env 2: Direct hill regulation. Physiological processes
typically have emergent properties of many parameters or time
delays between the initiation of the physiological mechanism
and the resulting functional output [4], [26]. To model the phe-
nomenology of many biological networks, we refer to explicit-
delay modeling [4] to build CGDs. Specifically, the conditional
distribution p(xi|pa(xi)) = N (µ =

∑
j fijxj , δ = 0.1)

is changed, where fij represents explicit-delay function (i.e.
fij is a direct hill regulation function in Env 2). The other
situations keep the same, as shown at the top right of Fig. 4
(b).

Result. Fig. 4 (a) shows the result of the high-level policy on
modularity. The single-step average reward goes steadily up in
the two environments, although it decreases with the increase
of system complexity. From the visual results in Fig. 4 (b), the
whole system is divided into two parts and the vertex cut set
{2} is chosen. An obvious phenomenon can be found that the
CCM2 in Fig. 4 (b) contains a collider x1 (i.e. a nonendpoint
vertex at where two arrowheads meet) which will increase
complexity. The existence of collider x1 is perhaps a good
reason that agents choose to modularize in x2. In the child
table ”Experiment 1” of table I, the column headed ”CCM1”
represents the single-step reward for controlling the target
variables of the whole system. CCMs achieves the highest
reward and is relatively robust to increasing the complexity of
systems, whereas the baseline’s performance degraded more.

B. Experiment 2: Unpredictable random external noises

Parentless target variables will randomly become a larger
value (increased more than ten times) to verify robustness.

Apart from causal graphs in Experiment 2, a new environ-
ment Env 3 is designed. The maximum length of an episode
is 100 for the three environments.

Env 3: Big Direct hill regulation. Env 3 adds some
variables and a double path based on Env 2 to increase system
complexity, which can better show the impact of external
noises (as shown at the top of Fig. 5 (b)). The double paths
can help check whether the FCR module can restore coupled
information between modifiable variables.

Result. Random external noise reduces the reward for
both high-level policy and low-level policy, compared with
”Experiment 1”. The performance on Env 2 degrades more
severely because of the addition of computational complexity
and random external noise. When evaluating in the environ-
ment with novel unseen noise, CCMs doesn’t achieve perfect
performance but strongly outperforms the baselines (shown as
child table ”Experiment 2” of I). In the visualization results
(Fig. 5 (b)), CCMs is consciously trying to divide the Env 3
into three parts to reduce complexity. The divisions for Env 1
and Env 2 is the same as Fig. 4 (b) in ”Experiment 1”. This
indicates that the agent will use different modularity strategies
depending on the system’s complexity.

The modularization of CCMs results in a diminished
and dispersed effect of the huge noise, enhancing the target
information and suppressing irrelevant noise. As shown in
Fig. 5 (b), x0 containing noise is divided into CCM1 and
has diminished effect on CCM2. The agent has learned how
to eliminate the influence of unseen noise on the system’s
stability in a smaller graph CCM2.

C. Experiment 3: A real-world biological regulatory system

We verify the performance of CCMs on a real-world
biological regulatory system [6], [7], which is suitable for
CCMs. The model assumes that the glucose and insulin
subsystems are linked one to each other by the control of
insulin on glucose utilization and endogenous production (the
original gives more detailed divisions). We can compare the



TABLE II
GENERALIZATION RESULTS IN 30 INDIVIDUALS. THE FIGURES IN THE TABLE ARE TIR VALUES.

CCM1 CCM2 CCM3 CCM4 CCM1 CCM2 CCM3 CCM4 CCM1 CCM2 CCM3 CCM4

adolescent

#001 1.00 0.00 0.90 0.73

adult

#001 1.00 0.38 0.88 0.66

child

#001 0.88 0.14 0.60 0.61
#002 0.98 0.30 0.88 0.65 #002 1.00 0.00 0.94 0.80 #002 1.00 0.07 0.56 0.73
#003 1.00 0.10 0.54 0.74 #003 1.00 0.26 0.84 0.69 #003 1.00 0.14 0.79 0.73
#004 1.00 0.13 0.87 0.70 #004 1.00 0.33 0.84 0.63 #004 1.00 0.12 0.42 0.57
#005 1.00 0.37 0.89 0.68 #005 1.00 0.31 0.92 0.77 #005 1.00 0.17 0.74 0.74
#006 1.00 0.18 0.30 0.54 #006 1.00 0.28 0.29 0.47 #006 1.00 0.13 0.78 0.69
#007 1.00 0.10 0.90 0.66 #007 1.00 0.14 0.32 0.52 #007 1.00 0.12 0.56 0.61
#008 1.00 0.17 0.92 0.74 #009 1.00 0.27 0.91 0.78 #008 0.67 0.09 0.87 0.66
#009 1.00 0.04 0.91 0.70 #008 1.00 0.00 0.75 0.66 #009 1.00 0.21 0.90 0.73
#010 1.00 0.32 0.76 0.60 #010 1.00 0.00 0.91 0.76 #010 1.00 0.14 0.80 0.65

Fig. 6. Experiment 3: The results of high-level policy for glucose-insulin
system and The causal graph for glucose-insulin control system. We use a
dotted arrow to represent a functional relationship, and the specific function
definition is the same as that in [6], [7].

modularization results of CCMs with the actual functional
modules to investigate the functionality of automatic mod-
ularization. According to the definition of CGD, the graph
structure is shown in Fig. 6 (e). The glucose-insulin model has
26 free parameters that vary in different individuals and will
be used in generalization experiment. The glucose-insulin meal
model provides thirty individuals, and Adult #004 is selected
to interact with CCMs. Each step simulates one minute, and
the maximum length of an episode is 1440, i.e., one natural
day. In this experiment, noises are designed as two types, i.e.
with and without noise. In the real world, the uncertainties
(e.g. sensor error, irregular eating habits and so on) in glucose
control of diabetics can be linked to the random external noise.

Result. The results of high-level policy are shown in Fig. 6.
In the child table ”Experiment 3” of table I, baselines failed to
control the system under the two noise settings while CCMs
achieved good performance. The loss curve of global encoders
is displayed in Fig. 6 (b), and the red circle represents the
phenomenon of radiant explosion. In addition, we make a
deeper analysis:

(1) Analysis for multipath selection and the effect of FCR
module. At the second step, the high-level agent needs to
choose a double vertexes set for modularization. In the exper-
iment with noises, high-level agents only learnt the x12

6.52→
x3

3.98→ x6x7
16.12→ x5

22.07→ x10 (the value on arrow represents
the single-step average reward). In the noiseless experiment,
high-level agents found three vertex cut sets {x6, x7}, {x6, x8}
and {x4, x8}, and chose the best one finally. The FCR for
these three sets also convergence as shown in Fig. 6 (b). In

Fig. 7. The glucose profile over an optimised CCMs trained with Adult
#004. A subject with a consistent range above 180 mg/dl is generally held to
have hyperglycemia, whereas a consistent range below 70 mg/dl is considered
hypoglycemic. 70 and 180 multiplied by 1.8 correspond to the two red dashed
lines.

summary, 1) the agents weighed up all feasible control paths
and chose the best, 2) the choice of control path is directly
related to the effect of FCR and 3) the FCR can extract useful
coupling information.

(2) Accuracy of realistic tasks. We take testing for 1440
steps and calculate the percentage time in the glucose target
range of [70, 180] mg/dL (TIR) [27]. In the training task adult
#004, the TIR is 100%, which means that the policy given by
CCMs is of practical significance and can be used for glucose
control tasks.

(3) Functionality of the mechanisms.The four mechanisms
have different functions. For example, x3 → x12 in CCM1

represents the dynamic relationship between plasma and inter-
stitial fluid glucose.

D. Experiment 4: Heterogeneity among different objects

The functional mechanisms in CCMs have an ingenious
connection with the concept of affordances from cognitive
psychology [28]. An agent should be ready to adapt immedi-
ately, even in an environment of uncertainty, executing skills
which are at least partially prepared. This suggests that agents
should contextually process sensory information, building rep-
resentations of potential actions that the environment currently
affords. We investigate how agents use prepared specialised
CCMs to improve generalisation between different environ-
ments, which have important variation factors. Adult #004
interacts with CCMs for training, and thirty individuals are
used for testing.

Result. (1) Analysis for generalization.Similar to ”Exper-
iment 3”, we take testing for 1440 steps and calculate the
TIR for 30 individuals, which is shown in the column headed



”CCM1 in the table II. The agent can adjust immediately
to varied environments executing skills which are at least
partially prepared.

(2) Visualization of realistic tasks.The glucose profile over
1440 steps is employed for demonstration purposes over a
testing period. Among 1440 steps, we apply three random
noise interventions to the individuals. Fig. 7 shows the change
of glucose under the control of the optimised CCMs. The
value of glucose is always within the normal range in the
adult group. Hyperglycemia occurred in Adolescent #002,
Child #001 and Child #008, suggesting the child group differs
more significantly from the adult group. In summary, CCM
has perfect generalisation in the same population and certain
generalisation in different populations.

VI. CONCLUSION

In this paper, we propose a hierarchical reinforcement
learning method to control complex systems. This method
incorporates the high-level agent with competition awareness
and the low-level agent with cooperation awareness to search
for the optimal control policy. To improve the robustness and
generalization of our control algorithm, Causal Coupled Mech-
anisms, the high-level policy employs multi-goal learning to
divide an entire system into multiple atomic causal modules,
which can be effectively transferred and reused in similar but
different tasks. To relax the independent assumption between
causal modules, the low-level policy adopts coupled reasoning
to deal with cooperative control problems. We conduct exper-
iments on both synthetic systems and a real-world biological
regulatory system to verify the advantages of our model.
Compared to the existing methods, our method achieves the
state-of-the-art results in addressing the complexity, random
external noise, and heterogeneity of complex systems.
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