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Abstract—Histopathological images are the gold standard 

for diagnosing liver cancer. However, the accuracy of fully 

digital diagnosis in computational pathology needs to be 

improved. In this paper, in order to solve the problem of 

multi-label and low classification accuracy of histopathology 

images, we propose a locally deep convolutional Swim 

framework (LDCSF) to classify multi-label histopathology 

images. In order to be able to provide local field of view 

diagnostic results, we propose the LDCSF model, which 

consists of a Swin transformer module, a local depth 

convolution (LDC) module, a feature reconstruction (FR) 

module, and a ResNet module. The Swin transformer module 

reduces the amount of computation generated by the attention 

mechanism by limiting the attention to each window. The 

LDC then reconstructs the attention map and performs 

convolution operations in multiple channels, passing the 

resulting feature map to the next layer. The FR module uses 

the corresponding weight coefficient vectors obtained from 

the channels to dot product with the original feature map 

vector matrix to generate representative feature maps. Finally, 

the residual network undertakes the final classification task. 

As a result, the classification accuracy of LDCSF for 

interstitial area, necrosis, non-tumor and tumor reached 

0.9460, 0.9960, 0.9808, 0.9847, respectively. Finally, we use the 

results of multi-label pathological image classification to 

calculate the tumor-to-stromal ratio, which lays the 

foundation for the analysis of the microenvironment of liver 

cancer histopathological images. Second, we released a multi-

label histopathology image of liver cancer, our code and data 

are available at https://github.com/panliangrui/LSF.  

Keywords—Liver, Classification, Histopathological, Tumor, 

Analysis 

I. INTRODUCTION  

Liver cancer is a common disease. According to data 
released by the World Health Organization (WHO), there 
were 410,000 new cases of liver cancer in China in 2020, 
accounting for 45% of the global incidence of liver cancer, 
including 390,000 deaths [1]. Currently, the five-year 
overall survival rate of liver cancer patients in China is only 
14.1%. 70%-80% of patients are already in an unresectable 
state at initial diagnosis, and although many patients are 
diagnosed and treated in the early stages of liver cancer, its 
recurrence is still high. For patients in the middle and late 

stages of liver cancer, their prognosis is not optimistic; if 
cancer spreads to the surrounding lymph nodes, the 5-year 
survival rate of patients is only 11%. When cancer spreads 
to other organs, the 5-year survival rate is only 3%. 
Therefore, early diagnosis and screening of liver cancer are 
extremely important for the prognosis of liver cancer 
patients. 

Histopathological images microscopically reflect the 
survival status of cancer cells and the degree of 
differentiation. Therefore, histological examination of 
histopathological sections is the gold standard for 
diagnosing and grading hepatocellular carcinoma [2]. 
Traditionally, pathologists use a microscope to observe 
histopathological images. With the development of digital 
image technology, pathologists can remotely view 
pathology images through a monitor to determine sensitive 
areas and malignancy. However, the pathologist's 
subjective judgment is sometimes influenced by experience, 
and localized views of the field of view often interfere with 
the whole slide diagnosis. To achieve an objective 
diagnosis, computational pathology is essential for 
quantitative image analysis. Classification and 
segmentation of tissue images is the first step in analyzing 
the microenvironment of liver cancer. For example, the 
classification task obtains relevant quantitative information 
such as the interstitial tumor ratio. In addition, the 
segmentation task obtains the distribution of sensitive 
regions of the tissue images. This helps to construct 
prognostic histological features of tumor subtypes and 
patient survival. Therefore, histological image 
classification techniques and segmentation techniques play 
an important role in computer-aided diagnosis and grading 
systems for cancer. 

Recently, deep learning techniques have been widely 
used in the segmentation and classification of 
histopathology images and have demonstrated performance 
superior to existing methods. Nicolas et al. trained a deep 
convolutional neural network (Inception v3) on whole slide 
images (WSIs) obtained from The Cancer Genome Atlas to 
accurately and automatically classify them as LUAD, 
LUSC or normal lung tissue [3]. Chen et al. used deep 
learning for the classification and mutation prediction of 



H&E images of liver cancer histopathology [4]. The deep 
learning model was trained using 2,123 pixel-level 
annotated WSIs of H&E staining and achieved near 100% 
sensitivity and 80.6% average specificity on a real-world 
test dataset [5]. A self-supervised convolutional neural 
network framework utilizes contextual, multi-resolution, 
and semantic features in pathology images for semi-
supervised learning and domain adaptation and 
demonstrates the effectiveness of the Self-Path model on 
three different pathology datasets [6]. A multi-instance 
learning approach based on deep graph convolutional 
networks and feature selection (FS-GCN-MIL) can be used 
for histopathology image classification and predict lymph 
node metastasis [7]. Finally, the AI algorithm learns from 
16 TB of data in the TCGA database through high-
performance storage and GPU power. The results are 
evaluated by conservative "majority voting" to establish a 
subtype diagnostic consensus through vertical search and 
demonstrate high accuracy values for both frozen sections 
[8]. The widespread use of deep learning techniques has 
contributed to the development of histopathological image 
analysis. 

We have to introduce several classical transformer-
based networks. First, data-efficient image transformers 
(DeiT) is a dual intent and entity change architecture that 
has experimentally improved performance on complex 
multi-domain NLU datasets and achieved similar high 
performance on some simple datasets [9]. Second, tokens-
to-token vision transformer (T2T-ViT) proposes a 
structured T2T module that can encode local information 
and defeats CNN-based models by careful design and does 
not require pre-training on giant training sets (e.g., JFT-
300M) [10]. Pyramid vision transformer (PVT), unlike ViT, 
which usually has the low-resolution output and high 
computational and storage costs, PVT can not only be 
trained on dense partitions of images to achieve high output 
resolution but also can use progressively shrinking 
pyramids to reduce the computation of large feature maps 
[11]. Second, PVT inherits the advantages of CNN and 
Transformer by simply replacing the CNN backbone to 
make it a unified backbone in various vision tasks without 
convolution. The transformer in transformer (TNT) treats 
local patches (e.g., 16 × 16) as "visual sentences " and 
further divides them into smaller patches (e.g., four × four) 
as "visual words" [12]. The input data is encoded into 
powerful features by an attention mechanism. Cross-
attention multi-scale vision transformer (CrossViT) uses a 
parallel framework combined with attention cross-fusion to 
extract features from the dataset and achieve better results 
on many publicly available datasets [13]. Finally, the Swin 
transformer contains sliding window (non-overlapping 
local window and overlapping cross-window) operations 
that can introduce the local nature of CNN convolution 
operations and, on the other hand, can save computational 
effort [14]. 

Nowadays, the attention-based mechanism of the 

transformer has been shown to outperform the best existing 

approaches in the field of computer vision [15][16]. 

Transformer-based multi-instance learning (MIL) explores 

the morphological and spatial information of 

histopathological images and efficiently handles balanced 

and unbalanced multi-classification tasks [17]. A novel 

MIL model based on the deformable transformer (DT) 

architecture and convolutional layers in embedded space 

can update each instance feature by globally aggregating 

the instance features in the package and encoding the 

location context information of the instance during package 

representation learning [18]. Self-supervised learning (SSL) 

model with a convolutional neural network (CNN) 

combined with a hybrid model designed with an improved 

transformer architecture (TransPath). a token aggregation 

and excitation (TAE) module is introduced in TransPath 

and placed after the self-attention of the converter encoder 

for capturing more global information [19]. Using the 

pathological relationship between primary tumors and their 

lymph node metastases, Zhihua et al. developed an 

effective attention-based mutual knowledge distillation 

(AMKD) paradigm [20]. The collected WSI dataset's 

experimental results demonstrated the proposed 

transformer-MIL's efficiency and attention-based 

knowledge distillation. The noise-reduction-based 

attention cross-fusion network model (NRCA-FCFL) 

integrates multi-scale image information and generates a 

diagnostic model by feature fusion through a cross-

attention mechanism, and the model is verified to 

outperform the state-of-the-art in a wide range of 

experiments [21]. Several experiments demonstrated that 

hybrid CNN-Transformer networks to integrate global and 

local information could yield better results [22]. The 

GasHis-Transformer model integrates the descriptive 

power of ViT and CNN for both global and local 

information. It obtained good classification performance on 

gastric histopathology images and showed excellent 

generalization ability on other histopathology image 

datasets [23]. Therefore, the transformer model based on 

the attention mechanism will further promote the 

innovation of histopathology image analysis techniques. 

However, based-CNNs require a large amount of data 
and relevant annotations when training diagnostic models. 
Second, deep learning models are not very interpretable, and 
the hardware equipment required for training models is high. 
These drawbacks bring great resistance to the application of 
based-CNNs. The attention-based transformer model 
complements the convolution, has stronger modelling 
capabilities, is scalable on large data, and can better link 
language and vision. Compared with based-CNNs, 
advantages such as fewer parameters, faster training, and 
better diagnosis will be widely used in histopathological 
image analysis. Therefore, this paper proposes a Swim 
framework based on local deep convolution for the multi-
label classification of organized histopathological images to 
comprehensively analyze the microenvironment of liver 
tumors. The main contributions of this paper are as follows: 

1) This paper proposes a locally deep convolutional Swim 
framework to classify multi-label histopathological 
images to obtain local visual field diagnosis results. 
The tumor-to-stroma ratio can be calculated from the 
multi-label classification results of small slices in the 
WSI. 

2) The LDC module in the LDCSF uses multi-channel 
information feedforward to extract detailed features 
from the Swin transformer to obtain a low-
dimensional feature matrix. The FR module is joined 
by skipping, and uses the corresponding weight factor 
vector obtained from each channel to do point 



multiplication with the original feature vector matrix 
to generate a representative feature map. 

3) Through extensive number of experiments, we 
compared the classification performance of DeiT, 
T2T-ViT, PVT, TNT, Swin transformer and CrossViT 
models on multi-label data sets, and proved the deep 
convolution module and FR module through ablation 
experiments. network, which provides a baseline for 
future classification work. 

II. MATERIALS 

A. Dataset 

The liver tumor whole-slide images (WSIs) used in the 
experiment were obtained by clinical doctors from five liver 
cancer patients at the Third Xiangya Hospital [24]. A total 
of five WSIs were collected. Subsequently, pathologists 
from the Department of Pathology at Xiangya Hospital 
outlined the non-tumor, tumor , necrosis and Interstitial area 
based on the WSIs. For the multi-label classification task, 
each of the five WSIs was divided into smaller patches of 
size 224 × 224, resulting in a total of 68,175 patches. Since 
some patches overlapped between two regions, these 
overlapping patches were labeled with two corresponding 
labels. In addition, to avoid class imbalance in the dataset 
due to the smaller number of necrotic patches, the 
proportion of patches for each category was controlled 
within 1:3, preventing overfitting of the diagnostic model 
during training. Finally, patches of different types were 
organized into a multi-label dataset. Detailed information 
about the labels and quantities in the dataset is provided in 
TABLE I. 

TABLE I  INUMBER OF SAMPLES WITH DIFFERENT LABELS IN THE 

MULTI-LABEL DATASET. 

Label Train dataset Test dataset 

Interstitial area 3400 12839 
Interstitial area & Non-Tumor 2946 1490 

Interstitial area & Tumor 3300 3279 

Necrosis 1436 669 
Non-Tumor 3000 9557 

Tumor 2300 2010 

 

Tissues are usually composed of cells, and different 
tissues exhibit different cellular characteristics. Images 
observed under high magnification microscopy capture 
information about the shape of the cells, but under low 
magnification can capture information about the structure of 
the cells. Histopathological images of a patient with liver 
cancer are depicted in Fig. 1. The Interstitial area shows a 
sparse distribution with some nuclei scattered in the 
intercellular fluid; the nuclei in Non-Tumor are neatly 
arranged with tight connections between cells and cells; the 
nuclei in Tumor are larger and unevenly arranged with loose 
connections between cells and cells and adhesions. The 
nuclei in Tumor are larger and unevenly arranged, with 
loose connections between cells and cells and low adhesion 
capacity; Necrosis does not contain any nuclei or organelles. 
Because cancer tissue has both cellular and structural 
heterogeneity, images taken at multiple magnifications will 
contain important information. Pathologists diagnose 
disease by varying the magnification of the microscope to 
obtain different types of information from the cellular level 
to the tissue level. 

  
Fig. 1. Characteristics of different samples in the multi-label dataset. 

III. METHOD 

This section describes our proposed LDCSF for multi-
label classification of histopathological images. As shown 
in Fig. 2, clinical pathologists generate WSIs, which are 
ultra-high-resolution images with a size of 25000 25000 , 

by removing pathological data from glass slides using an 
electron microscope. WSIs are then divided into numerous 
small patches to construct a multi-label image dataset for 
LDCSF learning. The main task of LDCSF is to provide 
multi-label diagnostic results within the local view, and it 
consists of three components: the Swin Transformer module, 
the Local Deep Convolution (LDC) module, and the Feature 
Reconstruction (FR) module. 

A. Swin transformer 

The Swin transformer is a generalized attention-based 

mechanism for computer vision backbone networks. It is 

widely used in various granular-level classification tasks or 

segmentation tasks, and its robust performance has been 

verified in region target detection, pixel-level semantic 

segmentation, image-level image classification, etc. The 

core idea of the Swin transformer is to combine the highly 

modelable transformer structure with important a priori 

knowledge of visual signals, including hierarchy, 

localization and equilibrium invariance, etc. 

As shown in Fig. 2, the feature extraction and 
classification of images are done in four main steps. Among 
them, stage 1, 2 and 3 are composed of the Swin transformer 
module, LDC module and FR module. First, the 
pathological image patches of RGB are first generated with 
non-overlapping patches by the patch segmentation module. 
Each patch is considered a token, and its features are set as 
a splice of the original pixel RGB. In the experiments for 
the classification task, our patch size is 4 4 , and the 
feature dimension of each patch is 4 4 3 48  = . The 

number of patches is / 4 / 4H W ; all tokens are projected 

to arbitrary dimensions (denoted as C ) by the 

convolutional computation of the linear embedding layer. 

In the stage1 part, the input is divided into patches of the 
same size through linear embedding, the feature dimension 
becomes C , and then sent to the Swin Transformer Block,  

the LDC module further learns the features, and the multi-
channel feature map is passed to the FR module to generate



 

Fig. 2. Flow chart of LDCSF processing multi-label classification WSI, including data collection and preprocessing, block diagram of Swim Transformer block, 

Local Deep Con and FR model. 

 

a new feature map. As the network layers deepen, the patch 
merging layer between stage1 and stage2 is used to reduce 
the number of tokens. The first patch merging layer splices 
the adjacent features of each group of 2 2  patches, and 

the number of patches blocks becomes / 8 / 8H W , and 

sends the spliced 4 C  -dimensional features to the linear 

layer for processing to generate 2 C -dimensional features 

[25]. Stage 2, stage 3, and stage 4 parts are similar to the 
main structure of the stage1 part, and The number of 

patches processed is / 8 / 8H W  , /16 /16H W  , 

/ 32 / 32H W  , and the dimensions of these patches in 

different Stages are 2 C , 4 C ,8 C , respectively. Stage 5 is 

a residual neural network undertaking the classification 
function [14]. 

The Swin transformer block consists of a standard 
multi-headed self-attentive (MSA) module based on shifted 
windows, followed by a two layers MLP with GELU 
nonlinearity in the middle. An important design feature of 
the Swin transformer is the shifted windows, which 
significantly reduces the complexity of the algorithm and 
allows it to grow linearly with the size of the input; at the 
same time, due to the different sliding windows, the design 
of the non-overlapping windows is more hardware-friendly 
and thus has a faster real-world speed. Assume that the 
computational complexity of a window based on h w  

patched images is: 

2 2( ) 4 2W MSA hwC M hwC − = +             (1) 

Where the former is quadratic to patch number hw , and 

the latter is linear when M  is fixed (set to 7 by default). To 
address the impact of the lack of cross-window 
connectivity problem, the shift-window partitioning 

method alternates among neighbouring the Swin 
transformer blocks. In the self-attention mechanism, we 
introduce the existing method to compute similarity with 
each head containing the relative position deviation B [26]: 

( , , ) max( ) ,TAttention Q K V soft QK d B V= +     (2) 

Where 
2

, , M dQ K V R +  are the query, key and value 

matrices; d  is the query/key dimension, , and 2M is the 

number of patches in a window. 

B. Local deep convolution 

However, since the attention mechanism of the Swin 
transformer only captures the global dependencies between 
tokens. The Swin transformer does not model the analysis 
of local dependencies between adjacent pixels. LDC is an 
effective way to introduce locality into the network. As 
shown in Fig. 2, "DW" means depth convolution. In order 
to handle the convolution operation, the conversion 
between the sequence and the image feature map is added 
through "Seq2Img" and "Img2Seq" in the FR module. With 
this in mind, we reintroduce depth convolution in the 
transformer feedforward network. The LDC module is 
composed of a convolutional layer, a batch normalization 
layer and an H_Swish activation layer. 8∁-dimensional 
token sequences are first reshaped in a feature mapping 
rearranged on a 2D lattice and then fed into a 2D 

convolutional layer. ( 1)k k k  convolutional kernels 

aggregate the features in multiple channels, compute a new 
feature to learn a richer feature representation and pass the 
generated feature map to the next layer. The computation 
can be expressed as: 



1 2( ( ) )r r r r

dY f f Z W W W=                    (3) 

Where 
1d k kr

dW R
  

 is the kernel of the depth-wise 

convolution. Numerous experiments have demonstrated 
that the H_Swish activation function can be used to expand 
the capacity of the network and improve its efficiency of the 
network. Therefore, the H_Swish activation layer is used as 
a part of the LDC module. 

C. Feature Reconfiguration Module 

The feature map after LDC is passed to the FR module 
for critical operations. First, the squeeze operation, which 
performs feature compression along the spatial dimension, 
turns each two-dimensional feature channel into a real 
number that somehow has a global perceptual field and 
matches the output dimension to the number of input 
feature channels. It characterizes the global distribution of 
the response over the feature channels and makes the global 
perceptual field also available for layers close to the input, 
which can be expressed as: 

1 1

1
( ) ( , )

H W

c sq c c

i j

Z F U u i j
H W = =

= =


           (4) 

The main focus is to convert the H W C   features 

into a 1 1 1   output. Next is the excitation operation, which 
is a mechanism similar to gates in recurrent neural networks. 
Weights are generated for each feature channel by means of 
a parameter W , where the parameter W  is learned to 

explicitly model the correlation between feature channels. 
Finally, a reweight operation treats the weights of the 
excitation output as the significant features of each feature 
channel after feature selection and then re-calibrates the 
original features in the channel dimension by multiplying 
the weights channel by channel onto the previous features. 

D. Classification module 

The residual neural network serves as the classification 
module of the whole classification network, and its residual 
connections can effectively solve the problem of network 
degradation and accelerate the convergence of the results 
so that the classification results are faster. Second, the 
residual network is also designed to prevent overfitting. 
The role of randomly discarding some neurons solves the 
overfitting problem that occurs in the case of small data sets 
and large models to some extent. The experiments were 
designed with a loss according to each category to help the 
model independently and dynamically adjust the error for 
each label, which can be expressed as 

i nt t nL l l l l= + + +                         (5) 

L is the total loss of the model, il is the loss of interstitial 

area; ntl  is the loss of non-tumor; tl  is the loss of tumor; nl  

is the loss of necrosis. All the losses are calculated using the 
cross-entropy loss function. 

IV. EXPERIMENTS 

A. Experiment steps 

In order to avoid the classification error of the model on 
different labels due to the unbalanced sample size, for all 

training models, data augmentations such as horizonal and 
vertical flipping are used to increase data diversity and 
randomHSV is also adopted to randomly change the hue, 
saturation, and value of images in the hue-saturation-value 
(HSV)color space, making the model robust to color 
perturbations. In the classification task, we first train DeiT, 
T2T-ViT, PVT, TNT, Swin transformer and CrossViT. Then, 
we add the LDC module and FR module (LF) to PVT, TNT, 
T2T and CrossViT respectively to construct new networks 
to compare with the LDCSF. 

B. Implementation details 

Our experiments are achieved based on Python 3.8 and 
Pytorch 1.11.0. We train our model on a Nvidia GeForce 
RTX 4090 GPU with 24GB memory. The input image size 
and max epoch are set as 224 224  and 150, respectively. 
During the training period, the default batch size is 24 and 
the SGD optimizer with momentum 0.9 and weight decay 
1e-4 is used to optimize our models for back-propagation. 
The model is trained with the learning rate set to 0.001. In 
our experiments, we use random cross-validation to train 
our model. We randomly divide the training, validation, and 
test data 10 times, then train and test each model, and its 
final results are averaged. 

C. Evaluation 

In order to understand the generalization ability of the 
model, we need to measure it by some metric. For the 
classification task, the experiments chose precision, recall, 
F1-score, accuracy, confusion matrix and ROC curve to 
evaluate the model's performance comprehensively. 
Precision represents the percentage of correct positive 
samples to predicted positive samples; recall represents the 
percentage of correct positive samples to predicted correct 
samples; F1-score is a combined evaluation of precision and 
recall; and accuracy represents the percentage of correct 
samples to predicted samples [27]. The confusion matrix 
represents the probability of correct and incorrect for each 
label. The true positive rate (TPR) and false positive rate 
(FPR) in the ROC curve reflect the predictive power of the 
model [28]. Since LDCSF are multi-label classification 
networks, we will carefully analyze and discuss the LDCSF 
network on each label. Finally, in the segmentation task, 
experiments were conducted to assess the generalization 
ability of the model using dice-similarity coefficient (DICE) 
and accuracy. Dice is the most frequently used metric in 
medical segmentation tasks and is an ensemble similarity 
measure that is usually used to calculate the similarity of 
two samples, the closer to 1 the better the effect [29]. 

V. RESULTS 

A. Comparison with state-of-the-art models 

TABLE II statistically shows the values of precision, 
recall, F1-score and accuracy of interstitial area obtained 
from 11 classification networks tested on the dataset. The 
Swin ViT achieves 0.9515, 0.9471, and 0.9487 for recall, 
F1-score, and accuracy, respectively, which exceeds the 
performance of all other classification networks. Swin+LF 
achieves 0.9443 for precision, which outperforms other 
classification networks. Therefore, the Swin transformer 
block model plays an important role in improving the 
classification accuracy, sensitivity and specificity in the 
interstitial area. 



TABLE II THE PREDICTION RESULTS OF LABEL INTERSTITIAL AREA 

ARE OBTAINED BY 13 CLASSIFICATION NETWORKS ON THE TEST SET. 

Model Precision Recall F1-score Accuracy 

DeiT 0.7131 0.5992 0.5751 0.6697 

TNT 0.9376 0.9428 0.9399 0.942 

T2T 0.6675 0.5827 0.5572 0.652 

Swin ViT 0.9438 0.9515 0.9471 0.9487 

CrossViT 0.9412 0.9291 0.9343 0.9377 

PVT+LF 0.8668 0.8405 0.8493 0.8599 

TNT+LF 0.9257 0.9344 0.9292 0.9313 

T2T+LF 0.9436 0.9454 0.9445 0.9466 

CrossViT+LF 0.9427 0.9374 0.9399 0.9426 

Swin+LF 0.9443 0.9484 0.9462 0.9481 

LDCSF 0.9408 0.9491 0.9443 0.946 

 
TABLE III counts the precision, recall, F1-score and 

accuracy values of interstitial area obtained by 11 
classification networks tested on the dataset. CrossViT 
achieves 0.9895 in precision, probably due to the learning 
of cross attention, which improves the model's 
classification performance. LDCSF reached 0.9963 on 
recall; Swin ViT reached 0.9896 on F1-score; T2T+LF 
reached 0.9973 on accuracy. Because there are a large 
number of the Swin transformer blocks in LDCSF and 
Swin ViT, which can help the model improve performance. 
The classification effect of T2T ranks last among all models. 
However, the performance of T2T+LF is better. It may be 
that the LS module plays a key role in helping the T2T 
model to obtain key feature information in feature 
extraction. 

TABLE III   THE PREDICTION RESULTS OF LABEL NECROSIS 

ARE OBTAINED BY 13 CLASSIFICATION NETWORKS ON THE TEST SET. 

Model Precision Recall F1-score Accuracy 

DeiT 0.9614 0.691 0.804 0.9704 

TNT 0.9512 0.9863 0.9679 0.9893 

T2T 0.8505 0.9615 0.8959 0.9612 

Swin ViT 0.9844 0.995 0.9896 0.9966 

CrossViT 0.9895 0.9663 0.9776 0.993 

PVT+LF 0.9389 0.6209 0.6754 0.9322 

TNT+LF 0.9455 0.9856 0.9645 0.9881 

T2T+LF 0.9907 0.9922 0.9914 0.9973 

CrossViT+LF 0.9814 0.9844 0.9829 0.9945 

Swin+LF 0.9788 0.9893 0.984 0.9948 

LDCSF 0.9798 0.9963 0.9878 0.996 

 
Table IV counts the precision, recall, F1-score and 

accuracy values of non-tumor obtained by 11 classification 
networks tested on the dataset. LDCSF outperforms the 
other 10 classification networks by 0.9776, 0.9807, 0.9791, 
and 0.9808 in precision, recall, F1-score and accuracy, 
respectively. First, this is probably because the shifted non-
overlapping windows in the Swin transformer block are 
helpful for feature extraction, and the LDC module pays 
more attention to the relationship between adjacent pixels 
and transfers the features to FR module in parallel, multi-
channel. The FR module extracts the effective information 

in the feature map again and combines it with the original 
map to generate a new feature map. Second, the prediction 
accuracy and sensitivity of DeiT, TNT, T2T, Swin ViT, and 
CrossViT are not high, probably because these models do 
not achieve the best results in feature extraction. 

TABLE IV  THE PREDICTION RESULTS OF LABEL NON TUMOR 

ARE OBTAINED BY 13 CLASSIFICATION NETWORKS ON THE TEST SET. 

Model Precision Recall F1-score Accuracy 

DeiT 0.7447 0.74 0.7421 0.7656 

TNT 0.9689 0.97 0.9694 0.9719 

T2T 0.7901 0.8152 0.7909 0.797 

Swin ViT 0.9641 0.9726 0.968 0.9704 

CrossViT 0.9684 0.9677 0.968 0.9707 

PVT+LF 0.4571 0.4849 0.4282 0.6041 

TNT+LF 0.9735 0.9646 0.9688 0.9716 

T2T+LF 0.9747 0.9784 0.9765 0.9783 

CrossViT+LF 0.9622 0.9704 0.966 0.9686 

Swin+LF 0.9665 0.9635 0.965 0.9679 

LDCSF 0.9776 0.9807 0.9791 0.9808 

 
TABLE V counts the values of precision, recall, F1-

score and accuracy obtained for Tumors for 11 
classification networks tested on the dataset. CrossViT+LF 
achieves 0.9827 on precision. however, CrossViT+LF is 
slightly higher than CrossViT on precision, recall, F1-score 
and accuracy. This is because the LS module plays a key 
role in feature extraction. LDCSF achieves 0.9838, 
09832,0.9847 for recall, F1-score, and accuracy, 
respectively. block and LS module make LDCSF achieve 
the best performance of classification network. 

TABLE V  THE PREDICTION RESULTS OF LABEL TUMOR ARE OBTAINED 

BY 13 CLASSIFICATION NETWORKS ON THE TEST SET. 

Model Precision Recall F1-score Accuracy 

DeiT 0.874 0.8673 0.8705 0.8837 

TNT 0.9817 0.9805 0.9811 0.9829 

T2T 0.8641 0.6735 0.6839 0.7729 

Swin ViT 0.9795 0.9793 0.9794 0.9814 

CrossViT 0.9788 0.978 0.9784 0.9805 

PVT+LF 0.79 0.814 0.7614 0.7631 

TNT+LF 0.9657 0.9783 0.9714 0.9737 

T2T+LF 0.9815 0.9829 0.9822 0.9838 

CrossViT+LF 0.9827 0.9795 0.9811 0.9829 

Swin+LF 0.9771 0.9837 0.9803 0.982 

LDCSF 0.9826 0.9838 0.9832 0.9847 

 
The confusion matrix is also a key metric to evaluate 

the generalizability of the model. 11 models were validated 
on the test set to obtain the confusion matrix for each label.  

The ROC curve is used to explain the performance of 
the 11 classification networks. The steeper the curve, the 
better the performance of the classification network. We 
plotted 6 ROC curves for each network, including micro-
average, macro-average, interstitial area, necrosis, non-
tumor and tumor. The ROC curve below the diagonal 



 
Fig. 3. ROC curves plotted on the test dataset with 11 classification networks. 

 

indicates a poor method for classifying networks. It can be 
seen from Fig. 3 that the PVT+LF model has a large error 
on the non-tumor. DeiT and T2T do not perform well on 
most labels. The micro-averaged ROCs of TNT, CrossViT, 
TNT+LF and CrossViT+LF were all between 0.95 and 0.97. 
The micro-average ROC of T2T, Swin ViT, T2T+LF, 
Swin+LF and LDCSF are above 0.97. Among them, 
LDCSF has reached the highest level in history. On 
different labels, the ROC curve of interstitial area is not as 
steep as that of other labels, probably because the diversity 

of interstitial area causes the model to generalize worse 
than other labels. In summary, we can conclude that the 
network with the LS module added is better than the 
network without the LS module in classification 
performance. Therefore, our designed LDCSF can serve as 
a standard method to classify liver cancer WSI. 

B. Ablation experiments 

Impact of LDC module: To evaluate the impact of the 
deep convolution module on the LDCSF, we removed the 



LDC module from the LDCSF, trained a new model, and 
obtained prediction results with the new model. As shown 
in TABLE VI, the accuracy obtained by the new model 
with the LDC module removed exceeds that of the LDCSF 
only on the interstitial area. The accuracy of the LDCSF 
predictions on necrosis, non-tumor and tumor exceeds that 
of the new model by 0.0015, 0.0049, and 0.0024, 
respectively. This may be because the LDC module plays 
an important feature extraction role. Although the LDCSF 
model prediction accuracy decreases for interstitial area, 
the model prediction accuracy increases for all other labels. 
Therefore, we consider the LDC module as the core 
component of the LDCSF network. 

TABLE VI  IMPACT OF THE LDC MODULE ON THE LDCSF 

NETWORK EVALUATED BY ACCURACY. 

 Interstitial area Necrosis Non-tumor Tumor 

NO 0.9518 0.9945 0.9759 0.9823 

YES 0.946 0.996 0.9808 0.9847 

 
Impact of FR module: To evaluate the impact of the FR 
module on the LDCSF, we removed the FR module from 
the LDCSF, trained a new model, and obtained prediction 
results with the new model. As shown in TABLE VII, the 
accuracy obtained by the new model with the FR module 
removed exceeds that of the LDCSF only on the interstitial 
area. The accuracy of the LDCSF network predictions on 
necrosis, non-tumor and tumor exceeds that of the new 
model by 0.0006, 0.0009, and 0.0006, respectively. This 
may be because the FR module plays a feature extraction 
plays an important role. Although the LDCSF prediction 
accuracy decreases for interstitial area, the model 
prediction accuracy increases for all other labels. Therefore, 
we consider the FR module as the core component of the 
LDCSF. 

TABLE VII  IMPACT OF THE FR MODULE ON THE LDCSF 

NETWORK ASSESSED BY ACCURACY. 

 Interstitial area Necrosis Non-tumor Tumor 

Without 0.9509 0.9954 0.9799 0.9841 
with 0.946 0.996 0.9808 0.9847 

VI. CONCLUSION 

This paper proposes a LDCSF for the multi-label 
classification of organized histopathological images. 
LDCSF consists mainly of the Swin Transformer, LDC, and 
FR modules. The Swin Transformer utilizes self-attention 
sliding windows to interact with information between 
adjacent positions in the image. LDC performs two-
dimensional reconstruction of features, efficiently 
transferring the features to the FR module through multi-
channel convolution calculations. The FR module performs 
dot product operations using the corresponding weight 
coefficient vectors obtained from the channels and the 
original feature map vectors, generating representative 
feature maps. On the test set, LDCSF achieves classification 
accuracies of 0.9460, 0.9960, 0.9808, and 0.9847 for the 
stromal region, necrosis, non-tumor, and tumor, 
respectively. The experimental results demonstrate that 
LDCSF can obtain multi-label classification results for local 
regions. By analyzing the distribution areas and quantities 
of different labels in WSIs, it can further calculate the tumor 
stroma ratio. Finally, LDCSF lays the foundation for 
preliminary analysis of the tumor microenvironment in liver 
cancer. 
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