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Abstract—This paper addresses the emerging task of rec-
ognizing multiple retinal diseases from wide-field (WF) and
ultra-wide-field (UWF) fundus images. For an effective use of
existing large amount of labeled color fundus photo (CFP) data
and the relatively small amount of WF and UWF data, we
propose a supervised domain adaptation method named Cross-
domain Collaborative Learning (CdCL). Inspired by the success
of fixed-ratio based mixup in unsupervised domain adaptation,
we re-purpose this strategy for the current task. Due to the
intrinsic disparity between the field-of-view of CFP and WF/UWF
images, a scale bias naturally exists in a mixup sample that the
anatomic structure from a CFP image will be considerably larger
than its WF/UWF counterpart. The CdCL method resolves the
issue by Scale-bias Correction, which employs Transformers for
producing scale-invariant features. As demonstrated by extensive
experiments on multiple datasets covering both WF and UWF
images, the proposed method compares favorably against a
number of competitive baselines.

Index Terms—wide-field fundus image, retinal diseases, domain
adaptation

I. INTRODUCTION

Wide-field (WF) and ultra-wide-field (UWF) fundus imag-
ing are playing an increasingly important role in fundus
condition assessment and early diagnosis of retinal diseases
[1]. Compared to traditional color fundus photography (CFP),
WF/UWF images have substantially larger field of view (FoV),
see Fig. 1, making it possible for visualization of pathological
alterations in peripheral retina [2]. Not surprisingly, deep
learning methods for retinal disease recognition from such
larger-FoV images are being actively developed [3]–[6].

In contrast to the CFP domain, wherein quite a few labeled
datasets are publicly available [7]–[11] thanks to its long-
lasting research, annotated WF/UWF images are in short
supply. Recently, there have been few novel attempts to exploit
the rich CFP data for UWF image classification [12], [13]. Ju
et al. propose to train several Cycle GANs [14] to generate
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(a) CFP, 45° (b) WF, 133° (c) UWF, 200°

(d) 0.3×(a)+0.7×(b) (e) 0.3×(a)+0.7×(c)

Fig. 1: Fundus images with varied FoV and their mixups.
(a) CFP of 45 degree FoV taken by Canon CR-2. (b) WF
image of 133 degree FoV taken by Zeiss Clarus500. (c) UWF
image of 200 degree FoV taken by Optos Daytona which only
has red and green channel. (d) Mixup of WF and CFP images.
(e) Mixup of UWF and CFP images. Best viewed digitally.

UWF images from a given CFP image. Labels associated with
the given CFP image is then used as pseudo labels for the
generated UWF images. Then, a convolutional neural network
(CNN) pre-trained on a limited set of labeled UWF images
is used to select high-quality samples from the generated data
[12]. For balancing the reliability and the informativeness of
the samples, such a selection is nontrivial. Bai et al. pro-
pose an unsupervised lesion-aware transfer learning method
for diabetic retinopathy (DR) grading in UWF images [13].
Specifically, domain-invariant adversarial learning is applied
to both the underlying CFP-based lesion segmentation model
and DR grading model to improve the cross-domain usability
among them. Nonetheless, adversarial learning can be tricky
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Fig. 2: Performances of different methods on UWF image
classification. CFP is source domain and UWF is target
domain. The black dotted line and red dash-dotted line refer to
the performances of models trained exclusively on CFP data
or UWF data, respectively.

by itself and the proposed method requires additional lesion
segmentation annotations.

In fact, although several state-of-the-art unsupervised do-
main adaptation (UDA) methods that utilize adversarial learn-
ing or feature discrepancy to align features between source
domain and target domain have achieved in certain tasks [15]–
[20], they fail in bridging the domain gap between CFP and
UWF images. As shown in Fig. 2, compared to model trained
exclusively on CFP data, the performance of the UDA methods
do not benefit from their feature alignment. This highlights
the challenge of directly accomplishing feature alignment
between CFP and UWF images due to the distinct domain
gap, primarily in both FoV and color.

On the other hand, some domain adaptation methods, as
manifested by FixBi [21], uses no adversarial learning. For
the cross-domain use of labeled images from a source do-
main, FixBi uses a fixed-ratio based mixup strategy, where a
weighted combination of a source-domain image and a target-
domain image is used as a new training image. In particular,
the source-domain image is assigned with a small weight, say
0.3, so the new image will be visually more close to the target
domain. Such a simple strategy is found to be effective for
cross-domain image classification [21]. However, we argue
that directly applying this strategy in the current context is
problematic. As we have noted, the FoV of a CFP image is
noticeably smaller than that of our target domain, i.e. WF
or UWF images. Given a CFP image and a UWF image of
close size, the anatomic structure from the CFP image will
be considerably larger than that from the UWF when mixing
the two images up, see Fig. 1. Consequently, a scale bias will
be systemically introduced when learning from such mixups.
One might consider remedying the issue, either by downsizing
the CFP image or by upsizing the UWF image. The former
will inevitably cause information loss, while the latter is also

questionable. Bounded by GPU memory, using a larger input
means reducing the batch size that in turn affects adversely
network optimization.

While the field of domain adaptation mainly focuses on
unsupervised domain adaptation (UDA) problems, where the
target domain lacks annotation, we argue that in our case,
a relatively small amount of labeled training examples can
be available for the target domain. As shown in Fig. 2,
the performance of existing methods significantly improves
when labels are available in the target domain. Hence, we
concentrate on supervised domain adaptation (SDA), a more
practical approach in our problem, where both the source
domain and the target domain have annotations.

Towards a more effective use of the rich CFP data for
WF/UWF image based recognition of multiple retinal diseases,
we propose in this paper Cross-domain Collaborative Learning
(CdCL), see Fig. 3. We follow the good practice of FixBi,
using CFP data with mixup. To attack the scale-bias issue, we
propose Scale-bias Correction (SbC), which can be effectively
implemented with Transformers [22]. Furthermore, an Adap-
tive Feature Fusion (AFF) module is adopted for multi-scale
feature fusion.

Our main contributions are:
• We propose CdCL, a novel framework for cross-domain

collaborative learning between CFP and WF/UWF images.
The proposed framework resolve the scale-bias between CFP
and WF/UWF images through Scale-bias Correction module.
• We make the first attempt to develop a unified framework

that utilizes CFP data for classification in various fundus
image types, namely WF and UWF images. Comprehensive
experiments on multiple datasets covering both WF and UWF
images justify the viability of the proposed method.

II. RELATED WORK

Cross-domain learning for UWF images. Attempts have
been made to build deep learning models for diseases clas-
sification in UWF images with the assistance of large scale
CFP dataset. Ju et al. [12] proposed a generative adversarial
network (GAN) [23] based framework to leverage CFP data
for UWF image classification. Several cycle GANs [14] were
built to generate UWF images from CFP. The generated
UWF images were selected according to their quality which
was measured by a pretrained preliminary UWF classification
model. Subsequently, labels from CFP images were assigned
to the corresponding selected generated UWF images and the
final UWF classification model was then trained on these UWF
images. Bai et al. [13] proposed a lesion-aware network for
Diabetic Retinopathy (DR) grading in UWF images. Domain
adversarial learning was applied between CFP and UWF
images for both lesion segmentation model and DR grading
model. In contrast to [12] that relies on additional trained
Cycle GANs and [13] which requires extra lesion segmentation
annotations on CFP, our proposed framework utilizes CFP data
directly and requires no further annotations on CFP data.

Unsupervised domain adaptation. Unsupervised domain
adaptation (UDA) aims at adapting a model trained on a
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Fig. 3: Proposed CdCL method for training a UWF image based retinal disease recognition network.

labeled source domain to an unlabeled target domain. Current
UDA methods rely either on domain-invariant feature learning
[15]–[20], [24] or on self-supervised learning [21], [25], [26].

Domain-invariant feature learning is typically achieved
through feature discrepancy minimization or adversarial train-
ing. Tzeng et al. [15] and Zhang et al. [18] proposed different
measurements of feature discrepancy between source domain
and target domain. The feature discrepancy was minimized
during training. Tzeng et al. [17] and Ganin et al. [16]
employed adversarial training, where a domain discriminator
was built to differentiate features from the source and target
domains while its corresponding feature extractor aimed to
produce domain-invariant features to deceive the domain dis-
criminator. Long et al. [24] proposed a conditional domain
discriminator that took both feature representations and clas-
sifier predictions as inputs simultaneously. Based on previous
adversarial training methods, Rangwani et al. [19] proposed a
Smooth Task Loss to increase the smoothness during adver-
sarial training, resulting in better generalization in the target
domain. Zhang et al. [20] demonstrated that changing the
domain label into soft label could lead to better performance
in the target domain.

Self-supervised learning approaches rely on pseudo labels.
Na et al. [21] proposed a two-stream architecture with a mixup
strategy. Predictions of each stream are used as pseudo labels
for the other stream. Hoyer et al. [25] proposed Masked Image
Consistency, where the predictions of the masked images were
treated as pseudo labels. Wang et al. [26] resort to knowledge
distillation to exploit pseudo labels generated by domain-
specific models.

However, current UDA methods exhibit poor performance
in UWF images, as depicted in Fig. 2, primarily due to the
distinct domain gap between CFP and WF/UWF images in
both FoV and color. To address this issue, our CdCL utilizes
the mixup strategy to reduce the disparity in color and resolves
the scale-bias caused by the disparity in FoV.

III. PROPOSED METHOD

Let x be a specific fundus image, associated with a binary
label vector y that indicates the relevance of the image w.r.t. a
pre-defined set of C fundus diseases. Suppose we have access

to a large set of ns labeled images Ds = {(xs
i , y

s
i ), i =

1, 2, ..., ns} from the source (CFP) domain and a relatively
small set of nt labeled images Dt = {(xt

i, y
t
i), i = 1, 2, ..., nt}

from the target (WF or UWF) domain, with nt ≪ ns. By
exploiting both Ds and Dt, we aim for a better target-domain
classifier. To that end, we propose Cross-domain Collaborative
Learning (CdCL).

A. Cross-domain Sample Construction

We adopt fixed-ratio based mixup [21] to construct cross-
domain training samples. In particular, by mixing (xs, ys) and
(xt, yt) sampled randomly from Ds and Dt, a new training
sample (xm, ym) is generated as{

xm = λxt + (1− λ)xs,
ym = λyt + (1− λ)ys,

(1)

where λ ∈ (0, 1) is a fixed ratio. To make the new sample
visually close to the target domain, we use λ of 0.7. Our
mini-batch for network training will have b target-domain
samples and their mixup counterparts of the same amount,
thus balanced. The mixup strategy allows the source-domain
data to easily collaborate with the target-domain data.

B. Network for CdCL

Given a w×h input image, let it be xt or xm, our network
has a regular 2D-CNN (EfficientNet-B3 [27]) to extract a
downsized d-channel feature map F of size w

32 ×
h
32 × d. In

a single-domain scenario, global average pooling (GAP) is
often used to convert F to a d-dimensional feature vector F̄ .
The vector then goes through a feedforward network (FFN)
to produce a C-dimensional probability vector p w.r.t. the
classes. In the current cross-domain scenario, however, the
above pipeline is questionable as the feature map has been
scale-biased. We thus introduce scale-bias correction (SbC).

Scale-bias correction. For scale-invariant feature extrac-
tion, local feature interaction in a global context is crucial. For
instance, although the optic disc from xs is noticeably larger
than the optic disc from xt, the feature map concerning xm

shall have similar values describing the two optic discs. We
therefore utilize Transformers [22], designed to exploit inter-
feature relationships in a global context. To achieve this, we
first adopt a local average pooling (LAP) instead of commonly



used GAP to reduce F into a smaller feature map Fs of size
ws × hs × d which represents (ws × hs) d-dimension local
features. The kernel size of LAP is set to w

32×r ×
h

32×r and
stride is half of the kernel size. The ratio r ≥ 1 is a hyper-
parameter controls the scope of local feature where larger
r refers to smaller kernel size and smaller scope of local
feature. After flattening, a sequence of ws × hs features are
fed to a standard Transformer consisting of two multi-head self
attention (MHSA) blocks. With mean pooling on the output
sequence of the Transformer, a scale-bias corrected feature
vector F̄s is obtained.

Adaptive feature fusion. We shall not discard F̄ as it
may still be complementary to F̄s. Moreover, the former has
a shorter path back to the backbone than the latter, making
gradient back propagation more efficient and thus of benefit to
backbone training [28]. In order to jointly exploiting the two
features for producing the probability vector p, we perform
adaptive feature fusion module as follows. Each feature is fed
to a separate FFN to obtain a C-dimensional score vector.
Meanwhile, the two features are stacked and fed into a
lightweight attention block, which consists of two linear layers
followed by softmax, to produce two feature-specific weights
w and ws. Accordingly, the weighted average of the two score
vectors is obtained and converted to p by a sigmoid function
for multi-label classification.

To sum up, our network computes p for the given image x
as follows:

F ← CNN(x),
F̄ ← GAP(F ),
Fs ← LAP(F ),
F̄s ← GAP(MHSA*2( flatten(Fs) )),
w, ws ← softmax(Linear*2([F̄ ; F̄s]) ),
p ← sigmoid(w · FFN(F̄ ) + ws · FFN(F̄s)).

(2)

The network is trained by minimizing the BCE loss.

IV. EVALUATION

A. Experimental Setup

Data. Five datasets are used, see Table I, among which CFP-
MD, WF-MD and UWF-MD are our private collections, while
RFMiD [7] and TOP1 are public. CFP-MD, collected in our
earlier research, consists of 31.6k color fundus photos taken
by different fundus cameras including Canon CR-2 / CR-DGI,
Topcon NW400 / TRC-50DX, KOWA Nonmyd 7 and ZEISS
VISUCAM 244. WF-MD has 6.9k WF fundus images taken
by ZEISS Clurus500, while UWF-MD has 6.5k UWF fundus
images taken by Optos Daytona. Both WF-MD and UWF-
MD were acquired from the Department of Ophthalmology,
PUMCH2 in 2022. CFP-MD, WF-MD and UWF-MD have
the following eight fundus diseases in common, all labeled by
retinal specialists: Diabetic Retinopathy (DR), Retinal Vein
Occlusion (RVO), Laser Photocoagulation (LP), Degenerative
Myopia (DM), Retinal Detachment (RD), Tigroid Fundus(TF),

1https://github.com/DateCazuki/Fundus Diagnosis
2The study has complied with the Declaration of Helsinki.

Age Related Macular Degeneration (AMD) and Macular
Epiretinal Membrane (MEM). Note that trying all possible
combinations of the datasets is computationally prohibitive.
So we conduct experiments in the following two groups: 1)
Private group: CFP-MD as the source domain, WF-MD /
UWF-MD as the target domain, and 2) Public group: RFMiD
as the source domain, TOP as the target domain.

TABLE I: Our experimental data. We evaluate models on the
three WF / UWF datasets, i.e. UWF-MD, WF-MD and TOP,
so the val. / test splits of the two CFP datasets, i.e. CFP-MD
and RFMiD, are ommited.

Dataset Train Val. Test DR RVO LP DM RD TF AMD MEM

Private:
CFP-MD 31,623 - - 2,094 2,268 525 8,068 329 7,369 3,637 968
WF-MD 4,211 1,304 1,417 697 399 1,450 366 265 1,192 592 442
UWF-MD 3,962 1,299 1,304 620 164 1,307 572 448 806 133 95
Public:
RFMiD [7] 1,920 - - 595 157 79 149 - - 162 26
TOP 788 2,542 2,620 1,514 364 - - 454 - 205 -

TABLE II: Evaluation on UWF-MD.

Method mAP DR RVO LP DM RD TF AMD MEM

Supervised baselines:
CFP 0.309±0.025 0.581 0.240 0.472 0.463 0.415 0.183 0.064 0.052
UWF 0.622±0.018 0.726 0.498 0.927 0.868 0.840 0.620 0.340 0.161
UWF+ 0.623±0.005 0.721 0.498 0.923 0.883 0.843 0.611 0.309 0.198

UDA baselines:
ADDA [17] 0.140±0.024 0.202 0.027 0.254 0.256 0.098 0.244 0.021 0.013
FixBi [21] 0.161±0.023 0.065 0.050 0.544 0.215 0.090 0.288 0.021 0.015
CDAN [24] 0.252±0.024 0.411 0.151 0.432 0.657 0.066 0.255 0.032 0.015
DDC [15] 0.262±0.006 0.468 0.329 0.509 0.481 0.097 0.157 0.042 0.014
MDD [18] 0.292±0.007 0.454 0.245 0.477 0.684 0.090 0.322 0.041 0.023
SDAT [19] 0.300±0.019 0.503 0.256 0.549 0.712 0.057 0.264 0.045 0.015
DANN [16] 0.306±0.011 0.489 0.286 0.497 0.768 0.075 0.246 0.065 0.018
MIC [25] 0.314±0.009 0.531 0.264 0.556 0.719 0.069 0.291 0.059 0.020
ELS [20] 0.318±0.007 0.584 0.235 0.544 0.735 0.066 0.300 0.064 0.017

SDA baselines:
CDAN [24] 0.570±0.012 0.691 0.456 0.891 0.890 0.788 0.556 0.250 0.039
ADDA [17] 0.617±0.012 0.726 0.467 0.923 0.883 0.825 0.590 0.306 0.220
FixBi [21] 0.635±0.011 0.710 0.486 0.912 0.888 0.861 0.594 0.422 0.204
MDD [18] 0.640±0.015 0.712 0.451 0.909 0.860 0.815 0.585 0.532 0.259
DANN [16] 0.640±0.013 0.717 0.423 0.906 0.881 0.827 0.586 0.526 0.251
SDAT [19] 0.641±0.016 0.746 0.458 0.928 0.909 0.838 0.610 0.444 0.193
MIC [25] 0.642±0.013 0.722 0.447 0.900 0.896 0.804 0.600 0.484 0.280
CycleGAN [12] 0.651±0.010 0.679 0.471 0.923 0.890 0.817 0.579 0.518 0.331
DDC [15] 0.652±0.006 0.689 0.433 0.888 0.879 0.825 0.616 0.467 0.419
ELS [20] 0.656±0.007 0.741 0.469 0.934 0.913 0.848 0.628 0.457 0.262

Proposed:
CdCL 0.675±0.009 0.747 0.475 0.932 0.887 0.845 0.614 0.581 0.318
w/o CFP 0.638±0.010 0.732 0.486 0.923 0.896 0.846 0.612 0.431 0.179
w/o SbC 0.645±0.026 0.720 0.503 0.920 0.887 0.835 0.615 0.409 0.273
w/o GAP 0.662±0.007 0.723 0.511 0.906 0.883 0.832 0.608 0.498 0.331

TABLE III: Evaluation on WF-MD.

Method mAP DR RVO LP DM RD TF AMD MEM

Supervised baselines:
CFP 0.473±0.025 0.540 0.659 0.753 0.459 0.509 0.280 0.350 0.234
WF 0.669±0.003 0.760 0.804 0.926 0.602 0.716 0.619 0.617 0.311
WF+ 0.680±0.018 0.798 0.801 0.926 0.657 0.711 0.618 0.587 0.341

SDA baselines:
CDAN [24] 0.613±0.008 0.664 0.750 0.895 0.604 0.648 0.585 0.559 0.202
MIC [25] 0.640±0.012 0.692 0.745 0.923 0.611 0.714 0.634 0.560 0.244
FixBi [21] 0.652±0.015 0.772 0.784 0.902 0.630 0.677 0.651 0.595 0.206
DDC [15] 0.675±0.002 0.756 0.803 0.920 0.635 0.722 0.630 0.583 0.350
MDD [18] 0.678±0.007 0.743 0.822 0.910 0.658 0.710 0.631 0.611 0.342
ADDA [17] 0.679±0.007 0.786 0.825 0.937 0.657 0.695 0.617 0.581 0.333
SDAT [19] 0.685±0.011 0.764 0.814 0.941 0.657 0.757 0.636 0.623 0.287
DANN [16] 0.686±0.006 0.767 0.842 0.931 0.594 0.730 0.642 0.604 0.379
ELS [20] 0.687±0.006 0.772 0.824 0.948 0.655 0.759 0.647 0.630 0.260
CycleGAN [12] 0.688±0.005 0.773 0.850 0.937 0.644 0.692 0.640 0.581 0.384

Proposed:
CdCL 0.691±0.006 0.813 0.841 0.921 0.607 0.771 0.672 0.591 0.320
w/o CFP 0.661±0.009 0.761 0.773 0.928 0.564 0.728 0.634 0.618 0.285
w/o SbC 0.680±0.007 0.802 0.804 0.905 0.651 0.692 0.642 0.591 0.353
w/o GAP 0.684±0.012 0.806 0.809 0.918 0.621 0.720 0.662 0.596 0.341

RFMiD has 1,920 color fundus photos for training. The
photos, taken by TOPCON 3D OCT-2000 / TRC-NW300
and Kowa VX-10α, are annotated w.r.t. 46 different fundus

https://github.com/DateCazuki/Fundus_Diagnosis


conditions [7]. The Tsukazaki Optos Public dataset (TOP) has
13k UWF images taken by Optos 200Tx, annotated with 8
fundus diseases. The two datasets have 3 classes in common,
i.e. DR, RVO and AMD. In order to match with our setting that
labeled UWF images are typically much less than their CFP
counterparts, we use one tenth of the TOP training images.

Performance metric. We report the commonly used Aver-
age Precision (AP) [29], [30]. AP per class is calculated, with
their mean (mAP) to measure the overall performance.

Implementation. For a fair comparison, we use the follow-
ing implementation for all methods evaluated in this study,
whenever applicable. The backbone network is ImageNet-
pretrained EfficientNet-B3 [27] with pruning [31]. Subject to
our computation capacity (4 Tesla P40 GPUs), CFP, WF and
UWF images are downsized to 512 × 512, 512 × 512 and
512 × 650, respectively. As the original aspect ratio of all
input images were kept unchanged, the input size of UWF
images is non-square. A mini batch has 4 WF/UWF images
and their mixup counterparts. The network optimizer is SGD
with cosine annealing strategy [32], an initial learning rate
of 1e-3, momentum of 0.95 and weight decay of 1e-4. Early
stop occurs if the metric does not increase in 10 successive
validations. Per method we repeat experiments 5 times, with
its mean performance and standard deviation reported. Ratio
r is set to 3 for WF images and 4 for UWF images which
will be further discussed in Sec. IV-B2. Our deep learning
environment is PyTorch 1.13.

TABLE IV: Evaluation on TOP.

Method mAP DR RVO AMD

Supervised baselines:
CFP 0.245±0.009 0.571 0.120 0.043
UWF+ 0.640±0.018 0.843 0.675 0.403
UWF 0.647±0.036 0.843 0.648 0.451

SDA baselines:
DDC [15] 0.624±0.015 0.829 0.643 0.401
CDAN [24] 0.625±0.046 0.828 0.640 0.407
DANN [16] 0.628±0.006 0.830 0.634 0.420
MIC [25] 0.639±0.030 0.817 0.664 0.437
CycleGAN [12] 0.640±0.018 0.827 0.639 0.453
MDD [18] 0.644±0.012 0.839 0.640 0.453
FixBi [21] 0.653±0.024 0.845 0.670 0.445
ELS [20] 0.660±0.031 0.845 0.661 0.472
SDAT [19] 0.661±0.021 0.846 0.679 0.458
ADDA [17] 0.663±0.022 0.845 0.671 0.472

Proposed:
CdCL 0.678±0.032 0.857 0.658 0.519
w/o CFP 0.652±0.024 0.847 0.662 0.446
w/o SbC 0.662±0.020 0.852 0.679 0.455
w/o GAP 0.677±0.032 0.855 0.666 0.506

Baselines. We have three relatively straightforward su-
pervised baselines. That is, CFP trained exclusively on the
CFP data, WF / UWF trained on the relatively limited WF
/ UWF samples, and WF+ / UWF+ which uses CFP for
weight initialization. Moreover, we compare with CycleGAN
[12] designed specifically for UWF image classification. We
also include the following generic methods for comparison,
i.e. DDC [15], DANN [16], ADDA [17], CDAN [24], MDD [18],
FixBi [21], SDAT [19], ELS [20] and MIC [25]. Note that
these methods were typically evaluated in the context of
unsupervised domain adaptation, where the target domain is
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Fig. 4: The performance of CdCL in varied training
settings: (a) r, (b) the amount of CFP images and (c) the
amount of UWF/WF images.

assumed to be unlabeled. So for a fair comparison, we further
provide SDA versions of these method, in which a supervised
loss concerning WF/UWF training images is added, improving
their performance to a large extent.

B. Results and Analysis

1) Overall comparison: AP scores of different methods on
UWF-MD, WF-MD and TOP are given in Table II, III and IV,
respectively. The best baseline per dataset varies as follows:
ELS on UWF-MD with mAP of 0.656, CycleGAN on WF-
MD with mAP of 0.688, and ADDA on TOP with mAP of
0.663. The proposed CdCL method consistently surpasses the
best baselines, with mAP of 0.675 on UWF-MD, 0.691 on
WF-MD and 0.678 on TOP.

As shown in Table II, there is a notable disparity between
UDA baselines and SDA baselines. Hence, subsequent exper-
iments do not include the UDA baselines.

Notice that in contrast to UWF-MD and TOP, our improve-
ment on WF-MD seems marginal. We attribute this to the fact
that compared to UWF images, WF images captured by the
ZEISS Clarus500 camera are more close to CFP images in
terms of their visual appearance and FoV, see Fig. 1, meaning
relatively smaller domain divergence. This is also confirmed
by the result that the performance gap between CFP and WF is
the smallest, i.e. 0.669-0.473=0.226, while the corresponding
figures between CFP and UWF are 0.622-0.309=0.313 and
0.647-0.245=0.402.

2) Ablation study: Effects of different components. Recall
that we add two MHSA blocks for scale-bias correction (SbC).
With the extra modules added, the learning capacity of the
network naturally grows. To which shall we attribute the
performance gain, the stronger network or the cross-domain
use of CFPs? To resolve such uncertainty, we re-train the
network without using CFP training data. Clear performance
drop can be consistently observed: UWF-MD 0.675 → 0.638,
WF-MD 0.691 → 0.661, and TOP 0.678 → 0.652. The result
allows us to safely conclude that the cross-domain use of CFPs
is necessary.

Furthermore, we try another configuration with the SbC
module removed. Noticeable performance loss is also observed
on all the three datasets: UWF-MD 0.675 → 0.645, WF-MD
0.691 → 0.680, and TOP 0.678 → 0.662. The importance of
SbC for CdCL is thus verified.

We also try to make prediction exclusively on the scale-
bias corrected feature. This run is denoted as w/o GAP in the



result tables. Its lower performance suggests the feature by
GAP remains beneficial.

Effects of ratio r. We set different r to CdCL to investigate
its impact on the performance. As shown in Fig. 4a, we found
that the optimal value of r is 4 for UWF images and 3 for WF
images. Given that UWF images have a larger FoV than WF
images, the lesions in UWF images are smaller than those in
WF images. Consequently, a smaller scope of local features
is required for UWF images, resulting in a larger value for r.

Effects of training data We study the influence of the
amount of CFP and WF/UWF images used for training. As
shown in Fig. 4b, with the full training data of WF/UWF
images used, using about 20k CFP images (60% of the full
set) is adequate for relatively high performance.

On the other hand, under circumstance that the full training
data of CFP images is used, we evaluate the performance of
CdCL with partial training data of WF/UWF images. As shown
in Fig. 4c, a relatively small amount of WF/UWF images
(20% of the full set) can bring in substantial increasing in
performance. In addition, as the amount of WF/UWF images
increases, the performance continues to improve.

V. CONCLUSIONS AND REMARKING

Given a relatively small amount of labeled samples from
a target domain, i.e. wide-field (WF) or ultra-wide-field
(UWF) imaging, this paper studies how to leverage a larger
amount of existing labeled color fundus photos (CFPs) for
recognizing multiple fundus diseases on the target-domain
images. Extensive experiments on three datasets covering both
UWF and WF images support our conclusions as follows.
The proposed Cross-domain Collaborative Learning method
is effective, beating all baseline methods in consideration on
all the three datasets. For an effective cross-domain use of
CFP data, scale-bias correction (SbC) on the original CNN
features is necessary. SbC might also be useful for cross-
domain learning in other contexts.
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