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Abstract—This paper proposes a novel and efficient method,
called S-PDB, for the analysis and classification of Spike (S)
protein structures of SARS-CoV-2 and other viruses/organisms
in the Protein Data Bank (PDB). The method first finds and
identifies protein structures in PDB that are similar to a protein
structure of interest (SARS-CoV-2 S) via a protein structure
comparison tool. The amino acid (AA) sequences of identified
protein structures, downloaded from PDB, and their aligned
amino acids (AAA) and secondary structure elements (ASSE),
that are stored in three separate datasets, are then used for
the reliable detection/classification of SARS-CoV-2 S protein
structures. Three classifiers are used and their performance is
compared by using six evaluation metrics. Obtained results show
that two classifiers for text data (Multinomial Naive Bayes and
Stochastic Gradient Descent) performed better and achieved high
accuracy on the dataset that contains AAA of protein structures
compared to the datasets for AA and ASSE, respectively.

Index Terms—SARS-CoV-2, Spike, PDB, DALI, Classification.

I. INTRODUCTION

The COVID-19 pandemic, caused by the Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [1], still
remains a health emergency of international concern. The
World Health Organization (WHO)’s director-general said
recently that the recent surge in COVID-19 cases shows
that “this pandemic is nowhere near over”1. According to
the latest WHO report2, more than 630 million people have
been infected by COVID-19, with approximately 6.5 million
deaths worldwide. Regular emergence of SARS-CoV-2 vari-
ants [2] and their sub types are making it hard to find an
effective therapeutic or vaccine that could offer long-term
immunity. Many countries lifted COVID-19 restrictions and
recommended citizens to take approved COVID-19 vaccines.
While some countries such as China are still taking preventive,
quarantine and isolation measures to reduce the transmission
and reproduction rate.

SARS-CoV-2 can enter the host cell membrane when the
Spike (S) protein interacts with the host angiotensin-converting
enzyme 2 (ACE2) [3], [4]. Thus, S protein plays a fundamental
role in the pathogenesis, transmission and virulence of the this

1livemint.com/science/health/virus-is-running-freely-who-chief-warns-
against-covid-19-infections-surge-11657685970342.html

2COVID19.who.int

virus and COVID-19 disease. Structural biology techniques
such as Cryo-EM (electron microscopy) and Xray crystallog-
raphy are generally used to find how S protein, through binding
domains such as receptor-binding and N-terminal, interacts
with the ACE2 receptor and binds to it. These techniques
explains the three-dimensional (3D) structures of proteins and
their conformational changes. Since the emergence of SARS-
CoV-2 in December 2019, its proteins structures are deposited
at a fast speed in online databases such as Protein Data Bank
(PDB) [5] and Electron Microscopy Data Bank (EMDB) [6].
By using these databases, one can analyze viral structure of in-
terest, their functions as well as the molecular basis. Moreover,
researchers/scientists working on designing potential antibody
therapies and antiviral drugs rely on structural models of the
virus’s proteins [7]. At the time of writing this paper, PDB
contains 196,779 structures in total3, in which more than 1,100
belong to the S protein of SARS-CoV-2.

We focus on the analysis and classification/detection of S
protein structures of SARS-CoV-2 and other viruses/organisms
considering their availability, in large number, in the PDB. In
the literature, some studies focused on the classification and
detection of SARS-CoV-2 genome sequences. For example,
[8]–[10] take advantage of CpG (or CG)-based features for
SARS-CoV-2 genomes classification. Representative genomic
sequences of SARS-CoV-2 were discovered by Lopez-Rincon
et al. [11] by coupling a deep learning method with explainable
AI techniques. Naeem et al. [12] developed a classification
system that utilized the discrete Cosine transform, discrete
Fourier transform and seven moment invariants to extract
features from 76 SARS-CoV-2 genome sequences. The clas-
sification method of Randhawa et al. [13] used an intrinsic
SARS-CoV-2 genomic signature with a machine learning-
based alignment-free (AF) method. Ahmed and Jeon [14]
classified genome sequences of four viruses (SARS-CoV-1,
SARS-CoV-2, MERS and Ebola) by using using machine
learning algorithms. A convolutional neural network, inspired
by a cockroach optimization algorithm was used [15] for
multi-classification of genomes of two viruses (SARS-CoV-
2 and Influenza). Singh et al. [16] used biomarkers, that were
extracted from the genome sequences of coronaviruses on the
basis of three-base periodicity, for the classification of SARS-

3www.rcsb.org/stats/growth/growth-released-structures
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CoV-2 from other coronaviruses.
Most of the aforementioned studies focused on virus

genome sequences and finding important features in them that
are then used for classification. To the best of our knowledge,
no study has been published on the analysis and classification
of protein structures, particularly those of harmful viruses,
in PDB. More specifically, a novel method called S-PDB is
proposed in this paper to:

1) Find and analyze the structures in PDB that are similar
to the S protein structures of SARS-CoV-2.

2) Detect the S protein structures of SARS-CoV-2 and other
viruses/organisms.

Three types of classification is carried out that are based on
(1) amino acids (AA) sequences, (2) aligned AA (AAA) se-
quences, and (3) aligned secondary structure elements (ASSE)
sequences. AA sequences of protein structures are downloaded
from PDB and DALI [17] is used to find similar protein
structures in PDB and for the AA and SSE alignments.
Multinomial Naive Bayes Text (MNBT), Stochastic Gradient
Descent Text (SGDT) and ZeroR are used for classification
and their efficacy is accessed with six evaluation metrics.
We found that MNBT and SGDT performed better on AAA
compared to AA and ASSE. This shows that information from
sequence alignment can be used efficiently to classify protein
structures instead of using their whole AA sequences.

The rest of the paper is organized into four sections:
Section II discusses the SARS-CoV-2, the S protein and the
tool used for the protein structures comparison. Section III
presents the proposed S-PDB method along with the details
for the datasets. Section IV presents and discusses the obtained
results. Finally, Section V concludes the paper with some
future research opportunities.

II. BACKGROUND

This section provides a brief overview of SARS-CoV-2, the
S protein and the DALI tool for protein structures comparison.

A. SARS-CoV-2

SARS-CoV-2 is a positive-strand RNA virus, with spherical
to pleomorphic shape and length between 80-160 nm [18].
SARS-CoV-2 contains four structural proteins (1) Spike (S),
(2) Envelope (E), (3) Membrane (M) and (4) Nucleocapsid
(N) (Fig. 1). The outer structure is made by S, M, and E
proteins. The E protein also plays a role in the maturation and
production of SARS-CoV-2. The S and M proteins are also
involved in the process of virus attachment during replication.
N protein form the nucleocapsid inside the envelope. The
SARS-CoV-2 virus can enter the human host cell membrane
by interacting with the host ACE2 receptor.

The S protein, that comprises two subunits (S1 and S2)
binds itself to the ACE2 receptor in the host cells. S1 contains
binding domains, receptor binding domain (RBD) and n-
terminal domain (NTD). S2 contains a fusion peptide, HR1
and HR2 domains which are responsible for the virus fusion.
The S protein of this virus binds to ACE2 with higher affinity
than its predecessor, SARS-CoV [4]. After binding, the entry

Fig. 1. SARS-CoV-2 structure and how it binds to host cell through the ACE2
receptor and TMPRSS2

depends on S protein priming process carried out by the
type 2 serine protease (TMPRSS2) [19] that is present on
the surface of the host cell (Fig. 1). Blocking or preventing
the binding of S proteins with ACE2 receptors is considered
the first and most important approach to block cell entry and
stopping the COVID-19 disease. In its genome range, SARS-
CoV-2 contains six to twelve open reading frames (ORFs). The
main reading frame, ORF1ab that occupies two-thirds of the
genome, is present at the 5’UTR (terminal region). Whereas at
the 3’UTR, one third consists of genes that encode structural
proteins (S, E, M and N).

The primary structure of a protein contains ordered se-
quence of AA residues. The secondary structure of a protein
contains regions of AA chains stabilized by the hydrogen
bonds from the polypeptide backbone. These bonds generate
α-helix and β-sheets that contain β-strands. From the sec-
ondary structures, a protein can be folded into a stable 3D
structure (the tertiary structure) [20].

B. DALI

DALI (Distance matrix alignment) software [17], [21] is
used to find structures in PDB that are similar to the SARS-
CoV-2 S protein structures and for their comparison and
analysis. DALI optimizes a set of one-to one correspondences
between two protein (sub)structures (A and B) that maximizes
the DALI score:

DALIAB =

LALI∑
i=1

LALI∑
j=1

(
θ −

2|dAij − dBij |
dAij + dBij

)
e
−
(

dAij+dBij
2D

)2

where LALI represents the number of aligned residue pairs,
θ = 0.2, D = 20 A and dAij , d

B
ij are intra-molecular Cα–Cα

distances in structures A and B respectively. For random
pairwise comparison, the expected DALIAB score increases
with the number of residues in the compared proteins. DALI
Z-score is used to describe the statistical significance of a
DALIAB :

ZAB =
DALIAB −m(L)

α(L)
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where L =
√
LALB is the geometric mean length of

structures A and B. The relation between m (mean score),
σ (standard deviation) and L was derived empirically from a
large set of random pairs of structures. Fitting a polynomial
give the following approximation:

m(L) =

{
7.95 + .71L− 2.59E−4L3 − 1.92E−6L3 if L ≤ 400

m(400) + L− 400, if L > 400

The empirical estimate for the standard deviation was σ(L)
= 0.5 × m(L). For every possible pair of domains (determined
by the Puu algorithm [22]), the Z-score is computed and the
highest value is reported as the Z-score of the protein pair.
Thus DALI’s Z-score is an optimized similarity score defined
as the sum of equivalent residue-wise Cα-Cα distances among
two proteins. For two proteins, the large Z-score indicates
more similarity that corresponds to the optimal set of residue
equivalence obtained by permuting the equivalent structural
patterns by Monte Carlo optimization. A Z-score < 2 is
considered as a spurious similarity and can be ignored [23].

DALI supports three types of database searches (PDB
search, PDB25 and AF-DB) and two types of structure com-
parisons (pairwise and all against all). Proteins in secondary
structure are traditionally characterized with three states:
(1) helix (H), strand (E) and Coil (C). The Dictionary of
Secondary Structure of Proteins (DSSP) [24] offers a finer
classification of the secondary structures by extending the
three general states into eight states. DALI uses the secondary
structure assignments by DSSP.

III. S-PDB METHOD

The proposed S-PDB method (Fig. 2) for the analysis of
protein structures and classification of S protein structures of
viruses in PDB consists of two main steps:

1) Similar protein structures identification and datasets
creation: This step consists of two main activities: (1)
Identifying the protein structures that are similar to the
SARS-CoV-2 S protein structures in PDB. This is done
by using DALI. (2) The AA sequences of obtained
similar S protein structures, downloaded from PDB,
and the pairwise alignment of AA and SSE of protein
structures, obtained through DALI, are stored in three
datasets.

2) S protein structures classification: Sequence of AA,
AAA and ASSE identified in Step (1)2 are used for
the classification of S proteins that belong to SARS-
CoV-2 and to other viruses and organisms. The clas-
sification task is composed of two main parts: (1) The
training phase contains two phases, AA, AAA and ASSE
representation and classifier training, that are performed
sequentially. (2) The testing phase contains three phases,
AA, AAA and ASSE representation, hypothesis predic-
tion and evaluation.

The next two subsections provide more details for the two
parts.

A. Similar proteins identification in PDB through DALI
The SARS-CoV-2 protein structure with PDB ID (PID)

6VSB [4] (deposited to PDB on 10 February 2020) is used
as the query structure. The main reason to select 6VSB as
a query structure is that it is one of the earliest S protein
structures deposited in PDB. Thus, for 6VSB, DALI returned
397 structures in PDB90 search. Note that PDB90 is a non-
redundant subset of PDB structures. In PDB90 subset, those
structures in PDB are found that are less than 90% identical
in sequence. After removing the same structures with different
chains, the total structures reduced to 388.

The similar structures obtained can be divided into three
types (families):

1) S protein structures of SARS-CoV-2,
2) S protein structures of other viruses and organisms, and
3) Protein (enzyme) structures for others.
In the similar protein structures obtained with PDB90 search

in DALI, approximately 13.65% (53 out of 388) belong to the
first type (S protein structures of SARS-CoV-2), approximately
12.37% (48 out of 388) belong to the second type (S protein
structures of other viruses and organism). Remaining belonged
to the third type (structures of others). The AA sequences of
all 388 structures are then downloaded from the PDB. Some
sequences have multiple AA sequences due to multiple chains.
Thus the downloaded sequences are refined to only include the
sequences for the chain which is similar to the query structure.
Table I shows the number of structures that belong to each of
the three families.

TABLE I
STRUCTURES DISTRIBUTION ACCORDING TO THEIR FAMILIES

Structures Samples AA FAA MinL, MaxL, ASL
SARS-CoV-2 S 53 20 L,S,T,V, G 127, 1380, 1074

Other S 48 20 S,L,V,T,G 135, 1469, 847
Others 287 22 L,G,S,V,A 69, 4646, 375
Total 388 22 L,S,G,V,T 69, 4646, 526

FAA: Frequent AA, MinL: Minimum Length, MaxL: Maximum Length,
ASL: Average Sequence Length

The five most frequent AA in SARS-CoV-2 S are Leucine
(L) (8.30%), Serine (S) (8.05%), Threonine (T) (7.43%),
Valine (V) (7.42%) and Glycine (G) (7.11%). In Other S, the
five most frequent AA are: S (8.52%), L (8.50%), Valine (V)
(7.78%), T (7.39%) and G (6.76%). The five most frequent AA
in Others are: L (8.05%), G (7.62%), S (7.42%), V (6.73%)
and Alanine (A) (6.48%). The third family (Others) has 22
distinct AA because the amino acid B that can be either
Asparagine (N) amino acid or Aspartic (D) amino acid was
present in one structure and the amino acid X that can be
any of the 20 AA was present once in multiple structures.
As mentioned earlier, AA sequences of structures that belong
to two families (SARS-CoV-2 S and Other S) are stored in
a dataset. Similarly, the AAA and ASSE of structures that
belong to SARS-CoV-2 S and Other S are also stored in
their respective datasets. Thus, we have three datasets for: (1)
AA sequences, (2) AAA and (3) ASSE. More details for the
datasets of AAA and ASSE are provided in the results sections.
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Fig. 2. Schematic of the S-PDB method for the analysis of proteins structures in PDB and for the classification of SARS-CoV-2 S vs Other S

B. Classification

The second step performed by the proposed S-PDB is to
classify protein structures according to the first two types using
the AA, AAA and ASSE sequences. Binary classification is
carried out on three datasets to train a model to classify two
structure types separately. For a selected structure type, binary
classification assigns “class name” to each AA, AAA and
ASSE sequences corresponding to that type.

Evaluation metrics: We use six metrics to evaluate the
performance of classifiers, which are: (1) accuracy, (2) false
positive rate (FPR), (3) recall, (4) precision, (5) F1 score
and (6) Matthews correlation coefficient (MCC). In this work,
the accuracy (ACC) is defined as the proportion of correctly
classified S proteins structures of SARS-CoV-2 divided by the
total S protein structures. The formal definition of ACC is:

ACC =
TP + TN

TP + TN + FP + FN

whereas in the context of this paper,
TP stands for true positive, i.e. number of protein structures
correctly identified as belonging to a given protein structures
type,
FP stands for false positive, i.e. number of of protein structures
incorrectly identified as belonging to a given protein structures
type,
FN stands for false negative i.e. number of of protein structures
incorrectly identified as not belonging to a given of protein
structures type, and
TN stands for true negative i.e. number of of protein struc-
tures correctly identified as not belonging to a given protein
structures type.

The other five measures, FPR, precision, recall, f-measure
and MCC are calculated as follows:

FPR =
FP

FP + TN

Precision(P ) =
TP

TP + FP

Recall(R) =
TP

TP + FN

F −measure = 2× P ×R

P +R

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Classifiers: Three machine learning algorithms are used,
which are: (1) MNBT (Multinomial Naive Bayes Text), (2)
SGDT (Stochastic Gradient Descent Text) and ZeroR [25]–
[27]. MNBT is a probabilistic learning algorithm based on the
Bayes theorem. SGDT is a generic optimization algorithm that
uses stochastic gradient descent for learning a linear binary
class SVM or binary class logistic regression on text data.
ZeroR is a simple classification algorithm that relies on the
target and all predictors are ignored. ZeroR is selected as
a benchmark for MNBT and SGDT. Standard 10-fold cross
validation is used to evaluate the performance of the classifiers.

IV. RESULTS

The experiments are performed on a workstation with a
fifth-generation Core i7 processor and 32 GB of RAM. The
open-source WEKA software [27], developed in Java, is used
to train the classifiers. WEKA is selected because it can run on
various platforms and offers not only classifiers for machine
learning but also tools for data preparation and meta learners.
Moreover, it also provides a GUI, along with its CLI, that is
very easy to use.

First, the results for the pairwise sequence alignment in
DALI for the 12 similar structures against the query structure
is presented. DALI aligned more than 970 AA in 12 structures
and the first 200 AA alignment is shown in the upper block of
Fig. 3. The most frequent AA in each column (structure) are
colored. The uppercases letters represents those positions that
are structurally equivalent with the query structure. The second
part (lower block) in Fig. 3 shows the secondary structure
states (assigned by the DSSP). From the lower part, the two
most frequent SSE are: Coil or turn (L), followed by β-sheet
(E) and α-helix (H). Note that two structure (6NB7 and 6CS2)
belong to SARS-CoV, 6JX7 to Feline infectious peritonitis
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Fig. 3. AAA and ASSE in 12 structures obtained by using DALI. 6VSB is used as the query structure

(FIP) virus, 5I08 to Human Coronavirus-HKU1, 6M5Y to
sugar binding protein and 50CQ to hydrolase enzyme.

DALI also reports the root-mean square deviation (RMSD)
of aligned Cα-atoms, LALI (number of aligned Cα-atoms),
NRES (number of AA residues in the target structure) and
IDEN (% identity of AAA) for similar protein structures
(Table II). The goal in DALI is to maximize a geometrical
similarity score, which is defined in terms of similarities of
intramolecular distances. Therefore, DALI does not generate
alignments with low RMSD. An alignment is considered
“better” if it has both smaller RMSD and larger LALI. If
both RMSD and LALI are smaller or larger, it is not possible
to establish an order between the alignments. Along with the
AA sequences for protein structures of SARS-CoV-2 and other
viruses/organisms, their AAA and ASSE are also stored that
are used for the classification.

TABLE II
DALI RESULTS FOR 12 STRUCTURES

Structures PID Z-score RMSD LALI NRES IDEN
7AD1B 48.8 3.6 792 935 97
7Q6QA 48.2 1.6 965 1013 99
7RA8A 48.1 2.7 762 917 97
7N9CB 48.1 1.7 778 812 99
7SN3A 47.8 2.9 803 925 97
6NB7B 40.7 5.0 822 1032 77
6CS2C 35.7 2.0 797 893 78
6ZOZC 32.9 3.3 964 1070 99
6JX7A 28.0 8.7 604 1245 28
5I08A 27.4 3.9 801 958 31

6M5YA 8.4 8.1 132 270 8
5OCQB 5.7 3.8 136 279 6

Two classifiers (MNBT and SGDT) are used with three
tokenization strategies: (1) WordTokenizor (WT), (2) NGram-
Tokenzior (NGT) and (3) CharacterNGramTokenzior (CNGT).
The first one is a simple technique to tokenize the strings.
The second tokenzior splits a string into an n-gram with user
specified minimum and maximum grams. Whereas, the third
tokenizor splits a string into all character n-grams it contains
on the basis of user specified maximum and minimum for n.
In both NGT and CNGT, the maximum and minimum grams
were set to 3 and 1 respectively. Obtained results are provided

in Table III. Two strategies WT and NGT generated the same
results for both classifiers. Whereas CNGT strategy performed
better than WT and NGT on both classifiers. Interestingly, the
results for the ZeroR on AA, AAA and ASSE for various
parameters were the same as MNBT’s results with WT and
NGT strategies.

On AA dataset, SGDT with CNGT strategy performed
better than MNBT with the same strategy. On AAA dataset
SGDT with CNGT strategy performed similar to MNBT with
the same strategy. On ASSE datasets, the MNBT with CNGT
strategy performed better than SGDT with the same strategy.
On three datasets, SGDT with different strategies was slow
compared to MNBT. The confusion matrix in Fig. 4 is for the
MNBT and SGDT with CNGT strategy. The format AA AAA

ASSE
is used. The entries outside bracket is for the MNBT and inside
the bracket is for the SGDT.

TABLE III
CLASSIFIERS PERFORMANCE ON THREE DATASETS WITH DIFFERENT

TOKENIZATION STRATEGIES

Type P MNBT SGDT ZeroRWT (NGT) CNGT WT(NGT) CNGT

A
A

ACC 52.47 87.12 52.47 91 52.47
FPR 0.525. 0.126 0.440 0.091 0.525

P ? 0.873 0.587 0.911 ?
R 0.525 0.871 0.525 0.911 0.525
F1 ? 0.871 0.459 0.911 ?

MCC ? 0.744 0.119 0.821 ?

A
A

A

ACC 52.47 92 52.47 92 52.47
FPR 0.525. 0.082 0.525 0.082 0.525

P ? 0.921 ? 0.921 ?
R 0.525 0.921 0.525 0.921 0.525
F1 ? 0.921 ? 0.921 ?

MCC ? 0.842 ? 0.842 ?

A
SS

E

ACC 52.47 84.14 52.47 71.28 52.47
FPR 0.525. 0.159 0.525 0.291 0.525

P ? 0.842 ? 0.713 ?
R 0.525 0.842 0.525 0.713 0.525
F1 ? 0.842 ? 0.712 ?

MCC ? 0.682 ? 0.423 ?

We performed paired t-test (corrected) in Weka to check
which of three classifiers are significantly better than others.
We selected ZeroR as the baseline. Both MNBT and SGDT
with CNGT strategy performed significantly better than ZeroR.
For MNBT and SGDT, the later performed better than the
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Fig. 4. Confusion matrix for two classifiers on three datasets

former on AA dataset while the opposite is true for the ASSE
dataset. On AAA dataset, both classifiers’ performance was
the same. The test results confirmed that the difference in the
performance of MNBT and SGDT on three datasets is not that
significant.

TABLE IV
CLASSIFIERS PERFORMANCE ON DATASETS THAT CONTAIN VARYING

NUMBER OF AAA AND ASSE

Type P MNBT SGDT

A
A

A
( 1

0
0
(
2
0
0

3
0
0
)) ACC 89.2

(
90.1
92

)
83.3

(
91
93

)
FPR 0.103

(
0.098
0.082

)
0.169

(
0.085
0.073

)
P 0.897

(
0.902
0.921

)
0.833

(
0.915
0.932

)
R 0.892

(
0.901
0.921

)
0.833

(
0.911
0.931

)
F1 0.892

(
0.901
0.921

)
0.833

(
0.911
0.931

)
MCC 0.789

(
0.803
0.842

)
0.665

(
0.826
0.862

)

A
SS

E
( 1

0
0
(
2
0
0

3
0
0
)) ACC 81.18

(
78.21
79.2

)
79.2

(
75.2
73.2

)
FPR 0.194

(
0.233
0.210

)
0.212

(
0.246
0.272

)
P 0.814

(
0.803
0.792

)
0.793

(
0.754
0.733

)
R 0.812

(
0.782
0.792

)
0.792

(
0.752
0.733

)
F1 0.811

(
0.776
0.792

)
0.792

(
0.753
0.732

)
MCC 0.624

(
0.581
0.583

)
0.583

(
0.506
0.463

)
AAA and ASSE sequences are further analyzed by only

considering some of their parts. For example, the first 100,
200 and 300 AAA and ASSE are used for the classification
instead of whole AAA and ASSE sequences. The reason to
consider three different numbers of patterns (100, 200 and 300)
is to see whether different patterns count has any effect on the
performance of classifiers. The results are listed in Table IV.
The results for classifier metrics are shown with the following
format: 100

(
200
300

)
. For example, consider the first entry of

89.2
(
90.1
92

)
. It indicates that MNBT achieved ACC of 89.2%

on the dataset that contains first 100 AAA of structures, 90.1%
ACC on first 200 AAA of structures and 92% ACC on first
300 AAA of structures respectively. Note that the results in
Table IV for the classifiers are with the CNGT strategy. We
found some interesting results. For AAA, the performance of
MNBT and SGDT increased with increase in the length of
AAA. The opposite is true for ASSE, where MNBT and SGDT
performance decreased with the increase in the ASSE length.

Infect, for AAA and ASSE, SGDT performance was better at
first 300 AAA and first 100, 200 and 300 ASSE compared
to the whole AAA and ASSE sequences respectively. The
datasets used for the classification experiments are available
at github.com/saqibdola/S-PDB.

V. CONCLUSION

In this study, a novel method (named S-PDB) is developed
that first finds the protein structures in PDB that are similar to
the SARS-CoV-2 Spike proteins. The similar S protein struc-
tures of SARSCoV-2 and other viruses and organisms are then
classified by using (1) AA sequences, (2) AAA and ASSE,
that are obtained by using a protein structures comparison
tool. Three classifiers were used to reliably predict/classify
and their performance was checked against six metrics. We
found that the two classifiers (MNBT and SGDT) performance
on AAA was high, followed by AA and ASSE. This shows
that information obtain from sequence alignment can be used
efficiently to classify protein structures instead of using their
whole AA sequences. The developed method is not limited
to the S protein structures but can be used for other protein
structures too. For future, some research directions are:

• Extending the method to (1) classify non-S protein struc-
tures in PDB and (2) analyze and classify the S protein
structures of SARS-CoV-2 that belongs to various variant
families such as Alpha, Delta Omicron, etc.

• Using alignment-free methods [28], [29] for comparison
of AA sequences of protein structures.

• Using pattern mining techniques such as sequential pat-
tern mining [30] and emerging or contrast pattern mining
[31] to find similar (contrasting) frequent patterns in AA,
AAA and ASSE for the analysis and classification of
protein structures in PDB.
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