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Abstract—Over decades, neuroscience has accumulated a
wealth of research results in the text modality that can be used
to explore cognitive processes. Meta-analysis is a typical method
that successfully establishes a link from text queries to brain
activation maps using these research results, but it still relies
on an ideal query environment. In practical applications, text
queries used for meta-analyses may encounter issues such as
semantic redundancy and ambiguity, resulting in an inaccurate
mapping to brain images. On the other hand, large language
models (LLMs) like ChatGPT have shown great potential in
tasks such as context understanding and reasoning, displaying a
high degree of consistency with human natural language. Hence,
LLMs could improve the connection between text modality and
neuroscience, resolving existing challenges of meta-analyses. In
this study, we propose a method called Chat2Brain that combines
LLMs to basic text-2-image model, known as Text2Brain, to
map open-ended semantic queries to brain activation maps in
data-scarce and complex query environments. By utilizing the
understanding and reasoning capabilities of LLMs, the perfor-
mance of the mapping model is optimized by transferring text
queries to semantic queries. We demonstrate that Chat2Brain
can synthesize anatomically plausible neural activation patterns
for more complex tasks of text queries.

Index Terms—meta-analysis, large language model, image
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I. INTRODUCTION

Neuroscience has accumulated a wealth of research findings
over decades, continuously advancing our understanding of
cognitive processes [1], [2]. To fully integrate and leverage
these findings for new insights and be unconstrained by the
number of subjects and cognitive processes that an individual
find can investigate, numerous meta-analytic methods have
been developed, bridging the modalities of text and brain
activation [3]–[5]. As so, researchers can explore potential
cognitive processes of the brains, such as the activation of
specific brain regions or an integrated brain network during
certain tasks, through text queries. However, these methods are
often idealized and impractical due to the semantic complexity
of text queries in real-world scenarios, requiring guidance from
domain experts [6]–[8]. To be more specific, conventional
methods of natural language processing struggle to address
issues related to synonymy and complex semantics such as
long text with redundancy and possible mistakes or ambiguous
semantic information which needs powerful ability of context
understanding and reasoning [9], [10]. For example, Neu-
rosynth [11] and Neuroquery [4] synthesize brain activation
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maps using keyword searches and the similarities between
these keywords over the text corpus. However, the vocabulary
used in text queries may have different meanings in different
contexts. Hence, keyword searches make it challenging to
tackle synonymous queries. While Text2Brain [5] establishes
a method to generate brain activation maps from free-form
text queries by leveraging the language model to some extent
merge synonyms, it still falls short in dealing with more
complex semantics limited by the scale of the language model.

Meanwhile, with recent advancements in hardware technol-
ogy and algorithms, powerful large language models (LLMs)
have emerged, demonstrating context understanding and rea-
soning capabilities that previous language models lack [12],
[13]. In particular, Ma et al. [13] show the ability of LLMs
to extract key semantic information and optimize the rep-
resentation of semantics based on given texts. Therefore,
it is straightforward to utilize the powerful capabilities of
LLMs to organize conventional text queries in meta-analyses,
untangle contextual relationships, and extract crucial semantic
information, thereby transforming them into semantic queries.

In this work, we propose a method called Chat2Brain,
as shown in Fig.1, which combines Text2Brain (Model)
with ChatGPT, to establish a two-stage mapping from free-
form text queries to semantic queries and then to brain
activation maps. By using ChatGPT, Chat2Brain extracts the
most important semantic queries from various text queries,
enabling accurate predictions of brain activation maps even
in complex query environments. This method facilitates the
exploration of cognitive processes in the human brain in
a simpler manner, allowing users to conduct queries using
vague or imprecise descriptions in a more user-friendly man-
ner, since ChatGPT helps summarize semantics. We conduct
experiments on Chat2Brain using both standard and non-
standard query environments to evaluate its performance under
different conditions. Additionally, we compare the model’s
prediction results with those of Neuroquery and Text2Brain
on the same dataset. Our results demonstrate that Chat2Brain
maintains powerful generation capabilities even in complex
query environments, producing brain activation maps that align
more closely with expectations.

II. RELATED WORKS

A. Meta-Analysis

Meta-analysis, first proposed by Fox et al. [14], has devel-
oped various methods, among which the classic ones in recent
years are NeuroVault [3], NeuroQuery [4], and Text2Brain [5].

NeuroVault is a web-based repository that makes it easy
to deposit and share statistical maps, focusing on addressing
issues such as limited sharing of research data [15] and
subjective interpretations of research results. NeuroQuery is
a meta-analytic tool that predicts the neural correlates of
neuroscience concepts related to behavior or anatomy. It is
fitted using supervised machine learning on 13459 full-text
publications and assembles results from the literature into
brain activation maps using arbitrary queries with words from
the vocabulary of 7547 neuroscience terms [16]. Both methods

Fig. 1. Overview of Chat2Brain

rely on keyword searching to map text queries to brain
activation maps, resulting in the challenge of free-form text
queries and merging synonyms [17].

Text2Brain is a generative model that allows free-form
text queries as the input, which is different from NeuroVault
and NeuroQuery. It introduces a language model, SciBERT,
that enables synonyms merging and many-to-one mappings
between text queries and brain activation maps. However, it
is hard for Text2Brain to accept text queries that may contain
complex semantics [5].

Taken together, it is necessary to introduce some kind of
powerful language model that can transfer text queries to
semantic queries by extracting key semantic information in
text queries [18], which brings the more accurate prediction
of corresponding brain activation maps.

B. The Application of LLMs in Various Fields

As one of the most influential artificial intelligence (AI)
products today [12], LLMs known as generative models, pro-
vide a user-friendly human-machine interaction platform and
have been rapidly integrated into various fields of application
such as data augmentation, semantic extraction, reasoning,
context understanding, and more [12], [13], [19]–[24].

Recently, ImpressionGPT by Ma et al. [13] explored LLM’s
ability to comprehend radiology reports through an innovative
dynamic prompting paradigm. The authors utilize LLMs’ in-
context learning ability by creating dynamic contexts with
domain-specific, individualized sample findings-impression
pairs. This approach enables the model to acquire contextual
knowledge from semantically similar examples in existing
data.

Li et al. [25] proposed a text data augmentation approach
AugGPT, which rephrased each sentence in the training
samples into multiple conceptually similar but semantically
different samples. The augmented samples can then be used
in downstream model training. Wu et al. [26] compared
the deductive reasoning abilities of LLMs and investigated
ChatGPT and GPT-4’s performance in the specialized domain
of radiology, using a natural language inference task and
comparing them to fine-tuned models.

The various methods mentioned above have demonstrated
the application value of LLMs in fields such as medicine
and natural language processing, once again confirming their
powerful abilities in context understanding, semantic extrac-
tion, and reasoning. This work represents one of the efforts to
propose a framework that combines LLMs with neuroscience.



Fig. 2. Flowchart of Chat2Brain during the training phase.

III. MATERIALS AND METHODS

A. Overview

Fig.1 illustrates the overview of Chat2Brain, where the blue
and yellow arrows represent the training and testing phases,
respectively. During the training phase, the ChatAUG for data
augmentation is used to help the model learn richer semantic
connections between brain activations at a spatial location
and key words in the text input. During the testing phase,
dynamic semantic prompts are used to assist ChatGPT in
transforming text queries into semantic queries which can be
mapped to more accurate coordinates of brain activations due
to the similarity between itself and key words learned by the
model.

Chat2Brain can be decomposed into two modalities, three
components, and two transformations. From the modality per-
spective, Chat2Brain encompasses the text modality as input
and the brain activation map modality as output. From the
methodological perspective, Chat2Brain employs ChatAUG as
a data augmentation strategy (in Fig.2), utilizes SciBERT [27]
as the text encoder, and employs the 3D convolutional layer
as the brain activation map generator. From the transforma-
tion perspective, Chat2Brain encompasses two distinct trans-
formations: text-to-semantics, which converts free-form text
queries into semantic queries, and semantics-to-brain, which
converts semantic queries into brain activation maps. Note
that the modality is not changed during the transformation,
where semantic queries are still as text modality but have
more discriminating information related to the brain activation
than text queries. Overall, Chat2Brain establishes a two-stage
mapping model that progresses from free-form text queries to
semantic queries and subsequently to brain activation maps.

The details of Chat2Brain including data preprocessing,
model, ChatAUG, and Text2Semantics will be demonstrated
as follows.

B. Data Preprocessing

The dataset used in this study is based on 13,460 research
articles related to neuroscience, publicly released by Neuro-
query. Each sample in the dataset consists of a preprocessed
pair of text and a corresponding brain functional activation
map [28]. Note that, currently, only the titles, the most easily

accessible content, are used as the foundational input to sim-
ulate the small-sample dataset. Also, relative to abstract and
experimental design descriptions, titles contain fewer words
such that the performance of the model can be pushed to the
limit and a short phrase is more similar to the semantic query.
Additionally, Neuroquery provides reported peak activation
coordinates for each research article, assumed to be in the
Montreal Neurological Institute 152 (MNI152) [29] brain
3D volumetric space. Following Neuroquery’s preprocessing
procedure, a Gaussian sphere with full width at half maximum
(FWHM) of 9mm is placed at each peak activation coordinate,
resulting in a brain activation map that serves as the target for
prediction. The dataset is subsequently divided into a training
set (8,076 samples), a validation set (2,092 samples), and a
test set (2,092 samples) using a 6:2:2 ratio.

C. Model

Inspired by Text2Brain, Chat2Brain employs a similar archi-
tecture to map inputs in text modality to brain activation maps.
As detailed in Fig.2, it consists of a transformer-based text en-
coder, SciBERT, and a 3D CNN serving as the brain activation
map generator. The text encoder optimizes the representation
of the input and maps it to a 768-dimensional tensor, which
is subsequently reshaped into a 4x5x4 3D volume with 64
channels. The brain activation map generator comprises three
transposed 3D convolutional layers with channel sizes of 32,
16, and 8, respectively. Ultimately, it outputs brain activation
maps with dimensions of 40x48x40. This architecture allows
for the transformation of semantic representations into mean-
ingful representations of brain activation patterns, facilitating
the generation of accurate and informative brain activation
maps based on the given inputs in text modality.

D. ChatAug

During the training phase (in Fig.2), ChatGPT which has ac-
cumulated a vast amount of knowledge across various domains
including neuroscience, is capable of expanding the founda-
tional text into a more diverse range of semantic information.
This allows the model to learn more comprehensive semantic
features, particularly when the dataset is limited in size and
homogeneous in nature. In this experiment, for each sample,
ChatGPT 3.5 is employed to augment the data with five types



Fig. 3. Flowchart of Chat2Brain during the testing phase.

of semantic information: (1) new titles that are synonymous
with the original title but exhibit significant differences, (2)
new titles that are synonymous with the original title but
exhibit minimal differences, (3) potential abstract content, (4)
potential experimental design description, and (5) potential
keywords. Particularly, the reason for selecting these five types
of texts by augmentation is that they exhibit typical semantic
information in neuroscience articles and vary in length, show-
casing good diversity. For these reasons, the dataset, which
initially has a limited number of samples and a narrow range
of types, is transformed into a larger dataset with diverse types,
thereby enhancing the generalizability of the model to handle
a broader range of semantic query scenarios.

TABLE I
ACCURACY OF THE METHOD.

Text/Metrics Semantics Detail

title1 100% 89.5%
title2 100% 94.7%
abstract 94.7% 36.8%
experiment 89.5% 15.8%
keywords 84.2% 26.3%

Table I presents the accuracy of randomly selected samples
that have been augmented using ChatGPT compared with
the real content in articles in terms of semantic and detail
accuracy. Clearly, the augmented text demonstrates a high
level of semantic accuracy and relatively lower detail accuracy.
This aligns with cognitive expectations since it is difficult
to augment the various text with highly consistent details
based solely on the content of the title. However, Chat2Brain
can extract the key semantic information from texts using
Text2Semantics, where the detail is not very important.

E. Text2Semantics

Fig.3 illustrates the framework of Chat2Brain during testing.
Although the model can cope with various semantic queries
when the training phase is completed, the content of queries
is not always accurate, concise, or even complete in practical
application resulting in the wrong prediction. To avoid this
situation, it is necessary to use ChatGPT to optimize queries
and extract key semantic information before feeding it into the
model during the test phase. This process is the transformation
from text queries to semantic queries, called Text2Semantics.

Purple block in Fig.3 illustrates the flowchart of
Text2Semantics, which is inspired by ImpressionGPT and can
be decomposed into three sub-modules in processing order:
Search for Similar Semantic, Dynamic Prompt, and Iterative
Optimization. When Chat2Brain receives a text query, it first
searches for similar samples in the corpus (training set) based
on keywords (Search for Similar Semantic). These similar
samples are engaged in research content that is closely related
to the text query, sharing similar semantics. Subsequently,
these similar samples are combined with the text query as
dynamic prompts and fed into ChatGPT to summarize the
key semantics of the text query as the initial semantic query
(blue block in Dynamic Prompt). After generating the initial
semantic query, an iterative optimization phase follows (or-
ange block in Iterative Optimization). During each iteration,
Chat2Brain assesses the similarity between the last semantic
query and the similar samples in the corpus, determining
whether they represent good (high similarity) or bad (low
similarity) generations. Positive (good generations) or negative
(bad generations) examples are then incorporated into the
dynamic prompt to guide ChatGPT in generating new semantic
queries for the next iteration. At the end of the iterations,
the best-performing semantic query (highest similarity) is
selected and mapped to brain activation maps in subsequent



models. Thus, Text2Semantics serves as an intermediate bridge
connecting text-to-semantics and semantics-to-brain activation
map relationships, significantly enhancing the performance of
Chat2Brain when confronted with complex and non-standard
text queries.

IV. EXPERIMENTAL SETUP

A. Settings

During training, text-activation map pairs are randomly
selected from the training set with equal probabilities. Each
sample is fed into the model in the order of (1) the original
title, (2) a title with significantly different synonymous words,
(3) a title with minimally different synonymous words, (4)
an abstract inferred by ChatGPT, (5) an experimental design
description inferred by ChatGPT, (6) keywords inferred by
ChatGPT, and (7) the original title. This approach encourages
the model to generate outputs based on diverse semantic
contexts, with varying text lengths and content, establishing a
many-to-one mapping between semantics and brain activation
maps.

The model is trained using the following parameter settings:
(1) loss function: Mean Squared Error (MSE), (2) epochs:
2000, (3) optimizer: AdamW, and (4) learning rates: 1e-5
for the text encoder and 3e-2 for the brain activation map
generator.

B. Task

The experiment is conducted with two different query envi-
ronments: standard and non-standard, aiming to simulate real-
world usage scenarios. In the standard query environment, the
text query is complete, minimally redundant, and semantically
accurate. However, in a real application (the non-standard
query environment), the text query may suffer from issues
such as text incompleteness, high redundancy, and semantic
inaccuracies. To simulate the non-standard query environment,
random masking is applied to the input to disrupt its semantics.
In both query environments, the experiment compared the
performance before and after transforming the text query into
the semantic query. Additionally, the experiment evaluates
the predictive performance of the model under various text
contexts before and after applying ChatAUG for data aug-
mentation.

C. Baselines

Neuroquery and Text2Brain are chosen as the baseline.
Chat2Brain shares the same model architecture as Text2Brain.
The only difference is that Chat2Brain does not involve a large
language model, and its input consists of regular text queries.

D. Evaluation Metrics

In this experiment, Area Under the Curve (AUC) [30],
Dice Score [31], and mean Intersection over Union (mIoU)
are selected as metrics to measure the similarity between
the predicted and target brain activation maps at different
levels of detail. The evaluation process is the same as that of
Text2Brain. For both the predicted and target brain activation

maps, the same proportion of the most relevant activated
voxels is retained (ranging from 100% retention to 10%
retention).

V. RESULTS

A. Task in the standard query environment

Table II presents the experimental results in the standard
query environment. In the table, ”title,” ”title1,” ”title2,” ”key-
words,” ”abstract,” and ”experiment” represent the original
title, two titles with synonymous and paraphrased words,
keywords, abstract, and experimental tasks inferred by Chat-
GPT. ”non-aug” and ”aug” denote the absence or presence
of data augmentation using ChatAUG. +X% denotes an
X% improvement compared to non-augmentation when using
augmentation. −X% denotes an X% decrease compared to
non-augmentation when using augmentation. ”non-chat” and
”chat” indicate the absence or utilization of Text2Semantics to
transform the text queries into semantic queries. +X% denotes
an X% improvement compared to text queries when using
semantic queries. −X% denotes an X% decrease compared
to text queries when using semantic queries. The digit k in
”aug-k” denotes that the top k% of the predicted activation
voxels are preserved.

Observing the results in Table II, we find that: (1) In
most cases, Chat2Brain with data augmentation performs
better in handling diverse types of input queries compared to
Text2Brain. It shows the highest improvements in AUC, Dice,
and mIOU, reaching up to 8.725%, 10.272%, and 12.190%,
respectively (marked in red color). (2) When faced with
excessively long queries, such as abstracts in the first section,
Chat2Brain performs relatively worse, but the differences
in all three metrics compared to Text2Brain do not exceed
0.584%. (3) Without data augmentation, semantic queries do
not exhibit significant advantages over text queries. However,
when only a smaller number of the most relevant activated
voxels are retained (non-aug-/aug-k, k < 30, in general),
semantic queries slightly outperform text queries. (4) With data
augmentation, semantic queries have a certain advantage over
text queries (aug- rows plus chat columns), especially when the
most activated voxels are retained. The highest improvements
in the three metrics can reach 0.029%, 5.093%, and 5.064%,
respectively (marked in red color).

The reasons behind (3) and (4) may lie in the fact that
in the standard query environment, text queries themselves
already possess comprehensive and refined semantics. There-
fore, transforming them into semantic queries does not bring
significant enhancements. On the other hand, the model with
data augmentation sacrifices some precision when only the
most activated voxels are retained, in exchange for better
generality. As a result, it becomes more sensitive to subtle se-
mantic variations, leading to superior performance in semantic
queries.

In conclusion, in the standard query environment,
Chat2Brain demonstrates better generalizability and compa-
rable predictive accuracy than Text2Brain.



TABLE II
PERFORMANCE COMPARISON OF THE CHAT2BRAIN METHOD.

Text/Metrics Auc Dice mIou

non-aug aug over non-aug aug over non-aug aug over

title-100 0.599 0.631 + 5.384% 0.222 0.236 + 6.285% 0.131 0.140 + 7.457%
title1-100 0.598 0.630 + 5.307% 0.222 0.236 + 6.206% 0.130 0.140 + 7.358%
title2-100 0.598 0.630 + 5.395% 0.222 0.236 + 6.288% 0.130 0.140 + 7.459%
keywords-100 0.592 0.638 + 7.751% 0.220 0.240 + 9.026% 0.129 0.142 + 10.698%
abstract-100 0.640 0.639 - 0.133% 0.241 0.240 - 0.579% 0.144 0.143 - 0.584%
experiment-100 0.591 0.642 + 8.725% 0.219 0.241 + 10.272% 0.128 0.144 + 12.190%

Text/Metrics Auc Dice mIou

non-chat chat over non-chat chat over non-chat chat over

non-aug-100 0.599 0.601 + 0.282% 0.222 0.223 + 0.254% 0.131 0.132 + 0.297%
non-aug-90 0.802 0.798 - 0.551% 0.065 0.066 + 1.938% 0.034 0.035 + 2.054%
non-aug-80 0.713 0.702 - 1.543% 0.056 0.058 + 2.200% 0.030 0.031 + 2.287%
non-aug-70 0.637 0.626 - 1.772% 0.048 0.049 + 1.212% 0.025 0.026 + 1.240%
non-aug-60 0.587 0.578 - 1.553% 0.033 0.034 + 0.530% 0.017 0.018 + 0.495%
non-aug-50 0.555 0.549 - 1.063% 0.027 0.026 - 1.667% 0.015 0.014 - 1.704%
non-aug-40 0.535 0.532 - 0.472% 0.015 0.014 - 2.064% 0.009 0.008 - 2.225%
non-aug-30 0.519 0.518 - 0.210% 0.011 0.010 - 3.701% 0.006 0.005 - 3.812%
non-aug-20 0.509 0.510 + 0.227% 0.007 0.008 + 4.674% 0.004 0.005 + 4.730%
non-aug-10 0.505 0.506 + 0.069% 0.004 0.005 + 3.070% 0.002 0.003 + 4.286%

aug-100 0.631 0.633 + 0.296% 2.361e-1 2.370e-1 + 0.377% 1.403e-1 1.409e-1 + 0.450%
aug-90 0.796 0.795 - 0.071% 3.922e-1 3.908e-1 - 0.371% 2.026e-1 2.018e-1 - 0.385%
aug-80 0.795 0.796 + 0.047% 2.747e-1 2.733e-1 - 0.513% 1.404e-2 1.396e-2 - 0.527%
aug-70 0.754 0.755 + 0.182% 1.984e-2 1.973e-2 - 0.552% 1.007e-2 1.001e-2 - 0.566%
aug-60 0.659 0.660 + 0.067% 1.255e-2 1.246e-2 - 0.697% 6.347e-3 6.303e-3 - 0.705%
aug-50 0.581 0.582 + 0.049% 1.006e-2 9.951e-3 - 1.126% 5.088e-3 5.029e-3 - 1.144%
aug-40 0.542 0.541 - 0.084% 4.692e-3 4.588e-3 - 2.224% 2.367e-3 2.314e-3 - 2.246%
aug-30 0.520 0.521 + 0.039% 3.411e-3 3.354e-3 - 1.672% 1.724e-3 1.695e-3 - 1.678%
aug-20 0.507 0.508 + 0.029% 2.139e-3 2.175e-3 + 1.653% 1.087e-3 1.105e-3 + 1.618%
aug-10 0.501 0.502 + 0.026% 1.275e-3 1.340e-3 + 5.093% 6.658e-4 6.996e-4 + 5.064%

B. Task in the non-standard query environment

Table III presents the experimental results in the non-
standard query environment.

Observing the results in Table III, the following findings
can be noted: (1) Without data augmentation, semantic queries
have a significant advantage over text queries, showing the
highest improvements in the three metrics, reaching up to
2.408%, 55.934%, and 56.829%, respectively (marked in red
color). (2) Even with data augmentation, semantic queries still
exhibit better performance, with the highest improvements
in the three metrics reaching up to 0.765%, 10.527%, and
10.712%, respectively (marked in red color).

The reasons behind the differences in (1) and (2) are
attributed to that the model without data augmentation, strug-
gles to handle diverse and complex queries, leading to a
significant decrease in predictive accuracy. Thus, leveraging
Text2Semantics to refine and restore the semantics results
in a significant leap in performance. On the other hand, the
model with data augmentation, already possesses the capability
to handle complex queries, resulting in a slight decrease
in accuracy, and therefore, the improvements after semantic

restoration are also comparatively lower. At the same time,
we notice that the augmented models, while retaining fewer
voxels, have an extremely low negative impact on AUC when
using semantic queries. However, compared to the significant
improvement in Dice and MIoU, this impact can be considered
negligible.

C. Comparison with SOTAs

Results in Table IV demonstrate that Chat2Brain outper-
forms Text2Brain and NeuroQuery, both in standard and non-
standard query environments, with the most relevant voxels
retained in the prediction results (10% or 20%).

While Text2Brain can synthesize meaningful neural activa-
tion patterns from free-form textual descriptions, some activa-
tion patterns learned from certain published studies are found
at incorrect positions. Compared to Text2Brain, our model
can learn deeper and further from input queries, then generate
more accurate activation patterns. Fig.4 shows two such exam-
ples. As reported in [1], researchers studied activation patterns
when subjects speak the Japanese character Kanji, increased
activation patterns are shown in posterior regions of the left,



TABLE III
PERFORMANCE COMPARISON OF THE CHAT2BRAIN METHOD.

Method/Metrics Auc Dice mIou

non-chat chat over non-chat chat over non-chat chat over

non-aug-100 0.601 0.599 - 0.524% 0.223 0.222 - 0.600% 0.131 0.130 - 0.725%
non-aug-90 0.801 0.802 + 0.087% 0.058 0.065 + 10.078% 0.031 0.034 + 10.844%
non-aug-80 0.705 0.713 + 1.102% 0.047 0.056 + 19.373% 0.025 0.030 + 20.782%
non-aug-70 0.623 0.637 + 2.180% 0.038 0.048 + 25.467% 0.019 0.025 + 27.060%
non-aug-60 0.573 0.587 + 2.408% 0.025 0.033 + 30.029% 0.013 0.017 + 31.592%
non-aug-50 0.544 0.555 + 2.034% 0.020 0.027 + 32.168% 0.010 0.014 + 33.586%
non-aug-40 0.528 0.535 + 1.325% 0.010 0.015 + 37.012% 0.006 0.008 + 39.200%
non-aug-30 0.516 0.519 + 0.741% 0.008 0.010 + 30.711% 0.004 0.006 + 32.022%
non-aug-20 0.508 0.509 + 0.189% 0.006 0.007 + 21.982% 0.003 0.004 + 23.263%
non-aug-10 0.503 0.505 + 0.344% 0.003 0.005 + 55.934% 0.002 0.003 + 56.829%

aug-100 0.646 0.631 - 2.486% 2.439e-1 2.361e-1 - 3.199% 1.458e-1 1.403e-1 - 3.772%
aug-90 0.790 0.796 + 0.765% 3.822e-2 3.922e-2 + 2.608% 1.973e-2 2.026e-2 + 2.690%
aug-80 0.805 0.807 + 0.253% 2.662e-2 2.747e-2 + 3.220% 1.259e-2 1.404e-2 + 3.288%
aug-70 0.760 0.754 - 0.726% 1.904e-2 1.984e-2 + 4.196% 9.664e-3 1.008e-2 + 4.263%
aug-60 0.666 0.659 - 1.297% 1.190e-2 1.255e-2 + 5.445% 6.015e-3 6.348e-3 + 5.519%
aug-50 0.587 0.581 - 0.898% 9.433e-3 1.006e-2 + 6.688% 4.764e-3 5.088e-3 + 6.799%
aug-40 0.542 0.541 - 0.353% 4.289e-3 4.692e-3 + 9.388% 2.161e-3 2.367e-3 + 9.534%
aug-30 0.520 0.519 - 0.135% 3.086e-3 3.411e-3 + 10.527% 1.557e-3 1.724e-3 + 10.712%
aug-20 0.507 0.506 - 0.210% 2.043e-3 2.140e-3 + 4.727% 1.035e-3 1.087e-3 + 5.011%
aug-10 0.502 0.501 - 0.078% 1.262e-3 1.276e-3 + 1.029% 6.534e-4 6.669e-4 + 1.911%

TABLE IV
PERFORMANCE COMPARISON OF THE CHAT2BRAIN METHOD.

Method/Metrics Standard Non-Standard

Dice mIou Dice mIou

neuroquery-20 6.442e-4 3.224e-4 6.414e-4 3.210e-4
text2brain-20 2.139e-3 1.087e-3 2.043e-3 1.035e-3
chat2brain-20 2.175e-3 1.105e-3 2.140e-3 1.087e-3

neuroquery-10 4.570e-4 2.287e-4 4.442e-4 2.222e-4
text2brain-10 1.275e-3 6.658e-4 1.262e-3 6.534e-4
chat2brain-10 1.341e-3 6.996e-4 1.276e-3 6.665e-4

Fig. 4. Results of Chat2Brain and Text2Brain in two sutdies under non-
standard environment. The red regions are the ground truth, the blue regions
are the predicted results from Text2Brain, and the yellow is the predicted
results from Chat2Brain. Interpretation of the red box is referred to the text.

middle, and inferior frontal gyri, which is viewed as a part of
Broca Area for language processing (red regions in Fig.4(a)).
Text2brain predicts activation patterns in the right hemisphere
(blue regions), but our model correctly predicts these patterns
near the left inferior frontal gyri (yellow regions). In another
study where brain patterns with different handgrip types are
compared [2], our method could not only learn more precise
activation patterns in the pre-central gyrus from another study
but also find activation patterns in the middle post central gyrus
near Brodmann Area 4 compared to Text2Brain (red-boxed
region in Fig.4(b)). In conclusion, our method can predict more
precise activation patterns by reorganizing textual descriptions
and learning semantic queries.

Taking into account the results in the standard and non-
standard environment, it can be concluded that Chat2Brain
establishes a two-stage mapping model with high generaliz-
ability, capable of handling complex and challenging query
environments.

VI. CONCLUSION

In this work, we proposed a Chat2Brain model that com-
bines Text2Brain with ChatGPT to generate brain activation
maps from semantic queries. By introducing ChatGPT for
data augmentation using ChatAUG and semantic extraction
using Text2Semantics during both training and testing, we
transformed conventional text queries into more informative
semantic queries. This established a model, Chat2Brain, with
improved generalizability and the ability to handle complex
query environments that may be encountered in practical
applications. Chat2Brain not only captures rich relationships



between different semantics but also leverages the accumulated
knowledge associations of large language models to restore,
refine, and expand these semantic relationships. It addresses
the limitations of previous methods such as Text2Brain, Neu-
roquery, and Neurosynth in dealing with complex queries in
real-world scenarios. Additionally, it bridges the gap between
large language models and neuroscience through the modality
of text, marking the first step in the development of large
models in the field of neuroscience. This will contribute to
further advancements and explorations. In the future, we will
strive to develop large models specifically tailored to the
field of neuroscience, linking the internal activations of the
models with brain activations to explore more possibilities in
neuroscience.
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