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Abstract—To assist surgeons in the operating theatre, surgical
phase recognition is critical for developing computer-assisted
surgical systems, which requires comprehensive understanding of
surgical videos. Although existing studies made great progress,
there are still two significant limitations worthy of improvement.
First, due to the compromise of resource consumption, frame-
wise visual features are extracted by 2D networks and disregard
spatial and temporal knowledge of surgical actions, which hinders
subsequent inter-frame modeling for phase prediction. Second,
these works simply utilize ordinary classification loss with one-
hot phase labels to optimize the phase predictions, and cannot
fully explore surgical videos under inadequate supervision. To
overcome these two limitations, we propose a Surgical Temporal
Action-aware Network with sequence Regularization, named
STAR-Net, to recognize surgical phases more accurately from
input videos. Specifically, we propose an efficient multi-scale
surgical temporal action (MS-STA) module, which integrates
visual features with spatial and temporal knowledge of surgical
actions at the cost of 2D networks. Moreover, we devise the dual-
classifier sequence regularization (DSR) to facilitate the training
of STAR-Net by the sequence guidance of an auxiliary classifier
with a smaller capacity. Our STAR-Net with MS-STA and DSR
can exploit visual features of surgical actions with effective
regularization, thereby leading to the superior performance of
surgical phase recognition. Extensive experiments on a large-scale
gastrectomy surgery dataset and the public Cholec80 benchmark
prove that our STAR-Net significantly outperforms state-of-the-
arts of surgical phase recognition.

Index Terms—video analysis, surgery workflow, gastric cancer

I. INTRODUCTION

The computer-assisted surgery can improve the quality of
interventional healthcare, thereby facilitating patient safety
[1]–[3]. In particular, surgical phase recognition [4] is sig-
nificant for developing systems to monitor surgical procedures
[5], schedule surgeons [6], promote surgical team coordination
[7], and educate junior surgeons [8]. Compared with offline
analysis of surgical videos, online recognition can support
decision-making during surgery without using future frames,
which is more practical in surgical applications.
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Online phase recognition of surgical videos is challenging,
and has received great research attention and progress [9]–
[11]. Earlier works [12] formulated this task as the frame-
by-frame classification, and used auxiliary annotations of
surgical tools for multi-task learning [13]. Meanwhile, some
works [14]–[16] utilized 3D convolutions to capture temporal
knowledge of surgical videos. To overcome the huge resource
consumption of 3D convolution, mainstream methods [17]–
[21] first used 2D convolutional neural networks (CNNs) to ex-
tract the feature vector of each surgical video frame, and then
predicted the surgical phase with the inter-frame temporal re-
lationship aggregated by the long short-term memory (LSTM)
[17], temporal convolutions [18], [22], or transformers [19].
On this basis, recent works [20], [21] further improved this
multi-stage paradigm of phase recognition by leveraging long-
range temporal relation among frame-wise feature vectors.

However, existing works [17]–[21] on surgical phase recog-
nition suffer from two major limitations, including the insuf-
ficient visual information of frame-wise feature vectors, and
the inadequate supervision knowledge provided by surgical
phase labels. First, most surgical workflow studies [17]–[19]
first extracted frame-wise feature vectors with 2D networks,
and then aggregated these feature vectors for surgical phase
prediction. Note that the spatial and temporal information of
surgical videos is discarded when 2D networks process frames
into feature vectors, thus hindering the subsequent inter-frame
modeling. To overcome this bottleneck, we aim to efficiently
formulate the surgical actions during feature extraction and
provide visual features with spatial and temporal information
for sequence modeling and phase prediction. Second, exist-
ing works [17]–[21] formulated the phase prediction as a
classification task of the current frame, and the supervision
information provided by the ordinary loss with one-hot phase
labels is inadequate, which makes the training susceptible to
over-fitting. To guarantee that networks fully learn surgical
knowledge as possible, it is beneficial to conduct reasonable
regularization in training. Inspired by this idea, we introduce
an auxiliary classifier with a smaller capacity to regularize the
phase prediction of the input video sequence.

To address these two problems in surgical phase recogni-
tion, we propose a Surgical Temporal Action-aware Network
with sequence Regularization, named STAR-Net, from the
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Fig. 1. (a) The overview of the STAR-Net, (b) multi-scale surgical temporal action (MS-STA), (c) temporal difference (TDiff) operation, and (d) dual-classifier
sequence regularization (DSR). The MS-STA module is inserted into the 2D visual backbone, which progressively conducts TDiff operations to efficiently
capture multi-scale surgical action features. The DSR introduces the mutual regularization between the auxiliary classifier and the task classifier at the early
and late sequence respectively.

perspective of feature extraction and surgical supervision.
Specifically, we first devise an efficient Multi-Scale Surgical
Temporal Action (MS-STA) module and insert it into the
visual extraction network, which enables the visual features to
perceive the surgical actions at the computational cost of 2D
networks. In particular, we progressively conduct Temporal
Difference (TDiff) operations to capture multi-scale surgical
action features for MS-STA. Moreover, we devise the Dual-
classifier Sequence Regularization (DSR) to regularize the
training of STAR-Net by introducing an auxiliary classifier
with a smaller capacity. As such, this auxiliary classifier
regularizes the task classifier at the early sequence to prevent
over-fitting, and the task classifier provided with spatial and
temporal knowledge enhances the auxiliary classifier at the late
sequence in turn. With the proposed MS-STA and DSR, our
STAR-Net can exploit visual features with the knowledge of
surgical actions and learn from abundant surgical supervision,
thereby leading to the superior performance of surgical phase
recognition. We perform extensive experiments on a large-
scale gastrectomy surgery dataset and the public Cholec80
benchmark to validate the effectiveness of our STAR-Net,
which outperforms state-of-the-art surgical phase recognition
methods by a large margin.

II. METHODOLOGY

A. Overview

As illustrated in Fig. 1 (a), our STAR-Net predicts the
phase of each frame in surgical videos to achieve online phase

recognition. Following previous studies [20], our STAR-Net
classifies the current frame xn as one of C surgical phases
by taking the current frame and T − 1 preceding frames
as sequence input {xn−t}T−1

t=0 . By progressively shifting the
sequence input over time, the STAR-Net can predict the
surgical phase of each frame in the entire video.

Specifically, the STAR-Net first utilizes a 2D CNN with the
MS-STA module as the backbone to extract visual features
with spatial and temporal information of surgical actions.
Then, a transformer with spatial and temporal attention blocks
efficiently aggregates visual features by exploiting global
relationships in spatial and temporal dimensions sequentially.
Finally, we introduce the DSR with an auxiliary classifier to
mutually regularize sequence predictions produced by the task
classifier, thereby facilitating the training of the STAR-Net.

B. Multi-Scale Surgical Temporal Action for Visual Features

Existing studies [18], [19] extracted frame-wise visual in-
formation into feature vectors, which lost spatial and temporal
information of surgical videos. As a result, the surgical actions
in surgical videos are not well represented, thereby leading to
inaccurate modeling of the inter-frame relation. To address
this problem, we propose the MS-STA module to efficiently
model the multi-scale surgical temporal actions during visual
extraction of the 2D backbone, which provides visual features
with spatial and temporal knowledge for STAR-Net.

As shown in Fig. 1 (b), the MS-STA integrates visual
features f ∈ RT×H×W×D of video sequences with multi-



scale temporal information of surgical actions to facilitate
surgical phase recognition, where T is the length of the input
sequence, and H , W and D are the numbers of height, width
and channel dimensions of visual features. In particular, we
devise the Temporal Difference (TDiff) operation to capture
surgical actions between two adjacent frames, which can be
used for longer range surgical actions based on previous
operations progressively. In Fig. 1 (c), the input visual features
f of TDiff operation are first shifted along the temporal
dimension for one frame as delayed features D(f , 1), where
the first and the last frame is performed with zero-padding
and truncation, respectively. Then, we subtract the delayed
features D(f , 1) from the input visual features f element-
wise to calculate the surgical action features of each frame
relative to the previous adjacent frame, as follows:

a1 = M(f −D(f , 1)), (1)

where action mask M(·) sets the first frame substraction to
0. Note that the TDiff operation efficiently captures surgical
action features for each frame with only one shift operation
and element-wise subtraction. In this way, we obtain surgical
action features a1 and delayed features D(f , 1) as the output
of TDiff operation.

With the delayed features, the MS-STA can further per-
form the TDiff operation to progressively generate the ac-
tion features with a longer temporal range, e.g., D(f , 2) =
D(D(f , 1), 1). By conducting multiple TDiff operations se-
quentially in Fig. 1 (b), we concatenate these surgical ac-
tion features {ak}τk=1 with multiple temporal scales, where
[a1,a2, · · · ,aτ ] ∈ RT×τ×H×W×D and τ denotes the number
of temporal scales, and then perform a 3D convolution to
integrate the multi-scale temporal features of surgical actions,
as follows:

ams = W ⊛ [a1,a2, · · · ,aτ ], (2)

where ams ∈ RT×H×W×D, W is the parameters of a 3D
convolutional layer and ⊛ is the convolution operation. In
contrast to the burdensome 3D convolutional networks, we
only insert one 3D convolutional layer into the STAR-Net
to integrate multi-scale temporal features of surgical actions,
which perceive the surgical actions at the computational cost
of 2D networks.

Finally, we add the multi-scale surgical action features ams

with the input features f as residual learning, which can
provide each frame with the knowledge of surgical actions for
the surgical phase recognition. Different from TSM [23] that
shifted partial channels for temporal information at different
layers, our MS-STA can efficiently capture multi-scale tempo-
ral information of surgical actions at once, while preserving
the channel alignment of visual features, thereby providing
surgical action features for phase recognition.

C. Dual-Classifier Sequence Regularization

With multi-scale surgical action features provided by MS-
STA, the STAR-Net can predict the surgical phase with
discriminative spatial and temporal features. However, existing

(h) operation ending(g) GI tract reconstruction(f) proximal stomach 
separation(e) pancreas dissection

(d) lesser curvature 
separation

(c) distal stomach 
separation

(b) greater curvature 
separation(a) preparation

Fig. 2. Typical examples of eight phases in gastrectomy phase dataset. Each
surgical phase carries a distinct and specific clinical significance and serves
as the necessary procedure of the gastrectomy.

works [12], [18], [20], [21] employed ordinary classification
loss, e.g., the cross-entropy loss and its variants, to train
the network, which cannot provide sufficient supervision for
the training. Since the phase label y is a one-hot vector
to indicate the correct class, the cross-entropy loss LCE =
−
∑C

c=1 yc log pc merely produces a single non-zero con-
straint among these C terms to supervise the network training.
As a result, the lack of supervision makes the network prone
to over-fitting, and thus restricts the performance of surgical
phase recognition.

To address the lack of supervision, we devise the Dual-
classifier Sequence Regularization (DSR) to regularize se-
quence predictions by introducing a frame-wise auxiliary
classifier, as illustrated in Fig. 1 (d). With the tokens of each
frame provided by the transformer in STAR-Net, the task
classifier can generate frame-wise phase predictions of the
input video sequence, where the predicted probabilities are
denoted as ptask. Meanwhile, the auxiliary classifier uses the
sequence features extracted by the 2D visual backbone, and
performs spatial global average pooling to predict the phase
probabilities paux of each frame.

Since MS-STA provides multi-scale temporal information of
surgical actions, the auxiliary classifier can achieve relatively
satisfactory prediction for each video frame. Considering that
the small number of previous frames in the early sequences
E cannot provide sufficient temporal knowledge for the task
classifier after the transformer, we adopt the auxiliary classifier
with a smaller capacity to regularize the predicted proba-
bilities ptask of the task classifier. This provides effective
regularization for the training of STAR-Net, thereby avoiding
over-fitting. On the other hand, due to the lack of long-range
surgical video knowledge, the auxiliary classifier is inferior
to the task classifier on the late sequences L, and thus we
further improve the auxiliary classifier with the task classifier.
In turn, this can promote the learning of the task classifier
with an improved auxiliary classifier. Therefore, the objective
of our DSR is summarized as follows:

LDSR =
∑

i∈E
KL(p

(i)
task||p̂

(i)
aux) +

∑
j∈L

KL(p(j)
aux||p̂

(j)
task),

(3)
where KL is the Kullback–Leibler divergence to measure the
distance between two probabilities, and p̂ represents stopping
the gradients from p by regarding it as constants. Therefore,



TABLE I
COMPARISON WITH STATE-OF-THE-ARTS ON GASTRECTOMY PHASE DATASET. BEST AND SECOND BEST RESULTS ARE highlighted AND UNDERLINED.

Method AC (%) PR (%) RE (%) JA (%) P-value
PhaseNet [12] 72.9±7.2 66.5±17.6 70.4±5.1 52.2±13.6 2.8×10−17

SV-RCNet [17] 84.3±7.6 79.8±9.4 78.9±7.9 66.1±10.6 1.4×10−12

TeCNO [18] 85.4±7.1 80.9±9.5 80.3±7.7 68.0±10.9 1.3×10−9

TMRNet [20] 86.8±6.2 85.1±7.1 81.9±8.3 71.8±9.3 2.7×10−7

Trans-SVNet [21] 87.7±6.0 85.1±6.7 82.0±8.4 71.9±9.4 2.5×10−6

STAR-Net w/o MS-STA, DSR 85.1±6.3 80.5±11.6 81.5±5.0 68.6±10.8 1.6×10−8

STAR-Net w/o MS-STA 86.8±6.2 81.8±10.3 82.7±6.1 69.6±10.2 2.6×10−8

STAR-Net w/o DSR 87.9±6.9 85.5±7.1 82.3±8.5 72.0±9.1 3.0×10−6

STAR-Net 89.2±6.1 86.6±6.4 83.7±8.1 73.5±9.0 -

(a)

(b)

(c)
(d)(e)

(f)

(g)

(h)

Fig. 3. The proportion of eight phases in gastrectomy phase dataset. The
inherent imbalance of surgical phases makes online recognition challenging.

the first term in Eq. (3) optimizes ptask on the early sequences
E, while the second term optimizes paux on the late sequences
L. In this way, the DSR can facilitate the training of STAR-Net
with the sequence regularization between the task classifier
and the auxiliary classifier.

D. Training and Inference

Following the efficient multi-stage training paradigm in pre-
vious works [20], [21], we first train the 2D visual backbone
with MS-STA using the cross-entropy loss LCE, and generate
frame features with spatial and temporal knowledge. Then,
we train the transformer with the task and auxiliary classifiers
under DSR for surgical phase recognition, as follows:

L = LCE + λLDSR, (4)

where the coefficient λ controls the trade-off between LDSR

and the cross-entropy loss LCE of phase predictions. In the
inference, the well-trained STAR-Net sequentially conducts
the 2D visual backbone with MS-STA and the transformer
with spatial and temporal attention blocks to extract visual
features, and performs the online frame-wise prediction using
the task classifier for the surgical video streaming in an end-
to-end manner.

III. EXPERIMENT

A. Dataset and Implementation Details

1) Gastrectomy Phase Dataset: To evaluate the online
phase recognition of surgical videos, we collect a large-scale
laparoscopic gastrectomy dataset consisting of 100 surgical
videos from different gastric cancer patients, and its data size

PhaseNet

Ground Truth

STAR-Net

Trans-SVNet

(a) Test video 1

(b) Test video 16

PhaseNet

Ground Truth

STAR-Net

Trans-SVNet

Fig. 4. Color-coded ribbon comparison of PhaseNet, Trans-SVNet, STAR-
Net and ground truth.

is 22.1 times1 of the Cholec80 dataset [12]. The surgical
videos are recorded with 1, 920 × 1, 080 resolution and 25
frame-per-second (fps). The average length of surgical videos
is 2.53 hours. All surgical videos are annotated by two sur-
geons with expertise in gastric cancer surgery. Each frame of
surgical videos is assigned to one out of eight surgical phases,
including the preparation, the greater curvature separation,
the distal stomach separation, the lesser curvature separation,
the pancreas dissection, the proximal stomach separation, the
gastrointestinal (GI) tract reconstruction, and the operation
ending. We randomly split the dataset at the patient-level, as
70 videos for training and 30 videos for test.

To elaborate the collected gastrectomy phase dataset for
surgical phase recognition, we show typical examples of eight
phases in the gastrectomy surgery in Fig. 2. It is evident
that each of these surgical phases carries distinct and specific
clinical significance, and together these phases constitute the
entire procedures of gastrectomy. Moreover, the proportion of
eight phases is illustrated in Fig. 3. It is worth noting that
the inherent imbalance of these eight phases makes it more
difficult to accurately achieve the online phase recognition.

2) Cholec80 Dataset: We further perform the comparison
on public Cholec80 dataset [12] of laparoscopic cholecystec-
tomy procedures, which contains 80 surgical videos with a
resolution of 854×480 or 1, 920×1, 080 at 25 fps. The surgery

1The size of the dataset is measured in the number of pixels.



TABLE II
COMPARISON WITH STATE-OF-THE-ARTS ON CHOLEC80 DATASET. BEST AND SECOND BEST RESULTS ARE highlighted AND UNDERLINED.

Method AC (%) PR (%) RE (%) JA (%) Param (107 ) FLOPs (1010)

PhaseNet [12] 78.8±4.7 71.3±15.6 76.6±16.6 - 4.23 0.07
SV-RCNet [17] 85.3±7.3 80.7±7.0 83.5±7.5 - 2.88 4.14

UATD [24] 88.6±6.7 86.1±6.7 88.0±10.1 73.7±10.2 2.80 5.72
TeCNO [18] 88.6±7.8 86.5±7.0 87.6±6.7 75.1±6.9 2.36 8.29

MTRCNet-CL [13] 89.2±7.6 86.9±4.3 88.0±6.9 - 2.98 4.14
TMRNet [20] 89.2±9.4 89.7±3.5 89.5±4.8 78.9±5.8 6.30 24.86

Trans-SVNet [21] 90.3±7.1 90.7±5.0 88.8±7.4 79.3±6.6 2.37 12.47
STAR-Net 91.2±5.3 91.6±3.4 89.2±9.4 79.5±8.1 1.68 3.92

video1/frame1459

video62/frame178

Current FramePrevious Frames

Current Frame

𝒂!"

(a)

(b)

Fig. 5. Visualization of surgical action features ams of MS-STA in (a) gastrectomy and (b) Cholec80 datasets. The motion of the ultrasound knife, grasper
and hook is captured in MS-STA, which provides spatial and temporal information for phase recognition.

procedures are divided into seven surgical phases, including
the preparation, the calot triangle dissection, the clipping and
cutting, the gallbladder dissection, the gallbladder packaging,
the cleaning and coagulation, and the gallbladder retraction.
We exactly follow the standard splits [12], [20], i.e., the first
40 videos for training and the rest 40 videos for test.

3) Implementation Details: We compare STAR-Net with
state-of-the-arts using PyTorch [25] on a single NVIDIA A100
GPU. In our STAR-Net, we adopt ResNet-18 [26] as the 2D
visual backbone for feature extraction, and implement the
temporal attention block with causal mask [19] to achieve
online recognition without using future frames. For MS-STA,
the temporal scale τ is set as 5, and the sequence length T is
20. The coefficient λ of LDSR is set as 1.0, and E and L are
set as the 20%− 60% and 80%− 100% ranges of input video
sequences, respectively. All models are optimized in SGD with
the batch size of 32. The learning rate is initialized as 1×10−3

and halved after every 5 epochs.
4) Evaluation Metrics: We adopt four commonly-used met-

rics to comprehensively evaluate the performance of surgical
phase recognition, including accuracy (AC), precision (PR),
recall (RE) and Jaccard (JA). Following the evaluation protocol
in previous works [12], [20], we calculate PR, RE and JA in
the phase-wise manner, and report the average and standard de-
viation. The AC represents the percentage of frames correctly
classified into ground truth. To perform fair comparisons,
the selected state-of-the-art methods are evaluated with the
same criteria as the STAR-Net. Note that all experiments are
performed in the online mode, where future information is not
accessible when estimating the current frame.

B. Comparison on Gastrectomy Dataset

1) Comparison with state-of-the-arts: To verify the ef-
fectiveness of our STAR-Net, we perform a comprehensive
comparison with the state-of-the-art methods [12], [17], [18],
[20], [21]. As illustrated in Table I, our STAR-Net achieves the
best performance among these methods, with the AC of 89.2%
and JA of 73.5%. Noticeably, our STAR-Net outperforms
the transformer-based method, Trans-SVNet [21], by a large
margin, e.g., 1.5% in AC and 1.6% in JA. In addition, we
conduct the t-test of AC among paired test videos, which
confirms a significant advantage of our STAR-Net over [12],
[17], [18], [20], [21] with P-values < 1× 10−5. These results
demonstrate the performance advantage of our STAR-Net over
state-of-the-arts on gastrectomy phase recognition.

2) Ablation Study: As elaborated in Table I, we perform
the detailed ablation study to validate the effectiveness, by
implementing three ablative baselines of STAR-Net without
MS-STA or DSR. Compared with the baseline without both
MS-STA and DSR, the MS-STA can bring an improvement
of 2.8% in AC and 3.4% in JA, which reveals the impact of
surgical actions on the task. Meanwhile, the DSR can also
increase the baseline with 1.7% in AC, which validates the
sequence regularization of the auxiliary classifier benefits the
training of STAR-Net. The ablation experiments indicate that
the proposed MS-STA and DSR are crucial to improving the
performance of STAR-Net on surgical phase recognition.

3) Qualitative Results of Phase Recognition: We further
qualitatively compare our STAR-Net with Trans-SVNet [21]
and PhaseNet [12] by presenting the color-coded ribbon results
on gastrectomy dataset. As shown in Fig. 4, our STAR-Net



outperforms both PhaseNet [12] and Trans-SVNet [21], and
is the closest to ground truth. In this way, these qualitative
results confirm the superiority of our STAR-Net in surgical
video analysis.

C. Comparison on Cholec80 Dataset

To further evaluate the performance of phase recognition,
we perform the comparison with more state-of-the-arts [13],
[24] on the public Cholec80 benchmark in terms of perfor-
mance and efficiency. In Table II, our STAR-Net achieves
the overwhelming performance with the best AC of 91.2%,
PR of 91.6% and JA of 79.5%. Furthermore, our STAR-
Net demonstrates superior efficiency in comparison to existing
algorithms [13], [17], [18], [20], [21], [24] with the minimal
parameters and computation except for the frame-wise 2D
CNN [12]. These competitive experimental results confirm the
superiority of our STAR-Net on surgical phase recognition.

D. Qualitative Analysis of Surgical Temporal Action

To analyze the surgical temporal action, we further visualize
the multi-scale action features ams of MS-STA, as shown in
Fig. 5. Compared with the current frame, the MS-STA can
accurately capture the surgical actions from several previous
frames, where multi-scale action features ams highlight the
instrument motions on gastrectomy and Cholec80 datasets. For
example, the motion of the ultrasound knife, grasper and hook
is perceived by the multi-scale action features of MS-STA in
Fig. 5. In this way, the MS-STA provides visual features with
the spatial and temporal information of surgical actions for the
STAR-Net, thereby facilitating the phase recognition tasks.

IV. CONCLUSION

In this work, we propose the STAR-Net to promote online
surgical phase recognition efficiently. Specifically, we first
devise the MS-STA module to integrate the visual features
with the multi-scale temporal knowledge of surgical actions,
which enables the STAR-Net to process the surgical video
sequence with more abundant surgical information. Moreover,
we introduce the DSR to regularize the training of STAR-
Net over the frame prediction of video sequences using
an auxiliary classifier. Extensive experiments on gastrectomy
and cholecystectomy surgical datasets confirm the remarkable
advantages of our STAR-Net over state-of-the-art works in
terms of performance and efficiency, as well as the perception
of surgical temporal actions.
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