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Abstract—There are various sources of ionizing radiation ex-
posure, where medical exposure for radiation therapy or diag-
nosis is the most common human-made source. Understanding
how gene expression is modulated after ionizing radiation
exposure and investigating the presence of any dose-dependent
gene expression patterns have broad implications for health
risks from radiotherapy, medical radiation diagnostic proce-
dures, as well as other environmental exposure. In this paper,
we perform a comprehensive pathway-based analysis of gene
expression profiles in response to low-dose radiation exposure,
in order to examine the potential mechanism of gene regulation
underlying such responses. To accomplish this goal, we employ
a statistical framework to determine whether a specific group
of genes belonging to a known pathway display coordinated
expression patterns that are modulated in a manner consistent
with the radiation level. Findings in our study suggest that
there exist complex yet consistent signatures that reflect the
molecular response to radiation exposure, which differ between
low-dose and high-dose radiation.

Index Terms—Gene expression analysis, radiation biology, low-
dose radiation response, pathway analysis.

1. Introduction

Environmental threats constitute a major factor in deter-
mining a person’s susceptibility to disease. With the progress
of industrialization and modernization, radiation exposure
has become one of the most serious environmental threats
in today’s world. Mounting evidence suggests that ionizing
radiation is linked to the development of thyroid cancers,
multiple myeloma, and myeloid leukemia in children and
adults [1]. It is well documented that the biological effects of
ionizing radiation on mammalian cells are closely related to
radiation doses and dose rates. In general, low-dose radiation
exposure is far more common than high-dose radiation ex-
posure because low-dose radiation can come from a variety
of sources, including natural sources, cosmic rays, nuclear
power, and various types of radioactive waste. However,
in contrast to the more well-defined effects of high-dose
radiation exposure, the biological effects and consequences
of low-dose radiation and mixed exposures remain poorly
understood [2], [3].

Historically, the health risks associated with low-dose
ionizing radiation exposure have been estimated by extrap-
olating from available high-dose radiation exposure data.
However, the majority of the data come from experiments
that used extremely high, even supra-lethal, doses. Extrapo-
lating the results of such studies to physiologically relevant
doses can thus be difficult [4]. Furthermore, an increasing
number of studies show that the biological reactions to
high and low doses of radiation are qualitatively distinct,
necessitating a direct examination of low-dose responses to
better understand potential risks [5].

Genome-wide expression assays using microarrays or
RNA sequencing can provide snapshots of transcriptional
activities in a biological sample, hence studying the gene
expression profiles under low doses of ionizing radiation
can provide novel insights into the biological reactions to
such radiation exposure. In fact, mining gene expression
profiles has proven useful in understanding pathophysiolog-
ical mechanisms, diagnosis and prognosis of complex dis-
eases, and deciding on treatment plans. Several studies have
demonstrated the effectiveness of using gene expression
profiles for traditionally challenging problems, for instance,
discriminating between different subtypes of a complex
disease, such as cancer [6], [7]. Despite these successful
applications, quantification and interpretation at the genetic
level of the impact from radiation exposure on the risk of
developing such diseases are still challenging. Especially,
the small sample size of typical clinical data, on the other
hand, frequently impedes meaningful analysis, making pat-
tern discovery, disease marker identification, risk prediction,
reproducibility, and validation extremely difficult [8], [9].
Adjusting for multiple hypothesis testing is another critical
issue for all microarray analysis methods. The similarities
of such signatures across different sample types have not
been demonstrated to be strong enough to conclude that
they represent a universal biological mechanism shared by
different sample types [10]–[12].

In recent years, scientists have gained a better under-
standing of the transcriptional response in cells to radiation
exposure [13]. When cells are exposed to ionizing radiation,
multiple signal transduction pathways are activated, mak-
ing pathway activity a potentially powerful and informa-
tive approach for determining disease states. Furthermore,
pathways, the most well-documented protein interactions,
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are known to closely reflect functional relationships related
to molecular biological activities such as metabolic, sig-
naling, protein interaction, and gene regulation processes.
A growing body of research indicates that tasks such as
class distinction based on differences in pathway activity
can be more stable than distinction based solely on genes.
For example, [14] incorporated pathway information into
expression-based disease diagnosis and proposed a classifi-
cation method based on pathway activities inferred for each
patient. Later in [15], pathway activity patterns are used to
describe a classification scheme for human breast cancer
and to reveal complexity in intrinsic breast cancer subtypes.
The probabilistic inference of differential pathway activity
across different classes (e.g., disease states or phenotypes)
using probabilistic graphical models [16] was shown to
identify molecular signatures that can be used as robust
and reproducible disease markers. The marker identification
method in [16] was further extended in [17], where a novel
algorithm for discovering robust and effective subnetwork
markers in a human protein-protein interaction network that
can accurately predict cancer prognosis and simultaneously
discover multiple synergistic subnetwork markers. It should
be noted that at the heart of these pathway-based analyses
is determining the activity of a given pathway based on the
expression levels of the constituent genes.

The primary goal of this paper is to perform a compre-
hensive pathway-based analysis of gene expression profiles
to investigate the differential time and dose effects, primarily
in low-dose experiments, in order to uncover molecular
signatures of low-dose radiation response. Towards this goal,
we adopt the probabilistic pathway activity inference scheme
in [16], where the pathway activity level is estimated from
gene expression data via the use of a simple probabilistic
graphical model. More specifically, the scheme estimates the
log-likelihood ratio between different classes (e.g., differ-
ent levels of radiation exposure) based on the expression
level of each member gene. The log-likelihood ratios of
the member genes in a given pathway are then aggregated
for probabilistic inference of differential pathway activity.
Through this analysis, we identify the most significantly
differentially activated pathways in response to low-dose
radiation. These pathways are investigated to determine
the presence of consistent dose-dependent gene expression
patterns. Our cross-validation experiments demonstrate that
the proposed method can generate reliable and consistent
pathway analysis results even with limited data.

2. Data

2.1. Low-dose radiation gene expression data

The goal of the current study is to identify poten-
tial molecular signatures underlying the biological response
to low-dose ionizing radiation exposure through pathway-
based analysis of gene expression profiles. For this purpose,
we conducted a thorough literature search and preliminary
analysis to identify human gene expression data suitable
for studying the low-dose radiation response. The gene

Dose Level Number of Samples
0 Gy 18

0.005 Gy 16
0.01 Gy 18
0.025 Gy 18
0.05 Gy 17
0.1 Gy 18
0.5 Gy 16

TABLE 1. DESCRIPTION OF THE GENE EXPRESSION DATASET
GSE43151 THAT WAS USED TO INVESTIGATE THE MOLECULAR

SIGNATURES OF LOW-DOSE RADIATION RESPONSE IN THIS STUDY.

expression dataset GSE431511 was identified to be the most
suitable for our study, in terms of sample size and the range
of radiation levels that were considered. Overall, GSE43151
contains gene expression measurements from 121 blood
samples, where five healthy male donors provided 400 mL
venous peripheral blood samples each [18]. A complete
blood count was performed on each whole blood sample
using an ADVIA Hematology System (Bayer HealthCare).
The standard lymphocyte proportion of 16-45 percent was
met by all samples. Heparin at a final concentration of 34
U ml−1 was added to whole blood samples. The blood
was then diluted 1:10 with Iscove’s Modified Dulbecco’s
Medium (IMDM, Life Technologies). Finally, blood samples
were incubated overnight at 37 Cina 5% CO2 concentration.

For the ex vivo irradiation, whole blood exposures were
performed at the ICO-4000 facility (Fontenay-aux-Roses,
France) with a Co source at a low dose rate (50 mGy
min−1). Exposures were carried out independently on each
donor’s blood sample. The kerma rate was calculated us-
ing a Physikalisch-Technische Werkstätten (PTW) ionization
chamber that was irradiated under the same conditions as the
samples. Doses of 5, 10, 25, 50, 100, and 500 mGy were
tested (See Table. 1), as well as sham irradiated conditions.
Following ex vivo irradiation, blood samples were incubated
at 37 degrees Celsius for 150, 300, 450, and 600 minutes
in a 5% CO2 atmosphere.

A density medium was used to collect CD4+ T lym-
phocytes for cell sorting. Following that, total RNA was
extracted from CD4+ T lymphocytes using RNeasy Mini
columns from the RNeasy Mini Kit (Qiagen) as directed by
the manufacturer. For all RNA samples, the RIN (RNA in-
tegrity number) was calculated for assigning integrity values
to RNA measurements. For gene expression assays, all RIN
values were greater than the recommended value of 7.

Before performing the pathway analysis based on the
GSE43151 gene expression dataset, all 121 samples in the
dataset were normalized, filtered, and analyzed using GAGE
in R software [19]. Following the filtering step, a total of
10,875 probes were chosen, where the basic filtering criteria
consisted of removing a probe when it was undetected in at
least 75% of the replicates considered.

1. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43151
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Figure 1. Overview of the pathway-based analysis of gene expression profiles in response to low-dose radiation exposure.

2.2. Pathway database

We used the KEGG (Kyoto Encyclopedia of Genes
and Genomes) database to obtain a reliable set of known
biological pathways [20]. KEGG is a collection of manually
drawn pathway maps for understanding high-level functions
and utilities of the biological system. The genomic infor-
mation is maintained in the GENES database, which is a
collection of gene catalogs for all fully sequenced genomes
and some partially sequenced genomes with current annota-
tions of gene functions. The PATHWAY database’s higher-
order functional information is augmented with a collection
of ortholog group tables for information about conserved
subpathways, which are frequently encoded by positionally
related genes on the chromosome and are especially valuable
in predicting gene functions. In our case, we identified 343
pathways relevant to the gene expression dataset GSE43151

from the available 548 KEGG pathway maps by discarding
the pathways that did not contain any gene whose measure-
ment was included in GSE43151.

3. Methods

In this section, we describe the technical details of the
pathway-based gene expression data analysis procedure that
was used to detect potential molecular signatures underlying
low-dose radiation response. Figure 1 provides an overview
of the overall procedure.

3.1. Pathway activity inference

To perform the pathway analysis, we first identified the
genes whose measurements were included in the gene ex-
pression dataset GSE43151 for the pathways of our interest.



For every pathway, member genes that were missing in the
given dataset were removed from the gene set. Consider a
pathway G that consist of n genes {gk}nk=1 whose mea-
surements were available in the dataset. In the context of
binary classification, we assume that the expression level of
gene gk (k = 1, 2, . . . , n) has a phenotype-dependent dis-
tribution. Let us denote the conditional probability density
function (PDF) of gene gk expression level under phenotype
1 as f1k (x) and the conditional PDF under phenotype 2
as f2k (x) with x representing the expression level of gene
gk. In our case, we classify radiation exposures into three
categories: zero-dose, low-dose, and high-dose. We compare
low-dose and high-dose samples separately to zero-dose
samples, which means that if zero-dose samples are treated
as phenotype 1, either low-dose or high-dose samples will
be treated as phenotype 2.

After examining different probability distribution mod-
els, we assumed that both f1k (x) and f2k (x) are Guassian in
this study. Having these conditional PDFs, we can calculate
the log-likelihood ratio (LLR) between the two phenotypes
at a given expression level x of gene gk as follows

Lk(x) = log[f1k (x)/f
2
k (x)] (1)

For any given gene gk in the pathway G, the associated log-
likelihood ratio Lk(x) in (1) indicates which phenotype is
more likely based on the expression level x of gene gk. By
combining the evidence–in the form of LLR–from all the
member genes in the pathway, we can assess the overall
activity level of the pathway at hand to infer which of the
two phenotypes the collective expression pattern of its mem-
ber genes points to and how significantly so, as discussed
in [16]. More specifically, provided with a set {xj,k}mj=1 of
m samples (i.e., gene expression measurements) for each
gene gk, we first calculated activity levels {Sj}mj=1 defined
as

Sj =

n∑
k=1

Lk(xj,k) (2)

The activity level Sj in (2) incorporates information from
every gene in the pathway of interest and can be used to
predict the phenotype (class label) based on the overall
activation level of the given pathway in sample j.

Note that to calculate the log-likelihood ratio Lk(x) in
(1), we must first estimate the conditional PDF f ck(x) for
each phenotype c ∈ {1, 2}. We assume that the expression
of gene gk under the phenotype c follows a Gaussian dis-
tribution with a mean of µc

k and a standard deviation of σc
k.

These parameters were calculated using all of the available
samples that correspond to the phenotype c. After that, the
estimated conditional PDFs can be utilized to compute the
log-likelihood ratios. In practice, we often have insufficient
training data to estimate the PDFs of f1k (x) and f2k (x)
with confidence. As a result, the computation of the log-
likelihood ratio may be sensitive to relatively small changes
in the gene expression levels. To alleviate this issue, we

normalized the data as recommended in [16]. Namely, Lk(x)
was normalized to obtain L̂k(x) as follows

L̂k(x) =
Lk(x)− E[Lk(x)]√

E[(Lk(x)− E[Lk(x)])2]
. (3)

While the use of (1) and (2) without normalization for infer-
ring the pathway activity level would be equivalent to using
a Naive Bayes model (NBM) for classifying the phenotype
(class label) given the expression profile of the member
genes that belong to a given pathway, this normalization step
in (3) makes the pathway activity scoring scheme diverge
from the traditional NBM.

3.2. Pathways as potential markers for discriminat-
ing low-dose response from high-dose response

To examine the ability of a pathway to discriminate
between two phenotypes, we computed the t-test statistics
scores using the activity levels Sj for all member genes (as
defined in (2)) and averaged the absolute value of the t-test
scores to compute an aggregated differential activity score.
The aggregated score–which we refer to as the pathway
activity score–was then used as an indicator of the pathway’s
discriminative power [21]. It should be noted that low-dose
and high-dose samples were analyzed separately to detect
most strongly differentially activated pathways under each
radiation exposure level. We had three types of samples:
zero radiation, low-dose radiation (0.005 Gy to 0.1 Gy),
and high-dose radiation (0.5 Gy). Despite the fact that
different low-dose levels of ionizing radiation have been
tested, we treated all dose levels between 0.005 Gy and 0.1
Gy as the same type (i.e., low-dose radiation). Based on this
categorization, we ranked all relevant KEGG pathways to
based on the strongest differential pathway activity between
zero-dose against low-dose radiations, and separately, based
on zero-dose against high-dose radiations. This is illustrated
in Fig. 1(C).

4. Results

4.1. Pathway analysis results

To begin, we evaluated all relevant pathways in the
KEGG database and ranked the pathways based on their
discriminative power following the procedures elaborated
in Sec. 3 and illustrated in Fig. 1. In particular, we ranked
the pathways based on their discriminative power, assessed
based on the aggregated differential activity score obtained
by averaging the absolute value of the t-test scores of the
member genes in a given pathway [21] and estimating the
p-value.

Fig. 2(a) shows the top five pathways that have been
identified as being the most deferentially activated in the
presence of low-dose radiation.

The top pathway was associated with Natural killer cell
mediated cytotoxicity, focusing on natural killer cells, which
are innate immune system lymphocytes involved in early
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Figure 2. Ranking of most differentially activated pathways and their
discriminative power in terms of the pathway activity score. (a) Top
differentially activated pathways under low-dose radiation exposure. The
aggregated t-test scores reflect the discriminative power of the pathways
for discriminating between zero-dose and low-dose samples. (b) Top differ-
entially activated pathways for high-dose radiation exposure (zero-dose vs
high-dose). Comparison between (a) and (b) show a significant difference
between the list of top pathways that are differentially activated under low-
dose radiation and those under high-dose radiation.

defenses against both allogeneic and autologous cells. Many
studies have been conducted to investigate the direct effects
of low-dose ionizing radiation (LDIR) on natural killer cells
and the potential mechanism [22], [23]. The results of the
experiments showed that a simplified strategy based on
LDIR leads to effective expansion and increased activity of
natural killer cells, providing a novel approach for adoptive
cellular immunotherapy.

The second pathway is related to Adherens junction (AJ),
which is the most common type of intercellular adhesion. AJ
initiates and maintains cell adhesion while also controlling
the actin cytoskeleton. In [24], three types of junctional
proteins were chosen for immunohistochemical labeling,
and experimental results showed that not only high, but
also low and moderate doses of cranial irradiation increase
cerebral vessel permeability in mice. In-vitro studies showed
that irradiation alters junctional morphology, reduces cell
number, and causes senescence in brain endothelial cells.
Another study [25] discovered that gamma-radiation, even
at low doses, rapidly disrupts tight junctions, adherens
junctions, and the actin cytoskeleton, resulting in barrier
dysfunction in the mouse colon in vivo. Radiation-induced
epithelial junction disruption and barrier dysfunction are
mediated by oxidative stress, which can be mitigated by
NAC supplementation prior to IR.

Another pathway linked to Sphingolipid metabolism was
also highly ranked. Sphingolipids, a type of membrane

lipid, are bioactive molecules that play a variety of roles
in fundamental cellular processes such as cell division,
differentiation, and cell death. Many studies on the effect
of sphingolipids on cancer treatment have been conducted.
Microbeam radiation can induce radiosensitivity in elements
within the cytoplasm, according to [26]. The effect could be
inhibited by agents that disrupt the formation of lipid rafts
(filipin), demonstrating once again that membranes could be
a target of ionizing radiation. The authors of [27] concluded
that, while other pathways are activated to induce radiation
or chemoresistance, sphingolipids play a significant role.

The JAK-STAT signaling pathway and Glycosphin-
golipid biosynthesis have also been revealed to be very
important in the study of radiation effects. For example,
erythropoietin (EPO), which was originally identified as an
erythrocyte growth factor, is now used to treat anemia and
fatigue in cancer patients receiving radiation therapy and
chemotherapy. The study in [28] demonstrated previously
unknown EPO-mediated HNSCC cell invasion via the Janus
kinase (JAK)-signal transducer and activator of transcription
(STAT) signaling pathway. On the other hand, the findings in
[29] suggest that glycosphingolipid biosynthesis on the cell
surface contributed to the activation of ionizing radiation-
induced apoptosis via ceramide production. The functional
importance of this pathway to eradicating cancer cells with
ionizing radiation has been proven, with sphingolipid break-
down activated as a mechanism of ceramide formation after
cell irradiation.

In a similar manner, Fig. 2(b) shows the top five path-
ways that have been identified as being most differentially
activated in the presence of high-dose radiation. The genes
found in the identified pathways are closely related to the
radiotherapy regimen. Graft-versus-host disease (GVHD),
for example, is a fatal complication of allogeneic hematopoi-
etic stem cell transplantation in which immunocompetent
donor T cells attack genetically diverse host cells. Many
clinical studies have found a link between GVHD severity
and radiation dose, with more severe GVHD after condi-
tioning regimens that included radiation therapy compared
to those that only included chemotherapy [30], [31]. Another
example is allograft rejection. By definition, the recipient’s
alloimmune response to nonself antigens expressed by donor
tissues causes allograft rejection. According to research,
the complex pathophysiology involves host tissue damage
caused by the conditioning regimen (chemotherapy and/or
irradiation) [32]. After nonmyeloablative conditioning with
low-dose irradiation, the use of recombinant fusion protein
promotes mixed lymphoid chimerism.

Interestingly, we can see that there is relatively small
overlap between the set of pathways there were most re-
sponsive to low-dose radiation exposure and those that were
responsive to high-dose radiation exposure. For example, as
shown in Fig. 2, only one pathway (i.e., Natural killer cell
mediated cytotoxicity) was among the top 5 differentially
activate pathways under both low-dose and high-dose ra-
diation. However, we can see more pathways in common
as we go down the list further. For example, when we
compare the top ten pathways that are the most responsive



to low-dose and high-dose radiation exposure, we find four
common pathways: Natural killer cell mediated cytotoxic-
ity, Adherens junction, Glycosphingolipid biosynthesis, and
Antigen processing and presentation.

4.2. Differential dose effect on radiation responsive
pathways

Next, we investigated the differential dose effects on the
top pathways that were most responsive to either low-dose
or high-dose radiation exposure. As noted earlier in Sec. 3.1,
the probabilistic pathway activity inference scheme [16],
which we adopted in this current study, is equivalent to using
a simple probabilistic graphical model (PGM)–namely, a
NBM–when we use (2) for calculating the pathway activity
score based on the LLRs of the member genes belonging
to the pathway. We wanted to find out whether this PGM
constructed to detect the presence of low-dose (or high-dose)
radiation exposure yields consistent activity inference results
as the radiation dose level changes.

Figure 3 shows the inference result based on the PGM
trained to discriminate between zero-dose and low-dose
samples. The y-axis shows the aggregated LLRs and the
x-axis corresponds to the radiation dose level. For each
dose level, the dots show the distribution of the pathway
activity scores for all samples radiated at the given dose
level. The results are shown for the top five pathways that
were found to be most responsive to low-dose radiation.
As we can see in Fig. 3, all low-dose responsive pathways
yielded similar trends, where the inferred differential activity
levels generally decreased as the radiation exposure level
increased. These results imply that these pathways, and the
gene expression profiles of the members therein, may reflect
potential molecular signatures underlying the biological re-
sponse to low-dose radiation exposure.

We carried out a similar analysis based on the top five
high-dose radiation response pathways that were identified
in our study. The analysis results are summarized in Fig. 4.
As before, the y-axis shows the pathway activity score
obtained by aggregating the LLRs of the member genes in
the pathway at hand. It should however be noted that, in this
case, the LLR is obtained by comparing the likelihood ratios
between zero-dose response and high-dose response. The
resulting PGM is therefore trained to discriminate between
zero-dose samples and high-dose samples. Interestingly, ex-
cept for the first pathway (i.e., Natural killer cell mediated
cytotoxicity), which was the top-ranked pathway in both
low-dose as well as high-dose differential activity analysis
(see Fig. 2), the pathway activity levels did not change
significantly as the dose level increased. Considering that
the pathway activity scores reflect the presence of potential
molecular signatures of high-dose radiation response, this
may imply that these top pathways that were responsive
to high-dose radiation exposure might not be substantially
perturbed when the radiation dose level is relatively low.

4.3. Reproducibility of the identified pathways

We conducted cross-validation experiments to assess the
reproducibility of pathway analysis results and the signifi-
cance of the identified pathways. To begin the experiment,
we randomly selected 70% of zero-dose, low-dose, and
high-dose samples, and we repeated this process ten times,
taking into account the total size of our dataset. The top-
ranked pathways identified by the algorithm are depicted
in Fig. 5. Because the different sample selection introduces
randomness, we first counted the show-up cases of pathways
from the top ten most activated pathways. Then, we ranked
our cross-validation results based on the total number of
counts (shown in blue color). We also computed the mean
and standard deviation of the aggregated t-test scores for
each pathway (shown in red color). The cross-validation
experiments for low-dose radiation responsive pathways are
shown in see Fig. 5(a). As we can see, Fig. 5(a) demonstrates
the consistency of the identified pathways when compared
to the results originally obtained using the whole dataset
(see Fig. 2 for comparison). Pathways Natural killer cell
mediated cytotoxicity and JAK-STAT signaling pathway, for
example, have been identified as being highly related to low-
dose radiation response. We suspect that the difference is
due to the radiation dose level. As previously discussed,
we discovered a direct relationship between dose level and
activation. Such differences are expected in a mixed and
random combination of different dose levels.

Noticeably, such consistency was not observed in the
high-dose experiments shown in Fig. 5(b). In many top-
ranked pathways, as shown in Fig. 4, there is a weak dis-
tinction between high-dose samples. The last column, which
represents the distribution of the calculated aggregated t-test
scores of high-dose samples, in particular, shows a narrow-
band distribution (See Fig. 4(b), (d), and (e)). Because the
calculated statistical scores are so close, when randomness
is introduced into data sampling, the cross-validation results
in Fig. 5(b) appear more random. To validate this, we
expanded our ranked pathway list to the top 30 pathways
and found a larger number of overlapping pathways between
the experiments using full dataset and the cross-validation
experiments using only 70% of the dataset. In this case, the
average ranking of the pathways Natural killer cell mediated
cytotoxicity and Allograft rejection, for example, were 17th
and 22nd, respectively. It should be noted that the radiation
dose level that we categorized as “high-dose” in this study is
still relatively low. We expect that gene expression analysis
of samples that underwent higher-dose radiation exposure
may result in more consistent pathway identification results
with clear molecular signatures.

Finally, we also investigated the assumption regarding
the conditional distribution of the gene expression values.
We used the one-sample Kolmogorov-Smirnov (KS) test to
determine the goodness of fit. The test compares the under-
lying distribution F (x) of a sample to a given distribution
G(x), which in our case is a Gaussian distribution. The
null hypothesis holds that the two distributions are identical,
with F (x) = G(x) for all x; the alternative holds that
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(e)

Figure 3. The pathway activity level measured in terms of the aggregated log-likelihood ratios (LLRs) in response to different levels of radiation exposure.
Dose-dependent activity level is shown for the top five pathways that were most differentially activated under low-dose radiation exposure. (a) Natural
killer cell mediated cytotoxicity (b) Adherens junction (c) Sphingolipid metabolism (d) JAK-STAT signaling pathway (e) Glycosphingolipid biosynthesis.
All plots in (a)–(e) for the top low-dose response pathways display similar trends, where the differential activity levels reflecting the presence of potential
molecular signatures of low-dose radiation response decrease as the radiation dose level increases.
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(e)

Figure 4. The pathway activity level measured in terms of the aggregated log-likelihood ratios (LLRs) in response to different levels of radiation exposure.
As before, dose-dependent activity level is shown for the top five pathways that were most differentially activated under high-dose radiation exposure. (a)
Natural killer cell mediated cytotoxicity (b) Graft-versus-host disease (c) Viral myocarditis (d) Allograft rejection (e) Autoimmune thyroid disease. Except
for the top pathway in (a), the differential activity levels reflecting the presence of potential molecular signatures of high-dose radiation response do not
significantly change as the radiation dose level increases. This implies that the pathways that are responsive to high-dose radiation exposure may not be
substantially perturbed under relatively lower-dose radiation exposure.

they are not. We classify the samples as having a Gaussian
distribution if the P-value is greater than 0.05; otherwise,
they have a non-Gaussian distribution. Figure 6 depicts
the computed results, which show that 70.45 percent of
the low-dose samples and 89.63 percent of the high-dose
samples adhere to the Gaussian assumption. This indicates

that during the pathway analysis, it is appropriate to assume
that the conditional distribution of the gene expression data
is Gaussian.
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(b)

Figure 5. Cross validation results of the top ranked pathways. (a) Cross-
validation results for pathways most responsive to low-dose radiation.
(b) Cross-validation results for pathways most responsive to high-dose
radiation.

Figure 6. Kolmogorov-Smirnov (KS) test results. We checked the normality
of the gene expression values in low-dose and high-dose samples using the
KS test. Results indicate that the Gaussian assumption holds in most cases.

5. Conclusion

The current study aimed to unveil molecular signatures
of biological responses exposed to low or very low doses
of ionizing radiation through pathway-based analysis of
genome-wide expression profiles. Gene expression patterns
under the radiation exposure at six different dose levels
ranging from 5 mGy to 500 mGy were investigated, where
the measurements in the original study [18] were made using
blood samples obtained from five different donors during
five independent irradiation sessions. Our investigation was
conducted at the pathway level, as pathway-based gene
expression analysis is known to yield more robust and repro-
ducible results and as it may shed light on potential molecu-
lar mechanisms underlying low-dose radiation response. To

determine the differential activity level of a given pathway
under different levels of radiation exposure, a probabilistic
pathway activity inference scheme was adopted that aggre-
gates the log-likelihood ratios (LLRs) of the member genes
in a given pathway to infer its differential activity. This
allows robust detection of pathways, whose member genes
display possibly subtle yet consistent coordinated expression
patterns in response to low-dose radiation exposure. We
searched through the KEGG database to prioritize pathways
based on their differential activity levels modulated by low-
dose radiation exposure. Our analysis identified the top
pathways that may be associated with low-dose radiation re-
sponse. Findings in this study reflect the complicated nature
of the biological response to low-dose ionizing radiation,
as well as the fact that low-dose exposures affect many
different gene pathways that are not significantly altered
after higher doses of radiotherapy.

One limitation of the current study is the small sample
size of the analyzed dataset (GSE43151). While it has been
challenging to find large-scale human gene expression data
under low-dose radiation exposure, should such data be
available in the future, their analysis would shed further light
onto the unique molecular signatures of low-dose radiation
response. Furthermore, the pathway activity level inference
scheme in (2) makes specific modeling assumptions, upon
which the derived results depend. In fact, the adopted
scheme [16] assumes that the gene expression levels of
the member genes in a given pathway are conditionally
independent given the class label (e.g., presence/absence of
radiation exposure as was considered in the current study)
and follow Gaussian distributions. Although we carried out
some preliminary validation of this modeling assumption
(e.g., see Fig. 6), it would be also worth validating the
pathway analysis results using other methods [33], [34],
which may be potentially pursued in our future studies.
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V. Léner, Z. Varga, Z. Kahán, M. A. Deli, G. Sáfrány et al., “Low
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