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Abstract—It is shown that various symptoms could remain in
the stage of post-acute sequelae of SARS-CoV-2 infection (PASC),
otherwise known as Long COVID. A number of COVID patients
suffer from heterogeneous symptoms, which severely impact
recovery from the pandemic. While scientists are trying to give
an unambiguous definition of Long COVID, efforts in prediction
of Long COVID could play an important role in understanding
the characteristic of this new disease. Vital measurements (e.g.
oxygen saturation, heart rate, blood pressure) could reflect
body’s most basic functions and are measured regularly during
hospitalization, so among patients diagnosed COVID positive and
hospitalized, we analyze the vital measurements of first 7 days
since the hospitalization start date to study the pattern of the vital
measurements and predict Long COVID with the information
from vital measurements.

Index Terms—Long COVID, vital measurements, time series,
summary statistics, machine learning, classification

I. INTRODUCTION

Since the outbreak of COVID-19! pandemic in March 2020,
numerous studies focus on the typical symptoms of COVID-19
patients and the characteristic of the transmission process. It
is believed that typical symptoms of COVID-19 include fever,
dry cough, and fatigue, often with pulmonary involvement,
and the incubation period has an average of 5-7 days [I].
The term ‘Long COVID’ is being used to describe the illness
in people who have either recovered from COVID-19 but are
still reporting lasting effects of the infection or have had the
usual symptoms for far longer than would be expected [2].
A research team from Italy studied 143 patients discharged
from a Rome hospital after recovering from COVID-19, and
found out that 87% were experiencing at least one symptom
after 60 days [3]. Common symptoms of Long COVID include
profound fatigue, cough, breathlessness, muscle and body
aches, chest heaviness or pressure and so on [4], while some
patients reported difficulty d oing d aily a ctivities, i n addition
to mental health issues [5].

IThe RECOVER’s official terminology of COVID-19 is SARS-CoV-2.

The main risk factors for severe COVID-19 and hospital
admission include older age, male sex, non-white ethnicity,
disability, and pre-existing comorbidities [6]. However, the risk
factors of Long COVID are still generally unclear. Some risk
factors of COVID-19 do not increase risk of Long COVID,
such as male sex, obesity, diabetes, and cardiovascular disease;
pre-existence of asthma has been found to be significantly
associated with Long COVID [7]. Scientists have been trying
to predict Long COVID with some of the risk factors. Accord-
ing to a recent study, for patients with a duration of COVID
symptoms longer than 28 days, five symptoms during the
first week that were most predictive were fatigue, headache,
dyspnea, hoarse voice and myalgia [7]. Nevertheless, there
is limit attention to the vital measurements of hospitalized
COVID patients. Compared to symptoms, vital measurements
are more frequently measured and available, making won-
derful time series to reflect conditions of patients. What’s
more, oxygen saturation, heart rate and blood pressure are all
quantitative variables, making it easy to be inputs of statistical
machine learning models. Thus, exploring the pattern of vital
measurements among hospitalized COVID patients in an early
stage could help medical workers identify COVID patients
with a high risk of Long COVID, give a better understanding
of the new disease Long COVID, and make efforts to control
the pandemic for social benefits.

II. RELATED WORK

A recent study analyzed 4,182 incident cases of COVID-19
in which individuals are categorized as short, LC28, LC56 and
intermediate [7]. This study applied random forest prediction
models using personal characteristics and comorbidities, and
the average AUC-ROC was 76.8% in classifying between short
COVID and LC28. Some strong predictors include increasing
age and the number of symptoms during the first week. The
National COVID Cohort Collaborative (N3C) [8] has collected
abundant clinical data that can be used to understand the long
term effects of COVID-19 and identify the clinical features of
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Long COVID [9] [10]. In this study, 924 features were selected
from demographics, healthcare visits, medical conditions, and
prescriptions. An XGBoost model was trained and tested on
a set of 97,995 patients who had visited a long COVID
clinic, and got an AUC-ROC of 92%. Some of the important
features include post-COVID outpatient utilisation, age, post-
COVID inpatient utilisation, COVID vaccine and dyspnoea
[10]. Besides, the social determinants of health (SDOH) [11]
are also severely impacting the susceptibility to COVID and
Long COVID. Another study has focused on the risk factors
associated with PASC [12], including common comorbidities
and SDOH factors. As a result, middle age, several specific
comorbidities and county level number of doctors are associ-
ated with Long COVID. However, there is limited attention to
the vital measurements (e.g. oxygen saturation, heart rate and
blood pressure) of Long COVID patients, and the pattern of
the vital measurements of hospitalized patients are generally
not understood. In this paper we study the vital measurements
of the first 7 days since the hospitalization start date among
COVID and Long COVID patients, and try to use information
from vital measurements to predict Long COVID.

Clinical prediction tasks including patient mortality and
disease prediction are with much significance for early disease
prevention and intervention. A recent study has found that
the summary statistics of physiological time series (e.g. min,
max, range, mean, standard deviation, skewness, kurtosis)
[13] could play an important role in the prediction of length
of hospital stay and patient mortality. Blood pressure is an
important measure in clinical practice [14], and the variability
of blood pressure could imply health conditions. Summary
statistics such as standard deviation, skewness and kurtosis
could describe the variability of a variable, and thus it is of
much interest to study the summary statistics and the time
series of vital measurements. As for time series analysis of
COVID, various studies have considered the number of cases
as time series for forecasting [15], but few studies have taken
into consideration the patient level time series, such as the
vital measurements.

III. METHODOLOGY
A. Principal component analysis

Principal component analysis (PCA) is a linear dimension
reduction technique in the mean-square error sense [16]. Con-
sider n observations of a p-dimensional random variable. We
denote the observation matrix by X ;. A linear dimension
reduction technique seeks k& < p components of the new
variable, being a linear combination of the original variables.

Specifically for PCA, the new variables after the linear
transformation are a few variables (the principal components)
orthogonal to each other, and linear combinations of the orig-
inal variables with largest variance. The first principal compo-
nent has the largest variance, the second principal component
is with the second largest variance and orthogonal to the first
principal component, and so is this for all other principal
components. Ideally, the first several principal components
explain most of the variance. As a result of PCA, we transform
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a p x n data matrix into a k x n data matrix, and keep most
of the information of the data set in a much lower dimension.
It is helpful to understand the data set if different groups have
obvious boundaries in a PCA plot.

B. Kolmogorov—Smirnov test

In statistics, the Kolmogorov—Smirnov test (KS test) is a
non-parametric test to compare a sample with a reference
distribution (one-sample KS test) [17], or to compare two
samples (two-sample KS test) [18]. The one-sample KS test
focuses on the probability that the sample is drawn from the
reference distribution, and the two-sample KS test focuses on
the probability that the two samples are drawn from the same
but unknown distribution. The KS test provides a practical
tool to compare a sample to a known distribution, or compare
samples with each other with unknown distribution.

C. Machine learning classification

The goal of supervised learning is to approximate a function
f: X — Y using a training set S = {x;,y;}, which
could describe the relationship between = and y. Specifically
when Y = {0, 1}, this is a binary classification problem. In
the following we only consider supervised learning, which
means the labels are all available [19]. The overall aim of
a machine learning problem is to minimize the empirical
risk: f = argmingeg & S, L(ys, f(;)). Commonly used
classification techniques in supervised learning include logic-
based algorithms (e.g. decision trees), perceptron-based tech-
niques (e.g. neural networks), statistical learning algorithms
(e.g. Naive Bayes and Bayesian networks), instance-based
learning (e.g. k-nearest neighbor) and support vector machines
[20]. In this work, we use XGBoost, a scalable machine
learning system for tree boosting [21]. This novel tree learning
algorithm is suitable for handling sparse data with faster
learning process.

D. Time series methods

1) ARIMA models: An autoregressive integrated moving
average (ARIMA) model is a generalized version of autore-
gressive moving average (ARMA) model [22]. It is fitted to
time series data to better understand the data or to predict
future points in the series.

2) Deep learning in time series classification: Deep neural
networks are widely used in time series classification tasks,
such as Multi Layer Perceptron (MLP), Convolutional Neural
Network (CNN), Echo State Network (ESN) [23] and long
short term memory Recurrent Neural Network (LSTM RNN)
[24].

IV. RESULTS AND ANALYSIS

As of completion of the paper, the N3C cohort [25] contains
5,274,332 patients with an active COVID-19 infection as indi-
cated by a U07.1 code or a positive PCR or AG SARS-CoV-2
lab test, the first instance of which we use as their COVID-
19 index date. Of these, 327,964 patients were hospitalized
in the day prior to 16 days following the index SARS-CoV-2



Fig. 1: Age summary and length in hospital of the cohort

PCR or AG lab result and a COVID-19 diagnosis of U07.1
was recorded in that same time period. Efforts have been
made to harmonize the units and values from electronic health
records in N3C [26], and in the following section we study
vital measurements as shown in Table 1.

TABLE I: Vital measurements

Measured variable Unit Range
SpO2 (oxygen saturation) | Percent 0~100
Heart rate Bpm 0~500
Systolic blood pressure mmHg 0~400
Diastolic blood pressure mmHg 0~200

To study how the emergence of Long COVID may be
predicted by pattern of vital measurements of the 327,964
hospitalized patients we needed to identify a Long COVID
indicator. Due to limited documentation of Long COVID, we
follow the work in [27], where the Long COVID indicator is
derived from a machine learning-based computable phenotype
definition trained on cases where the U09.9 (Long COVID)
diagnosis code was recorded. The computable phenotype as-
signs a likelihood score between O and 1, and in the following
analysis, patients with computable phenotype values larger
or equal to 0.75 are labeled as ‘Long COVID’, and patients
with computable phenotype values smaller or equal to 0.25
are labeled as ‘non Long COVID’. Because only a subset
of patients are assigned values in these two ranges, we end
up with a cohort of 85,196 patients who are all hospitalized
around the time of the first known COVID infection and who
we can assign a binary value for our Long COVID indicator.

A. Summary of the cohort

In this cohort of 85,196 patients, the average and the median
of the age at the time of first known COVID-19 infection are
57.5 and 60, white non-Hispanic patients consist of 55.4% of
the cohort, female patients consist of 51.75% of the cohort,
and 33.52% patients of the cohort are Long COVID patients.

B. Vital measurements of the cohort of hospitalized patients

To study the pattern of the vital measurements of Long
COVID patients, we extract the vital measurements readings
from the relevant COVID-associated hospitalizations. The ma-
jority of the cohort have a short length of hospitalization, with
an average of 8.1 days, and a median of 4 days. In order to
reduce the impact of variable length of stay, we chose to focus
on vitals collected during the first week of hospitalization.
Before creating features from the vital measurements readings,
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Fig. 2: Resources of readings of the cohort

we try to explore the distribution and the richness of the vital
measurements readings.

In the N3C cohort, records of patients are provided by
anonymized institutions, represented by a variable ‘data part-
ner id’. To comply with N3C policy, the data partner ids in
Fig. 2 don’t represent the real resources, and same data partner
id belonging to different vital measurements might represent
different resources. Table II shows the amount of available
readings of each vital measurement, and the number of patients
that these readings belong to. Fig. 3 shows that the distribution
of each vital measurement has a very high peak, and the
distribution of oxygen saturation readings is less symmetric
than the other 3 vital measurements. A KS test is performed
on each vital measurement to test whether the readings are
from a normal distribution, and the p-values of the KS test
on each vital measurement are all 0, so we reject the null
hypothesis that the readings are from a normal distribution.

With vital measurements readings in the first 7 days since
the hospitalization start date, features describing overall con-
ditions of the vital measurements are created as following:

1) Daily averages: Respectively for each vital measure-
ment, we take the daily average of readings of each
patient for 7 days, and get a series with length 7.

2) Overall summary statistics features: Respectively for
each vital measurement, we calculate the summary
statistics (e.g. min, max, median, quartiles, range, stan-
dard deviation, skewness and kurtosis) of all readings of
each patient.

3) Daily variability features: Respectively for each vital
measurement, we first calculate the daily min, daily
average, and daily max, and then calculate the variability
measure (standard deviation, skewness, kurtosis) of the
daily min, daily average and daily max of each patient.

TABLE II: Availability of vital measurements of the cohort

Measurements Readings Patients | Resources
Oxygen saturation 6,959,178 44,479 59
Heart rate 7,833,270 44253 40
Systolic blood pressure 3,530,787 32,706 34
Diastolic blood pressure 3,840,918 35,628 34

C. Subcohort with rich data

Despite the widely used electronic health record data, there
are still only a relatively small portion of patients among the
hospitalized patients with available vital measurements data, as
Table II shows. Thus, we select subcohorts from hospitalized
patients with rich data for further numerical analysis of the
vital measurements, especially the prediction of Long COVID
using features created from vital measurements.
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Fig. 3: Distribution of readings of the cohort

1) Subcohort A: The subcohort A consists of 16,468 pa-
tients with at least one reading of each of the four vital
measurements (oxygen saturation, heart rate, systolic blood
pressure, diastolic blood pressure). There are 8,385 female
patients in the subcohort A, and among all patients in the
subcohort A, 6,088 patients are labeled as ‘Long COVID’, and
the average and median of age of subcohort A are 56.5 and
59. Table III shows the overall richness of vital measurements
readings in 7 days of subcohort A.

TABLE III: Number of readings per patient of subcohort A

Measurements Average number | Median number
of readings per | of readings per
patient patient

Oxygen saturation 494 23

Heart rate 53.2 24

Systolic blood pressure 39.3 23

Diastolic blood pressure 38.8 23

To get more information from the vital measurements, we
focus on the feature set of vital measurements including
daily averages, overall summary statistics and daily variability
features of the four vital measurements (oxygen saturation,
heart rate, systolic blood pressure, diastolic blood pressure).
This feature set of vital measurements of subcohort A has 139
features, and a principal component analysis is performed on
the vital measurements feature set. As Fig. 4 shows, red dots
represent Long COVID patients, and blue dots represent non
Long COVID patients in subcohort A, and the two principal
components explain 19.74% and 8.90% of the total variance
of the original feature set of vital measurements. It is desirable
that there is an obvious boundary between these two groups.

Besides, a KS test is performed on the feature set of vital
measurements as well. The subcohort A is divided to two
groups: the group of Long COVID patients and the group of
non Long COVID patients. The KS test is to test whether the
features under these two groups are from the same distribution.
A feature with a large p-values means that we fail to reject
the null hypothesis that the samples of this feature in two
groups are from the same distribution. As a result, there are
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Fig. 4: PCA analysis of the subcohort A

118 features with p-value smaller than or equal to 0.01, and
Table IV shows 4 features with a p-value larger than 0.1.

TABLE IV: KS test on subcohort A

Feature p-value
third_quartile_dia_bp_7_day 0.1057
mean_dia_bp_1 0.2530
mean_dia_bp_2 0.2058
mean_sys_bp_1 0.1621

As a result of the PCA and KS test, the two principal com-
ponents could not separate the group of Long COVID and the
group of non Long COVID, and most features have different
distributions in these two groups. To better understand the role
of vital measurements in the prediction of Long COVID, we
train XGBoost models on the subcohort A respectively using 3
feature sets, where feature set 1 is referring to the risk factor
analysis of Long COVID, but without age, gender and race
and ethnicity of the cohort so as to avoid overlap with the
feature set used to generate our Long COVID labels [12]:

o Feature set 1 (SDOH and pre-COVID conditions): 51
features including social determinants of health (SDOH)
and pre-COVID health conditions

o Feature set 2 (vital measurements): 139 features created
from vital measurements as mentioned above, including
daily averages, overall summary statistics and daily vari-
ability features

o Feature set 3 (SDOH, pre-COVID conditions and vital
measurements): 190 features combining feature set 1 and
feature set 2

With 5-fold cross validation, we evaluate performance of the
models with the common metric, area under the ROC curve
(AUC) and the F1 score (the harmonic mean of precision and
recall) [28]. Also, we calculate the permutation importance
of each feature. As Table V shows, in the subcohort A with
rich vital measurements data, the vital measurement features
perform better than the SDOH and pre-COVID conditions
in the prediction of Long COVID, and adding the vital
measurements features to SDOH and pre-COVID conditions
could further improve the performance of the XGBoost model
in prediction of Long COVID. In addition, we show the top
10 important features of each XGBoost model:

o Feature set 1 (SDOH and pre-COVID conditions):
extended stay, chronic lung disease before COVID, Cor-
ticosteroid before COVID, dementia before COVID, hy-
pertension before COVID, obesity before COVID, de-



pression before COVID, percent insured 65 plus public,
Corticosteroid during COVID hospitalization, long stay

o Feature set 2 (vital measurements): measurement du-
ration of systolic blood pressure, measurement duration
of diastolic blood pressure, observation per hour of di-
astolic blood pressure, measurement duration of oxygen
saturation, minimum measurement time of heart rate
since hospitalization, observation per hour of oxygen
saturation, average of oxygen saturation, measurement
duration of heart rate, maximum measurement time of
heart rate since hospitalization, average of heart rate on
the third day

o Feature set 3 (SDOH, pre-COVID conditions and
vital measurements): measurement duration of systolic
blood pressure, chronic lung disease before COVID,
extended stay, dementia before COVID, Corticosteroid
before COVID, depression before COVID, Corticosteroid
during COVID hospitalization, average of heart rate on
the first day, measurement duration of diastolic blood
pressure, measurement duration of oxygen saturation

TABLE V: XGBoost Results

Feature set Mean AUC (5- | Mean F1 score
fold CV) (5-fold CV)
Feature set 1 0.729 £ 0.008 0.696 £ 0.007
Feature set 2 0.787 £ 0.007 0.717 £ 0.007
Feature set 3 0.822 + 0.007 0.752 £+ 0.005

2) Subcohort B: The subcohort B consists of 5,304 pa-
tients with available daily averages of each of the four vital
measurements (oxygen saturation, heart rate, systolic blood
pressure, diastolic blood pressure) for first 7 consecutive days
since the hospitalization start date. In other words, patients
in subcohort B have 4 dimensional time series with length
7. There are 2,392 female patients in the subcohort B, and
among all patients in the subcohort B, 2,237 patients are
labeled as ‘Long COVID’, and the average and median of
age of subcohort B are 63.3 and 65.

To get an understanding of the trend of series, a regression
model between average oxygen saturation value of 7th day
and values of first 6 days is fitted on subcohort B. This
regression model has a mean sqaured error of 2.615 and a R?
score of 0.5691. Because of the low R? value, this regression
model seems not relatively informative with a weak linear
relationship, and the relationship inside the time series is still
underneath the hood. Using the daily averages as features,
common machine learning classification models are trained
and evaluated as Table VI shows. Two neural network models
are trained on subcohort B: one is using a fully convolutional
neural network [29] with 3 convolutional layers followed by
the global average pooling process, and the other is using a
layer of LSTM [30]. As a result, this CNN model has a test
accuracy 0.6164 and a test loss 0.6673, and the LSTM model
has a test accuracy of 0.5994 and a test loss of 0.6707. Fig. 5
shows the training loss and the validation loss with the number
of epochs.
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TABLE VI: Machine learning models on subcohort B

Method Mean AUC (5-fold CV)
XGBoost 0.614 £+ 0.015
Logistic regression 0.614 £+ 0.015
Support vector machine 0.617 £ 0.016
Naive Bayes 0.608 £+ 0.017
k-nearest neighbor (k=5) 0.550 £ 0.014
(a) CNN (b) LSTM

Fig. 5: Results of CNN and LSTM models

D. Conclusion

In the analysis of the cohort of Long COVID, the relation-
ship between vital measurements and Long COVID has caught
much attention. This cohort is balanced in age, gender and
race and ethnicity, but not all of patients in this cohort have
available data of vital measurements. Thus, two subcohorts
with rich vital measurements data are created. Because the
average and median of hospitalization length are short for most
patients, we focus on the vital measurements in the first 7 days
since the hospitalization start date, and various features are
created from the vital measurements readings. The feature set
of vital measurements has 139 features, including the daily
averages, the summary statistics of the vital measurements
and the daily variability features. PCA is a great method to
reduce the dimension of the data set, as well as the size of
the feature set. Using the SDOH and pre-COVID conditions,
vital measurements and a combination of these two as feature
sets, the XGBoost model is trained on the subcohort A and
gives a prediction of Long COVID. As a result, the feature set
of vital measurements outperforms the feature set of SDOH
and pre-COVID conditions, and the combined feature set
could further improve the accuracy of the prediction. The
subcohort B contains time series of the vital measurements,
making possible the use of neural networks in time series
classification. CNN and LSTM are great tools of processing
multidimensional time series. In summary, in subcohorts with
rich vital measurements data, the vital measurements are
informative and with significance in the analysis of Long
COVID.

V. LIMITATIONS AND FUTURE WORK

This paper gives a summary of explorations on the vital
measurements of patients in the hospitalized Long COVID
cohort, including the extracted features from vital measure-
ments and the prediction of Long COVID using these features.
However, since the Long COVID is still a new disease,
there is only a small portion of patients with available vital



measurements data in the whole N3C cohort, and more com-
prehensive data is desired. Besides, the biomedical meaning of
the features created from vital measurements readings, such as
the summary statistics of the time series, are generally unclear,
so it is important to understand which features are medically
significant. With an overall goal of predicting Long COVID
with features created from vital measurements, we always need
appropriate classification techniques that could predict Long
COVID more accurately, including machine learning methods
and deep neural networks. Methods of selecting models should
be included in further analysis. While training models, the
choice of hyperparameters would significantly influence the
performance of models, and common methods of selecting
hyperparameters include random search and grid search [31].
These methods should be taken into consideration for better
results.
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