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Abstract—Protein-nucleic acid interactions play a very 
important role in a variety of biological activities. Accurate 
identification of nucleic acid-binding residues is a critical step in 
understanding the interaction mechanisms. Although many 
computationally based methods have been developed to predict 
nucleic acid-binding residues, challenges remain. In this study, a 
fast and accurate sequence-based method, called ESM-NBR, is 
proposed. In ESM-NBR, we first use the large protein language 
model ESM2 to extract discriminative biological properties 
feature representation from protein primary sequences; then, a 
multi-task deep learning model composed of stacked bidirectional 
long short-term memory (BiLSTM) and multi-layer perceptron 
(MLP) networks is employed to explore common and private 
information of DNA- and RNA-binding residues with ESM2 
feature as input. Experimental results on benchmark data sets 
demonstrate that the prediction performance of ESM2 feature 
representation comprehensively outperforms evolutionary 
information-based hidden Markov model (HMM) features. 
Meanwhile, the ESM-NBR obtains the MCC values for DNA-
binding residues prediction of 0.427 and 0.391 on two independent 
test sets, which are 18.61 and 10.45% higher than those of the 
second-best methods, respectively. Moreover, by completely 
discarding the time-cost multiple sequence alignment process, the 
prediction speed of ESM-NBR far exceeds that of existing methods 
(5.52s for a protein sequence of length 500, which is about 16 times 
faster than the second-fastest method). A user-friendly standalone 
package and the data of ESM-NBR are freely available for 
academic use at: https://github.com/pengsl-lab/ESM-NBR. 
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I. INTRODUCTION 
Interactions between proteins and nucleic acids (DNA/RNA) 

play an indispensable role in many biological processes, e.g., 
DNA replication, transcription, recombination, protein synthesis, 
regulation of gene expression, and transcriptional modifications 
[1-4]. Accurate identification of nucleic acids-binding residue is 
one of most key steps in understanding protein-nucleic acids 
interaction. The mainstream methods for determining nucleic 
acids-binding residue are primarily based on wet-lab 
experimental like nuclear magnetic resonance (NMR), 
chromatin immunoprecipitation on the microarray (ChIP-chip), 
genetic analysis [5], and X-ray crystallography [6]. These 
methods study protein-nucleic acids interactions by determining 
complex structure and have made great contribution. However, 

due to the inherent limitations of wet-lab experiment (time-
consuming, laborious, and costly), there are only 6,268 protein-
DNA complexes and 2,838 protein-RNA complexes have been 
resolved in the Nucleic Acid Database [7] until June 30, 2023, 
respectively. This is a huge gap with the number of known 
nucleic acid-binding proteins [8]. Although the recently 
proposed RoseTTAFoldNA [9] made some progress in 
predicting nucleic acid complexes, they also acknowledge that 
there is still great room for further improvement the accuracy. In 
this context, with the rapid development of sequencing 
technology in the post-genetic era [10], there is an urgent 
demand for a high throughput and accurate computation-based 
method to identify nucleic acids-binding residue. 

Over the past few decades, researchers have developed a 
series of computational models based known experimental data 
for predicting nucleic acids-binding residue. Depending on the 
input information they used, these methods can be roughly 
divided into two categories: structure-based, e.g., GraphSite [11] 
(predicted structure from AlphaFold2), PST-PRNA [12], 
GraphBind [13], PRIME-3D2D [14], and COACH-D [15], and 
sequence-based, e.g., ProNA2020 [16], DNAPred [17], 
iDRNA-ITF [18], Pprint2 [19], NCBRPred [20], and 
DRNApred [8]. The former is modeled by extracting structural 
features such as shape and biophysical characteristics of the 
protein surface from the known protein three-dimensional (3D) 
structure. The latter extracts sequence information such as 
amino acid composition (AAC), physicochemical properties, 
and multiple sequence alignment (MSA) from protein sequences 
to predict. Due to the structural conserved nature of protein 
function, the structure-based methods have achieved good 
results in the early stages. However, since the slow speed of 
structure determination of wet-lab experiment, it is difficult for 
these methods to have a great breakthrough in the short term. 
Despite recent breakthroughs in the field of protein structure 
prediction by AlphaFold2 [21] and RoseTTAFold [22], the 
accuracy of predicted 3D structure cannot be fully trusted, 
especially on orphan proteins that lack high-quality MSA 
information. In contrast, sequence-based methods only depend 
on the protein primary sequences, which are abundant and 
extremely easy to obtain in various protein sequence databases 
like UniProt [23]. Against this background, it is necessary to 
develop a reliable and fast sequence-based computational 
method to accurately predict nucleic acids-binding residue. 

A couple dozen of sequence-based methods have been 
proposed to identify nucleic acids-binding residue. According to 
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prediction targets, these methods can be roughly divided into 
two categories: methods predicting one of the DNA- or RNA-
binding residues only [24] [11] [19], and methods predicting 
both DNA- and RNA-binding residues [18] [13, 20]. The former 
focuses on just one of DNA and RNA, and the data sets they 
used usually contain only DNA-binding protein (DBP) or RNA-
binding protein (RBP). For example, PredDBR [24] used the 
sequence-based cube-format feature and convolutional neural 
network (CNN) to improve DNA-binding residue prediction 
performance. Yuan et al. first combined the predicted protein 
structure information by AlphaFold2 and evolution information 
as feature representation; then, a graph transformer model was 
employed as DNA-binding residue predictor [11]. In Pprint2 
[19], three sequence features, i.e., binary profile, 
physicochemical properties profile, and evolutionary profile, are 
utilized as input of CNN model for RNA-binding residue 
recognition. Agarwal et al. [25] implemented a balanced random 
forest (BRF) classifier with local residue features of RNA-
binding residue in protein-RNA complexes as input. In contrast 
to the above methods, many researchers focus on both DNA- 
and RNA-binding residues, and they use both DBPs and RBPs 
to train machine/deep learning models. For example, Wang et al. 
proposed a novel method named iDRNA-ITF which incorporate 
the functional properties of residues by utilizing an induction 
and transfer framework for nucleic acid-binding residues 
identification [18]. In SVMnuc [26], two sequence-based 
evolution information features, i.e., position-specific scoring 
matrix (PSSM) [27] and hidden Markov model (HMM) profile 
[28], and one predicted local structure feature, i.e., protein 
second structure (SS) [29], are employed and fed to a support 
vector machine (SVM) [30] model for prediction. Yan et al. 
designed a fast method called DRNApred composed of two 
logistic regression layers using a comprehensive set of 
properties of the protein sequence as input for discriminating 
DNA- and RNA-binding residues [8]. NCBRPred [20] also 
employed multi-view sequence-based features, i.e., PSSM, 
HMM, predicted SS and predicted solvent accessibility (SA), as 
input feature of bidirectional Gated Recurrent Units (BiGRU) 
[31] for nucleic acid-binding residue identification. These 
methods have better prediction performance due to the use of 
both DBP and RBP feature information. 

Despite all the above-mentioned methods have made 
considerable contributions to the development of nucleic acid-
binding residue prediction, the challenges remain. First, the 
prediction results of these methods are highly dependent on the 
evolutionary information of protein sequences. Since searching 
for MSAs in a huge protein database is an extremely time-
consuming task, they are difficult to generalize to all protein 
sequences in all organisms. In addition, note that not all proteins 
can generate high-quality MSAs, and poor MSAs information 
tends to degrade prediction performance. Second, the number of 
proteins whose nucleic acid-binding residues have been labelled 
is very sparse compared to the huge number of protein 
sequences. As of 13 July 2023, the number of DNA- and RNA-
binding protein chains recorded in the BioLip database [32] is 
only 40,371 and 138,272, respectively, however, the number of 
protein sequences in UniProtKB/TrEMBL [33] reaches 
248,272,897. Most of previous studies utilized only the limited 
protein information in the training dataset (about 1000 proteins) 
to learn the identification patterns of nucleic acid-binding 

residue, which undoubtedly loses the correlation between huge 
amounts of protein sequences and residues. The nucleic acid-
binding residue paradigm is hidden in this vast amount of 
sequence information. 

In this study, we try to mine useful knowledge from as many 
protein sequences as possible to help in nucleic acid-binding 
residue recognition, even though some of they are not actually 
bind to DNA or RNA. Due to the extreme imbalance of positive 
and negative samples, it is inappropriate to directly construct 
large imbalanced datasets to train predictive models. Recent 
major breakthroughs in large-scale protein language models 
(PLM) such as ESM2 [34] enlightened us. ESM2 was 
constructed using UniRef50 as a training set (∼43 million 
proteins) by randomly masking and then predicting 15% 
residues out of protein sequences. This training strategy allows 
the model to learn the dependencies between residues without 
labeling. Due to the large number of protein sequences fitted by 
the trained model and the nature of protein function and structure 
determined by the sequences, it can be said that the many 
functional and structural properties of proteins are hidden in the 
feature representation of the ESM2 model. Based on this idea, 
here, we propose a fast and accurate method named ESM-NBR, 
which extract protein feature representations from the ESM2 
model and feed them into the multi-task BiLSTM-based neural 
network model for discriminating DNA- and RNA-binding 
residues. Experimental results show that the ESM2 feature 
representation has better performance than the evolutionary 
information feature of HMM in both of DNA- and RNA-binding 
residue prediction. Meanwhile, the proposed method 
demonstrates the MCC values for DNA-binding residues 
prediction of 0.427 and 0.391 on two independent test sets, i.e., 
DRNATst-246 and YK17-Tst, which are 18.61 and 10.45% 
higher than those of the second-best methods, respectively. 
Moreover, by relying on the graphics processing unit (GPU) for 
both model inference and feature generation without time-
consuming sequence search, ESM-NBR is much faster than 
previous methods. (~16 times than the second-fastest method on 
a protein sequence of length 500), which means that ESM-NBR 
is easily applied to massive amounts of protein sequence data, 
thus accelerating protein-nucleic acid interaction studies. A 
user-friendly standalone program and the data of ESM-NBR are 
freely available for academic use at: https://github.com/pengsl-
lab/ESM-NBR. 

II. MATERIALS AND METHODS 

A. Benchmark Datasets 
Two pairs of widely used mixed datasets of DBPs and RBPs, 

i.e., YK17 and DRNA-1314, are employed to evaluate the 
proposed methods fairly and comprehensively. The detailed 
composition and description of these two datasets can be found 
in Supplementary Text S1 at https://github.com/pengsl-
lab/ESM-NBR. 

B. Feature representation extraction from ESM2 model 
The current mainstream view is generally that protein 

sequences can determine their 3D structure and thus their 
function. That is say, at least in theory, the function of a protein 
(including nucleic acid-binding residue) can be inferred from the 
primary sequence. However, it has long been a very challenging 
problem to mine effective discriminatory information from a 



plethora of protein sequences to accurately predict protein 
functions. In recent years, the development of transformer-based 
large-scale language models have led to significant 
breakthroughs in several field like natural language processing 
(NLP) [35, 36]. The field of bioinformatics is no exception. The 
large number of protein sequences provided by high-throughput 
sequencing technology creates a sufficient knowledge base for 
protein language model (PLM) [37-39]. ESM2, a large-scale 
PLM with 15 billion parameters, starts from about 43 million 
protein primary sequences and learns the mapping relationship 
among sequences, structures, and functions by masked pre-
training, achieving protein tertiary structure prediction with 
atomic-level accuracy. The prior work of ESM2, i.e., ESM-1b 
[37], also showed that the feature representation of pre-trained 
PLM has a significant improvement for protein secondary 
structure, residue-residue contact, and mutational effects 
prediction after fine-tuning by supervised learning. Due to the 
evolutionary conservation and sequence specificity of nucleic 
acid-binding residues, there is no doubt that the ESM2 feature 
representation also contains valuable hidden patterns of nucleic 
acid-protein interactions. 

In this study, we used the ESM2 model to generate protein 
feature representations designed to help improve nucleic acid-
binding residue prediction performance. To be specific, we first 
downloaded ESM2 models with different parameter levels, i.e., 
8 million, 35 million, 150 million, 650 million, and 3 billion, 
according to the tutorial at 
https://github.com/facebookresearch/esm; then, for each protein 
sequence 𝑆𝑆 of length 𝐿𝐿 in the datasets, a feature matrix of size 
𝐿𝐿 × 𝑀𝑀 can obtained by feeding 𝑆𝑆 to the ESM2 models, where 𝑀𝑀 
means the feature dimension in (320, 480, 640, 1280, 2560) 
corresponds to models of different sizes. Note that, since the 
largest ESM2 model has a parameter of 15 billion, which is far 
beyond the burden of our GPU (Tesla V100 with 16G memory), 
we did not generate its features. Subsequent experiments 
demonstrate that the performance of larger model-based feature 
representations is not necessarily better than that of smaller 
model. In addition, even on relatively small models, the GPU is 
still short of memory when dealing with very long sequences 
such as lengths >1,000. Our solution is to slice the long sequence 
into multiple relatively short sequences which also have more 
than 500 amino acids and still retain sufficient sequence 
contextual information. The well-generated ESM2 feature 
representations contain important biochemical properties hidden 
in the protein sequence space rather than just a small amount of 
knowledge in the training dataset, thus helping to improve 
nucleic acid-binding residue prediction performance. 

C. Architecture of ESM-NBR 
In this study, based on the feature extracted from large 

protein language model ESM2 and the multi-task BiLSTM-
based network, a novel nucleic acid-binding residues prediction 
method, named ESM-NBR, is proposed and implemented. The 
overall architecture of ESM-NBR is shown in Figure 1. It is easy 
to see that the workflow of ESM-NBR can be roughly divided 
into three steps: 

Step 1: For each protein primary sequence in the dataset, 
features containing knowledge of important biochemical 
attributes are generated by feeding it into the ESM2 model; 

 
Fig. 1. Architecture of ESM-NBR. 

Step 2: The well-generated ESM2 feature representation is 
first inputted into the network shared by DNA- and RNA-
binding residues composed of stacked BiLSTM and MLP to 
learn common knowledge; 

Step 3: Two private MLP blocks are employed to learn 
essential authentication information for DNA- and RNA-
binding residues identification, respectively. The outputs of the 
final linear layers are used as the predictive probabilities to 
determine whether a residue is binding to DNA or RNA. 
 The multi-task network architecture and training details are 
described in Supplementary Text S2 at 
https://github.com/pengsl-lab/ESM-NBR. 

D. Evaluation Indexes 
Four evaluation indexes, i.e., Matthew’s correlation 

coefficient (MCC), the area under Receiver Operating 
Characteristic curve (AUC), the area under Precision-Recall 
curve (AP), and the area under Cross Prediction Rate-True 
Prediction Rate (CPR-TPR) curve (AURC) [40], are utilized to 
assess the proposed ESM-NBR. The detailed description of 
these four indexes can be found in Supplementary Text S3. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 
A. Performance comparison of ESM2 feature and evolution 

information feature 
To demonstrate the efficacy of the ESM2 feature 

representation on nucleic acid-binding residue, the widely used 
evolutionary information feature of HMM is utilized as a control. 
Specifically, the HMM feature, ESM2 feature generated by 
model contained 650 million parameters (Abbreviated as 
ESM2_650M), and their combination are severally as the input 
feature of ESM-NBR network for training. The prediction 
performance on DRNATr-1068 and YK17-Tr over a 10-fold 
cross validation test are shown in Figure 2 and Table 1. In Table 
1, it is obvious that ESM2_650M comprehensively outperforms 
HMM on both DNA and RNA. Concretely, take results on 
DRNATr-1068 as an example, the values of MCC, AUC, and 
AP of ESM2_650M are 0.534, 0.874, and 0.523 (or 0.501, 0.861, 
and 0.421) considering DNA-binding residue (or RNA-binding 
residue), which are 90.71, 12.48, and 144.39% (or 187.93, 16.03, 
and 158.28%) higher than those of HMM respectively. 
Considering cross-prediction performance, the AURC values of 
DNA and RNA of ESM2_650M on YK17-Tr are 0.143 and 
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0.216, which are 148.95 and 115.27% lower than those of HMM 
separately, indicating ESM2_650 can better distinguish between 
DNA-binding residue and RNA-binding residue compared to 
HMM. It is worth that the p-values between these two features 
are so small that the computer cannot calculate it, which means 
there is a big difference between them. In addition, we can find 
that the degree of linear correlation between prediction results 
of these two features is low by visiting PCC values, which 
further proves the difference between them. By looking at the 
results of combination feature of ESM2_650M and HMM, the 
prediction performance does not necessarily get better by simply 
splicing these two features. For example, the MCC and AP 
values of DNA-binding residue of ESM2_650M on DRNATr-
1068 are 0.534 and 0.523, which are 4.70 and 12.23% higher 
than those of combination feature respectively. The PCC and p-
value between ESM2_650M and combination feature show 

much smaller differences compared to the single HMM. There 
is no doubt that ESM2_650M dominates in combination feature. 
Figure 2 shows the PR, CPR-TPR, and ROC curves with 
corresponding AP, AURC, and AUC values separately. The 
solid and dashed lines indicate the predicted results for DNA and 
RNA, respectively. It is intuitive that the PR and ROC curves of 
HMM are much lower compared to ESM2_650M, and the CPR-
TPR curve is much higher especially on RNA-binding residue 
of YK17-Tr whose AURC is 0.659. Overall, since combination 
feature consists mainly of ESM2_650M, their curves do not 
differ much. To sum up, ESM2_650M feature far exceeds the 
HMM for nucleic acid-binding residue prediction and shows 
significant difference with it in this section. Since most of the 
previous methods rely on evolutionary information features 
heavily, this result provides a new thinking of studying protein-
nucleic acid interactions. 

 
Fig. 2. RP, CPR-TPR, and ROC curves of ESM2_650M, HMM, and their combination on DRNATr-1068 and YK17-Tr over a 10-fold cross validation test. The 
solid and dashed lines indicate the predicted results for DNA- and RNA-binding residues, respectively. The higher the AUC and AP the better the prediction 
performance. The lower the AURC the better the prediction performance. 

TABLE I PERFORMANCE COMPARISONS OF ESM2_650M AND HMM ON DRNATR-1068 AND YK17-TR OVER A 10-FOLD CROSS VALIDATION TEST 

Dataset Feature  DNA-binding residue  RNA-binding residue 
 MCC AUC AP AURC p-value a PCC b  MCC AUC AP AURC p-value PCC 

DRNATr-1068 
ESM2_650M 

 
 0.534 0.874 0.523 0.157 - -  0.501 0.861 0.421 0.162 - - 

HMM  0.280 0.777 0.214 0.214 4.81e-04 3.56e-01  0.174 0.742 0.163 0.659 N/A c 2.94e-01 
Combination  0.510 0.881 0.466 0.143 9.04e-61 7.80e-01  0.460 0.874 0.432 0.164 7.82e-42 7.30e-01 

YK17-Tr 
ESM2_650M 

 
 0.464 0.879 0.427 0.143 d - -  0.428 0.852 0.402 0.216 - - 

HMM  0.180 0.745 0.127 0.356 N/A 3.04e-01  0.265 0.761 0.214 0.465 N/A 4.92e-01 
Combination  0.475 0.871 0.437 0.157 2.37e-35 5.49e-02  0.438 0.849 0.387 0.203 5.49e-02 8.27e-01 

a. The p-values in Student’s t-test are calculated for the differences between ESM2_650M and other features using the probabilities that each residue is predicted to be a 
positive sample. 

b. The PCC values are calculated for the linear correlation coefficient between ESM2_650M and other features using the probabilities that each residue is predicted to be 
a positive sample. 

c. “N/A” means the value is so small that our computer can't figure it out. 
d. Bolded font indicates the best result. 



B. The impact of features generated by ESM2 models with 
different parameter levels on performance 

A number of models with different parameter levels were 
constructed and compared for extracting important 
biochemical property knowledge hidden in protein sequence 
as fully as possible in the study of ESM2 [34]. Since to the 
extremely complex mapping of protein sequence and structure, 
the proteins 3D structure at the atomic-level can only be 
predicted with high accuracy when the number of parameters 
of the ESM2 model reaches 15 billion. On the nucleic acid-
binding residue prediction problem, we do not necessarily use 
such a large model-generated feature representation as input 
taking into account possible redundant information. Here, to 
select features at the appropriate scale, we perform the 10-fold 
cross validation test on the DRNATr-1068 and YK17-Tr using 
feature representations generated by ESM2 models with 8 
million, 35 million, 150 million, 650 million, and 3 billion 
parameters on the model in Figure 1, respectively. By looking 
at Figure 3, it is easy to see that prediction performance is 
generally poor at lower parameter levels, such as 8 million and 
35 million. Obviously small models do not contain enough 
capacity to learn the vast knowledge of protein sequence space. 
The features generated by the small model do not contain 
enough biochemical attributes to accurately predict nucleic 
acid-binding residues. The overall performance gets 
progressively better as the number of parameters increases, 
and the best results are achieved in several indexes when the 
number of parameters reaches 650 million. For example, in 
the term of RNA-binding residue prediction, both the MCC 
and AP values of the feature of model at 650 million level are 
greater than those of other features, despite the AUC value of 
the feature of model at 3 billion level is slightly higher than it. 
Such result suggests that when the number of model 
parameters is too large, the redundant information in them 
may lead to deterioration in the performance of the 
downstream prediction task. By looking at the AURC index 

 
Fig. 3. Prediction performance changes of features generated by ESM2 
models with different parameter levels on DRNATr-1068 and YK17-Tr over 
a 10-fold cross validation test. 

marked in purple star, similarly, it reaches lowest on the RNA-
binding residue prediction (or DNA-binding prediction) of 
YK17-Tr (DRNATr-1068) when parameters of ESM2 model 
at 650 million level. This suggests that DNA-binding residue 
and RNA-binding residue are well differentiated and that the 
network learns knowledge about RNA-specificity and DNA-
specificity. In conclusion, the feature of ESM2 model at 650 
million parameter level is able to predict NBR well in this 
study, and considering the computational power requirements 
of larger models, it is appropriate to use it as the input feature 
of ESM-NBR network. 

C. Fast: highly efficient prediction speed of ESM-NBR 
Most existing sequence-based nucleic acid-binding residue 
prediction methods are relatively inefficient limited by the 
time-consuming multiple sequence alignment process. ESM-
NBR eschews this process altogether, relying solely on large 
protein language models that have already been well-trained. 
Here, to clearly demonstrate the advantages of ESM-NBR in 
the term of prediction efficiency, one protein sequence of 
length 500 (UniProtKB ID: P17867) is employed to assess the 
prediction speed of nine existing methods, i.e., DRNAPred, 
iDRNA-ITF, Pprint2, PST-PRNA, NCBRPred, DNAPred, 
GraphBind, GraphSite, and PredDBR, and then compared 
with ESM-NBR. With the exception of prediction of 
GraphBind, which come from a standalone running package 
program, the results of other eight predictors are obtained 
from their web services. Taking into account network 
fluctuations and server busyness, the prediction times of these 
methods are the lowest values selected from the results of 
multiple tests. The prediction time of ESM-NBR includes the 
whole process of model loading to ESM2 feature generation 
to model inference. A detailed comparison is shown in Figure 
4A. It is obvious that the ESM-NBR has the shortest 
prediction time of 5.52 seconds, which is about 16 times faster 
than the second fastest method, i.e., DRNAPred. The 
prediction times of the other methods ranged from 130 
seconds to 8,220 seconds, which is hardly in the same order of 
magnitude as ESM-NBR. Most of these methods require 
multiple sequence alignment to generate evolutionary 
information-based files first like PSSM and HMM, or some 
require local or global protein structures to be predicted first 
such as GraphSite, which is main reason that limits their 
predictive efficiency. Figure 4B shows the prediction time of 
ESM-NBR on protein sequences of different lengths ranged 
from 100 and 5,000 using CPU and GPU, respectively. All 
results were obtained by independently repeating the 
experiment 10 times and then averaging the times. By 
observing Figure 4B, on both two devices, the prediction time 
increases as the length of the sequence increases. However, 
even for sequences of length 5,000, the maximum prediction 
time is less than 2 minutes. It is worth noting that the time 
tested with the GPU is higher than that of with the CPU. 
Limited by the GPU memory size, only one sequence is tested 
serially at a time, thus not taking advantage of GPU parallel 
computing. The large-scale prediction time can be further 
optimized if the GPU has enough memory. Although GPU 
with large amounts of memory is not always available for 
most researchers, the computational speed of ESM-NBR on 
CPU is also much better than existing methods. 



 
Fig. 4. Comparison of prediction times. (A): prediction times of ESM-NBR 
and existing methods on a sequence of length 500; (B): prediction times of 
ESM-NBR on protein sequences of different lengths using GPU and CPU 
respectively. 

As a conclusion, the efficient and rapid prediction of ESM-
NBR can be easily applied to massive protein sequences, thus 
accelerating nucleic acid-protein interaction studies. 

D. Accurate: prediction performance comparison with the 
state-of-the-art prediction methods 
To evaluate the prediction performance of ESM-NBR, 

four state-of-the-art nucleic acid-binding residues predictors, 
i.e., iDRNA-ITF, DRNAPred, GraphBind, and NCBRPred, 
are employed as control. To ensure the fairness, the 
prediction results of ESM-NBR on these two test sets are 
obtained from the model trained by YK17-Tr and DRNATr-
1068, respectively. The prediction results of iDRNA-ITF, 
DRNAPred, and NCBRPred are generated by feeding the 
protein sequences to their web servers. Since the web server 
of GraphBind cannot accept multiple sequences at once, we 
downloaded the source code provided in 
http://www.csbio.sjtu.edu.cn/bioinf/GraphBind/sourcecode.
html and run it. It is noted that GraphBind is a structure-based 
method. There is no way for us to directly use the structure of 
YK17-Tst to make predictions because the proteins in the 
YK17-Tst contain disordered regions of unknown structure. 
Here, the predicted 3D structures of AlphaFold2 (ColabFold 
[41] version with default parameter) are employed as the 

alternative to the real 3D structure as the input to the 
GraphBind. 

The detailed comparisons on DRNATst-246 and YK17-
Tst are listed in Table 2. By looking at MCC values of DNA-
binding residue prediction, ESM-NBR achieves the best 
results of 0.427 and 0.391 on both datasets, which are 32.60, 
284.68, 18.61, and 85.65%, and 10.45, 90.73, 26.12, and 
26.96% higher than iDRNA-ITF, DRNAPred, GraphBind, 
and NCBRPred on DRNATst-246 and YK17-Tst separately. 
In the term of cross-prediction, the AURC values of ESM-
NBR on two datasets for DNA-binding residue prediction are 
0.121 and 0.195, which is second only to DRNAPred and 
better than the other three methods. Not lost on us is the fact 
that AURC values of DRNAPred for predicting RNA-
binding residues are 0.937 and 0.696, indicating that 
DRNAPred predicates most of the native RNA-binding 
residues as DNA-binding residues. Potentially the biggest 
reason should be that DRNAPred model overfitted the DNA-
binding residue data during the training stage. Turning the 
attention to the RNA-binding residue prediction, the AUC 
values of ESM-NBR on DRNATst-246 is 0.838, which is 
17.36, 71.37, 0.47, and 20.57% higher than other methods 
respectively. On YK17-Tst, ESM-NBR also gets the second-
best prediction behind iDRNA-ITF. Due to the sheer number 
of all the residues in test sets, we use the probability that the 
native DNA-binding (or RNA-binding) residues are 
predicted to be positive samples to calculate the p-values. It 
is clear that the p-values between ESM-NBR and most of the 
other methods is very small, demonstrating a statistically 
significant difference. Also, the PCC values mean a lower 
degree of linear correlation. 

For a more comprehensive comparison, we calculate 
MCC values for DNA-binding (or RNA-binding) residues 
prediction individually for each protein on both test sets and 
then plot scatter plots shown in Figure 5. Figures 5A~5D are 
the comparison results on DRNATst-246 by separating DBP 
and RBP. Figures 5E~5H are the comparison results on the 
YK17-Tst by calculating MCC values of DNA/RNA-binding 

TABLE II PERFORMANCE COMPARISONS OF THE STATE-OF-THE-ART METHODS AND ESM-NBR ON DRNATST-246 AND YK17-TST OVER 
INDEPENDENT VALIDATION 

Dataset Model  DNA-binding residue  RNA-binding residue 
 MCC AUC AP AURC p-value a PCC b  MCC AUC AP AURC p-value PCC 

DRNATst-246 

iDRNA-ITF  0.322 0.839 0.303 0.318 3.65e-29 5.37e-01  0.207 0.714 0.247 c 0.335 7.18e-68 3.87e-01 
DRNAPred  0.111 0.686 0.073 0.087 3.39e-146 2.37e-01  0.019 0.489 0.029 0.937 4.01e-93 5.88e-02 
GraphBind  0.360 0.922 0.322 0.454 1.66e-25 4.71e-01  0.221 0.834 0.128 0.471 4.66e-43 2.98e-01 
NCBRPred  0.230 0.819 0.178 0.229 8.15e-220 3.91e-01  0.155 0.695 0.119 0.594 7.42e-62 2.12e-01 
ESM-NBR  0.427 0.901 0.405 0.121 - -  0.218 0.838 0.148 0.462 - - 

YK17-Tst 

iDRNA-ITF  0.354 0.881 0.381 0.325 1.43e-05 5.54e-01  0.339 0.870 0.285 0.162 4.24e-100 2.87e-01 
DRNAPred  0.205 0.767 0.194 0.038 2.65e-05 3.80e-01  0.122 0.670 0.096 0.696 2.08e-13 1.63e-01 
GraphBind d  0.310 0.866 0.291 0.509 9.162-36 4.70e-01  0.185 0.757 0.134 0.481 9.80e-01 1.74e-01 
NCBRPred  0.308 0.840 0.304 0.242 5.22e-15 4.88e-01  0.217 0.767 0.192 0.474 3.07e-09 2.82e-01 
ESM-NBR  0.391 0.881 0.350 0.195 - -  0.276 0.785 0.232 0.462 - - 

a. The p-values in Student’s t-test are calculated for the differences between other methods and ESM-NBR using the probabilities that the native nucleic acid-binding 
residue is predicted to be a positive sample. 

b. The PCC are calculated for the linear correlation coefficient between other methods and ESM-NBR model using the probabilities that each residue is predicted to be a 
positive sample. 

c. Bolded font indicates the best result. 
d. Since the proteins in the YK17-Tst contain disordered regions of unknown structure, the protein structures used for prediction results of GraphBind are from AlphaFold2. 



 
Fig. 5. Head-to-head comparisons of MCC values of ESM-NBR and four state-of-the-art nucleic acid-binding residue prediction methods on DRNATst-246 and YK17-
Tst. The green (or pink) numbers on the diagram indicate the number of DBPs (or RBPs) which locate in the upper or lower triangle. The black numbers located next 
to the black slashes indicate the number of DBPs (or RBPs) with equal MCC values for both two methods. (A~D): comparison results on DRNATst-246; (E~H): 
comparison results on YK17-Tst. Since YK17 contains proteins that bind both DNA and RNA simultaneously, instead of splitting the dataset into DNA and RNA 
subsets, we calculate MCC values for DNA- and RNA-binding residues separately for each protein in YK17. In contrast, DRNATst-246 is segmented into DNA and 
RNA subsets to calculate MCC values for DNA- and RNA-binding residues, respectively. 

residues for each protein considering that some of the 
proteins in YK17-Tst bind both DNA and RNA. It is clear 
that ESM-NBR outperforms most other methods on both 
DNA- and RNA-binding residues prediction. Specifically, 
take result on DRNATst-246 as an example, out of 129 DNA-
binding proteins (or 117 RNA-binding proteins), there are 73, 
95, 45, and 84 (or 61, 75, 38, and 70) proteins which ESM-
NBR has higher MCC values than other methods, 
respectively. In addition, we find that the pink dots are more 
towards the bottom left compared to the green dots, meaning 
all methods predicted poorly on RNA-binding residue than 
on DNA-binding residue even on DRNATst-246 whose 
training data set has more RNA-binding residues than DNA-
binding proteins. The potential reason may be the simplicity 
of the pattern of DNA-binding residue relative to that of 
RNA-binding residues. As a conclusion, the outstanding 
performance of ESM-NBR surpasses most of the existing 
methods and shows a clear differentiation from them. 

IV. CONCLUSIONS 
Accurate identification of nucleic acid-binding residue is 

a key step in understanding nucleic acid-protein interactions. 
In this study, to enhance the performance and speed of 
nucleic acid-binding residues identification, a new sequence-
based method called ESM-NBR is designed and implemented. 
In ESM-NBR, the protein primary sequence is first fed to the 
large protein language model, i.e., ESM2, to generate 
important biological properties feature representation; then, 
the generated feature is inputted to the stacked BiLSTM and 
MLP layers shared by DNA- and RNA-binding residues; 
finally, two private MLP blocks are used to discriminate 
DNA- and RNA-binding residues, respectively. 
Experimental results on benchmark test data sets demonstrate 

that both the prediction speed and accuracy of ESM-NBR 
exceeds most of the state-of-the-art nucleic acid-binding 
residue prediction methods. The standalone program, 
supplementary information and data of ESM-NBR are 
available for free at https://github.com/pengsl-lab/ESM-NBR. 

In the future study, to further improve the performance of 
nucleic acid-binding residues prediction, the following points 
will be the focus of our research: (1) collecting large numbers 
of nucleic acid-bind protein sequences to pre-train large-scale 
protein language models; (2) applying large-scale protein 
language models to a variety of downstream tasks such 
nucleic acid-binding protein prediction, nucleic acid-binding 
residue prediction, and protein-nucleic acid complex 
structure prediction; (3) using transfer learning algorithm to 
import the helpful knowledge from proteins binding to other 
ligands such as ATP. In spite of ESM-NBR still has room for 
improvement, it should be a powerful tool in the field of the 
nucleic acid-bind residue prediction. 

DATA AVAILABILITY 
A user-friendly standalone program, supplementary 
information and the data of ESM-NBR are freely accessible 
at https://github.com/pengsl-lab/ESM-NBR. The 
supplementary information includes a detailed description of 
the data set, neural network architecture, and evaluation 
indexes used in this study. In addition, comparative 
experiments with single-task and multi-task models, as well 
as case studies, are also performed. 
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