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In most cases, the direct downsampling method outperforms JPEG,
without downsampling. This is because only a quarter of the original
data is needed to compress in the downsampling compression scenario.
The IDID-based image compression scheme significantly outperforms
the former two. This can be attributed to the property that IDID is able
to preserve more information in the downsampled images.

Fig. 7 gives the visual comparisons among different compression
methods at 0.20 bpp for Elaine (512 � 512). It is shown that JPEG re-
sults in the worst visual quality due to the existence of severe blocking
artifacts. In the reconstructed image by Direct� NLEDI (direct down-
sampling and NLEDI interpolation), blocking artifacts disappeared;
however, there is much more noise. This is because a lot of detail in-
formation is lost during direct downsampling, and it cannot be recov-
ered by NLEDI. On the contrary, the reconstructed images by IDID_Bi-
linear � Bilinear (IDID_Bilinear downsampling and Bilinear interpo-
lation) and IDID_NLEDI�NLEDI (IDID_NLEDI downsampling and
NLEDI interpolation) exhibit better visual quality and higher PSNR.

V. CONCLUSION

An IDID algorithm has been proposed in this paper. Different from
other downsampling algorithms, the proposed IDID hinges the inter-
polation to the downsampling process. For each input image, the IDID
is able to obtain an optimal downsampled image from which a high-vi-
sual-quality image with the same resolution as the input image is gen-
erated. We have also proposed a content-dependent IDID algorithm for
the interpolation methods with varying interpolation coefficients. Ex-
perimental results demonstrate the viability and efficiency of the pro-
posed IDID.
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Cellular Neural Networks, the Navier–Stokes Equation,
and Microarray Image Reconstruction

Bachar Zineddin, Zidong Wang, and Xiaohui Liu

Abstract—Although the last decade has witnessed a great deal of im-
provements achieved for the microarray technology, many major develop-
ments in all the main stages of this technology, including image processing,
are still needed. Some hardware implementations of microarray image pro-
cessing have been proposed in the literature and proved to be promising
alternatives to the currently available software systems. However, the main
drawback of those proposed approaches is the unsuitable addressing of the
quantification of the gene spot in a realistic way without any assumption
about the image surface. Our aim in this paper is to present a new image-re-
construction algorithm using the cellular neural network that solves the
Navier–Stokes equation. This algorithm offers a robust method for esti-
mating the background signal within the gene-spot region. The MATCNN
toolbox for Matlab is used to test the proposed method. Quantitative com-
parisons are carried out, i.e., in terms of objective criteria, between our
approach and some other available methods. It is shown that the proposed
algorithm gives highly accurate and realistic measurements in a fully auto-
mated manner within a remarkably efficient time.

Index Terms—cDNA microarray reconstruction, cellular neural net-
works (CNN), isotropic diffusion, Navier–Stokes equations (NSEs), partial
differential equations (PDEs).

I. INTRODUCTION

DNA microarray is a remarkably successful high-throughput tech-
nology for functional genomics [23]. Microarrays allow researchers
to collect quantitative data about the expression level of many thou-
sands of genes in a single experiment. Therefore, it offers a deep under-
standing of gene interaction and regulation. However, the microarray
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Fig. 1. Part of a microarray image gives a good example of the variations in
the background signal. The target is to reconstruct the areas of the spots, i.e.,
the bright circle signals, assuming that there is no information in these areas
(“0”s).

is still far from perfection, and it needs improvements in all the main
stages of the microarray process, including image analysis.

Although microarray technology has been engineered to a fine tol-
erance, there exists high signal variability through the surface of the
microarray image (see Fig. 1). Due to this imperfection in the mi-
croarray production, many types of noise, i.e., biological or systematic
[11], contaminate the resulting image, and it becomes a challenging
issue to address the microarray data quality effectively. Although the
image-analysis stage significantly affects the identification of differen-
tially expressed genes [14], the researchers tend to focus their efforts
to tackle the challenges of gene expression ratios as rendered from the
microarray images [7]. So far, a few studies have been dedicated to the
analysis of the image itself [11].

Generally, analyzing the microarray image complies with the fol-
lowing steps [24]: 1) the filtering stage; 2) the gridding stage; 3) the
segmentation stage; and 4) the final stage, which is the quantification
of the underlying genes. The currently available software packages for
image analysis (e.g., see [1] and [10]) are largely dependent on manual,
semiautomated, or fully automated methods, which consume a lot of
processing time. For instance, the ScanAlyze [10] software requires the
operator to take as many as 14 steps [3], and many of these steps have to
be repeated several times. Therefore, in order not to lose the advantages
of the parallelism of the microarray technology, a hardware implemen-
tation of microarray image analysis is an auspicious alternative to these
tools. Furthermore, the hardware utilization should process the image
to obtain highly accurate and realistic data in a fully automated manner
within a remarkably efficient time.

In order to overcome the aforementioned bottleneck for microarray
image processing, Samavi et al. [22] proposed a hardware architec-
ture to analyze the microarray image. In particular, Arena et al. [2]
used cellular neural networks (CNNs) and analog-and-logical (ana-
logic)-signal-dedicated CPU called CNN universal machine. Note that
the CNN [9] framework provides a flexible approach to describe spa-
tiotemporal dynamics in the discrete space. In particular, it allows for an
efficient very-large-scale-integration implementation of analog array-
computing structures. Such devices possess huge processing power that
can be employed to solve numerically expensive problems. The CNN
representation of a partial differential equation (PDE) is a spatially dis-
crete dynamical system, which is qualitatively equivalent to the orig-
inal spatially continuous system. Both systems operate in continuous
time, and the values of state variables, interactions, and parameters are
all continuous. In [2], the proposed algorithm facilitates the parallel na-
ture of the CNN to achieve the required objectives. Unfortunately, there
have been two limitations with the methods developed in [2] and [22].
First, the operator has to define, in advance, a specific set of threshold
values in order to address the intensity analysis. Consequently, the anal-
ysis depends on a particular hypothesis about the underlying question
of the experiment. Second, in these methods, it is assumed implicitly
that the background noise and other artifacts are absent in the output
of the segmentation stage, which is not necessarily the case. To this
end, it is concluded that the image-analysis stage should have a specific

background determination process that can analyze the inherent varia-
tion between the gene and the background signals within any proposed
hardware framework dedicated to microarray image analysis, and this
constitutes the motivation of our current investigation.

In this paper, a new methodology for cDNA microarray image re-
construction is proposed. The idea is to use a practical CNN approxi-
mation to solve the Navier–Stokes equation (NSE), which describes the
fluid velocity in the incompressible fluid, i.e., to obtain an exemplary
approximation of the background in the gene-spot region. The theoret-
ical basis of this approach can be found in [5], where the remarkable
similarity has been highlighted between the steam function and image
intensity. It has also been suggested in [5] that the NSE solution is ap-
plicable for the inpainting (reconstruction) purpose. A CNN is an ana-
logic processor array that allows the application of a local strategy, i.e.,
with less computational complexity, to meet the task requirements. It
is important to note that using local information leads to a robust and
reliable algorithm in some applications such as microarray image re-
construction as we will see later. Due to its architecture, the 2-D CNN
array is used widely to solve image-processing and pattern-recogni-
tion problems. Furthermore, the parallelism of this structure allows one
to perform the most computationally expensive image-analysis tasks
in a faster way than a classical CPU-based computer. For this paper,
subtracting the reconstructed background from the original spot signal
should give rise to more accurate quantification of genes’ signals.

The main contribution of this paper lies in two aspects. First, a new
microarray image-reconstruction algorithm is proposed by using the
CNN that solves the NSE, and such an algorithm is proven to be robust
for estimating the background signal within the gene-spot region. Al-
though the relation between Bertalmio’s reconstruction method and the
NSE has been established and a CNN algorithm has been investigated
to achieve the NSE approximation in the incompressible fluid studies,
a full CNN algorithm for image reconstruction based on the NSE has
not been developed yet and remains challenging. In addition, the spe-
cial characteristics of the microarray images make this task far from
a straightforward application. Second, the CNN templates (complete
set of templates) are developed with specific steps to achieve the mi-
croarray image reconstruction. This paper is organized in the following
manner. First, we formalize the problem area as it pertains to microarray
image data and briefly explain some available approaches in Section II.
Section III discusses the basic idea of our proposed algorithm with ap-
propriate steps involved in the analysis highlighted. We then briefly de-
scribe the data used throughout this paper and evaluate the algorithm
over real-world data in Section IV. Section V summarizes our findings
and renders some observations into possible future directions.

II. EXISTING IMAGE-RECONSTRUCTION TECHNIQUES

Regardless of the microarray image-analysis methodologies that
have been followed, all of them deal with the same basic principles. For
example, the features’ location and the classification of the pixels into
foreground and background signals have to be carried out. Then, the
median of the gene spot and the median of the background pixels are
taken to be foreground and background representatives, respectively.
Typically, in the existing literature, by assuming that there is a little
variation within the gene and background regions, the background
median is subtracted from the foreground, and the result is summarized
as a ��� � ratio. Unfortunately, this is not necessarily true. For instance,
many problems can exist, such as missing or partial gene spots, shape
inconsistencies, and background variation such as the scratch and the
variation of the background illuminations around the presented genes.

In the past years, there has been a growing need for establishing a
more specific background determination process that can account for
the inherent variation between the gene and background regions. One
of the first techniques applied specifically to reconstruct microarray im-
ages is from O’Neill et al. [17]. In particular, a gene area is replaced by
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selected pixels that are most similar to the known border from a known
background region. Most recently, Zineddin et al. [25] proposed a CNN
algorithm to predict the pixels’ values in the reconstructed area based
on the boundary information. The underlying assumption is that the
similarity with the given border intensities guarantees the transition of
the local background structures through the new region. However, the
algorithm in [25] has a parameter that should be specified based on the
image surface. In addition, the algorithm utilizes one-layer boundary
information to fill the reconstructed area, and it would be interesting to
improve the inpainting method by employing more information about
the layer, which is a series of pixels forming a closed line.

III. NOVEL CDNA MICROARRAY IMAGE-RECONSTRUCTION

TECHNIQUE

A. Description

In this paper, we propose to use a CNN approximation to the NSE
for image reconstruction (CNN-NSIR), which is a novel technique that
removes gene-spot regions from a microarray image surface. The re-
moval of these regions leads to a more accurate background estima-
tion, which can then be used to yield yet more realistic genes’ signal.
Techniques such as that in [17] in the spatial domain exclusively and
essentially utilize the gene border pixels as reference values to produce
appropriate pixel mappings. Although this approach works well, such
a kind of brute-force methods is typically expensive with respect to
the execution time. However, if we can utilize the locally spatial in-
formation integrated with a hardware implementation, we are able to
overcome this limitation. Suppose we have subset � � � where we
would like to modify the gray level of � based on the information of �
from the surrounding region � � �, where � is the reconstructed re-
gion. The modified region ��, i.e., the solution, will have equal values
as � in � � �. The process of finding the appropriate �� is the recon-
struction problem.

The approach proposed in [4] attempts to mimic techniques as
used by skilled artists to perform inpainting manually. It works on
the principle of a PDE isotropic diffusion model. Using a mask to
specify the area to be inpainted, the algorithm fills in these areas by
propagating the information of the border region along a level line
(isophotes). Isophotes are level lines of equal gray levels. Mathemati-
cally, the direction of the isophotes can be interpreted as ��� , where
� is gradient ���� ��� and �� � ����� ��� means the direction
of the smallest change. Next, the smoothness could be interpreted as
�� , where � is the usual Laplace operator ���� � ����. In general,
�� will extract an edge and noise in an image. Therefore, in order
to mimic the idea of artistic inpainting, we should propagate �� in
the direction of ��� from the boundary of the reconstructed area
��. Consequently, the solution criterion for the inpainting problem
�� satisfies ����� � ���� � ��, and it is equal to � on ��, which
is the boundary of �. However, microarray images contain thousands
of regions requiring such reconstructions and therefore are computa-
tionally expensive to examine with the highlighted technique. In an
attempt to handle such a time restriction, Oliveira et al. [16] aimed
to produce similar results to [4] albeit quicker, although the approach
may lead to loss of some information in the translation.

In [5], an inpainting approach has been introduced based on the ideas
from classical fluid dynamics to propagate isophote lines continuously
from the border into the reconstructed region. The underlying assump-
tion is to think of the image intensity as a stream function for a 2-D in-
compressible flow. The Laplacian of the image intensity plays the role
of the vorticity of the fluid, i.e., it is propagated into the inpainted area
by a vector field defined by the stream function. The method is based
directly on the NSEs for fluid dynamics, which have the immediate ad-

vantage of well-developed theoretical and numerical results. The basic
equation for the incompressible Newtonian flow is as follows:

�

��
� � � ���� ��� (1)

where is the velocity vector, � is the pressure, and � is the viscosity.
For 2-D flows, we introduce the stream function �, where ��� � .

In image-processing terms, we have the counterpart to the vorticity-
stream function, i.e.,

	� � �	 � �� � �
 ���	���	� (2)

where �� � 	 is the vorticity, ��� � is the direction of the
isophotes, and 
��� accounts for anisotropic diffusion (or edge-pre-
serving diffusion).

B. Designing the Templates

Again, let � be a small area to be reconstructed (inpainted) and let
�� be its boundary. The small size of the gene spot� allows the ability
to use isotropic diffusion in order to propagate information from one
or two layers of pixels from the boundary of the gene spot �� into �.
Therefore, approximating inpainting procedure has been achieved.

As a basic framework, let us consider a 2-D � �
 CNN array in
which the cell dynamics is described by the following nonlinear ordi-
nary differential equation with linear and nonlinear terms:

�
�

��
������ � ���������� �

����

��	���	�������

�
����

��	���	���� � ���

������ � ��	 �������� � 
� � �������� 
�� (3)

where �������� � 
, ���� � � 
, ���� � � ���� �
 � � � �� 
 � � �

�, and ��� , ��� , and ��� are the state, input, and output voltages of the
specific CNN cell, respectively. The state and the output vary in time,
and the input is static (time independent) (for more details about CNN
see [8], [9], and [19] and the references therein).

In all the following template, � is the uniform grid size, and � is
the value of the state resistor in a CNN cell. In addition, provided that
the transient remains bounded (i.e. the cells do not saturate), it is as-
sumed that a CNN array is stable when it starts from a specified initial
condition.

The first derivative �� can be mapped directly onto the CNN
array, resulting in the following simple template �DER� � ���� �
ORIGINAL IMAGE� BC � ZF�:

DER�
 � �� � �
�
��� � 
���
 � � ��� ����� � 
��� (4)

Similarly, the first derivative��� can be mapped directly onto the CNN
array, resulting in the following simple template �DER�� � ���� �
ORIGINAL IMAGE� BC � ZF�:

DER��
 � �� 
��� �
 � � �
 � � 
��� ��� DER��� � 
��� (5)

The linear isotropic diffusion equation can be mapped directly
onto the CNN array, resulting in the following simple template [9]
�DIFFUS � ���� � ORIGINAL IMAGE�BC � ZF�:

DIFFUS
 � �� 
��� �
 
��� � ���� � 
�� 
���
 � 
��� ��� (6)

There are a considerable number of methods for numerical in-
tegration. One of the best known techniques is the Newton–Côtes
method that is based on a polynomial interpolation on equally spaced
points. This method can be transformed into integration rules using
polynomials of any order, giving an error that decreases faster and
faster with the number of points being used as higher order poly-
nomials are chosen [15]. In the light of the work of Luchini [15]
and by applying the closed Newton–Côtes formula (Simpson’s rule),
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we can compute numerically the integration over the �-axis (or
�-axis) based on the spatial information and the following template
�INT� � ���� � ORIGINAL IMAGE�BC � ZF�:

INT�� � �� � �� ���� � ����� � � �	� INT�� � 
�� ���� (7)

Finally, a CNN approximation of the NSE (2) can be created
using a two-layer CNN (see the solution of NSE for incompress-
ible fluids in [13]). With the developed rational in [13], we can
evaluate in (1) using the CNN template (8) for the 	 compo-
nent (those for the 
 component can be generated analogously)
�NSE � ���� � ORIGINAL IMAGE� BC � ZF� as follows:

NSE��� � ��� ����� ������������� � ���� �����

�� ����� �	

NSE 
��� � ��� �� �����
�� �� ��
�� �� �� �	

NSE 
��� � ������
���� �� �� �� �� ��
���	� (8)

Remark 1: All the derived templates have been tuned to be stable
in the grayscale area (i.e., the linear area in the output function, see
[8, Chapter 6]). Therefore, after a specific transient time elapses, the
output of any specific operation would be either the state value or the
output value.

C. Pseudocode of CNN-NSIR

As discussed previously, a common drawback with the existing mi-
croarray image-processing methods is that they cannot address prop-
erly the quantification of the gene spot in a realistic way without any
assumption about the image surface. In order to overcome this draw-
back, a CNN algorithm, i.e., CNN-NSIR, is proposed in this paper with
the pseudocode given in algorithm 1.

Algorithm 1 CNN-NSIR Algorithm

Require � {Image: specify gene-spot region pixels}

Require 
 {Image: the image to be reconstructed}

Ensure 
� {Image: the output image}

�� � ��� ��� �
 � ���� �	�

1: � � CNNDilation��� 
� {Add two pixel layer to �}

2: 
 � CNNMask�
� 
�� {
� is The Complementary of �}

3: 
 � CNNDiffusion�
�

4: Set � {�: # of NSE evaluations}

5: Set � {�: transient time of NSE evaluation}

6: �� � CNNDilation��� ��

7: 	 � CNNget ��
� � ��� ����
�

�

8: 
 � CNNget ��
� � ��� �����

9: for � � � to � do

10: ��� � 	 � CNNnse�	� 
� ��� ���Propagate � �� into ���

11: 
� � -CNNIntegration��� 
����

12: 
� � CNNIntegration��� 
����

13: 
 � 
� � 
�

14: ��� threshold�
� {returns 1 where cells’ values equal 0}

15: �� � CNNDilation���� ��

16: 	 � CNNget ��
� � ��� ����
�

�

17: 
 � CNNget ��
� � ��� �����

18: end for

19: 
� � 


Fig. 2. Samples of three different background signals. The reconstructed im-
ages show an acceptable background trend estimation. The third example rep-
resents the effect of the noise artifacts on the spot’s area.

Essentially, the proposed algorithm takes mask � and the input
image 
 . Note that, in this algorithm, we deal with each channel
separately; thus, we should consider 
 as either the ��� or��� image.
The mask is an image that marks the spot regions with pixels of value
“1.” The first step in the algorithm is to add a layer of two-pixel thick.
This layer guarantees the elimination of the effect of the direct spot
boundary pixels. In the segmentation result, the boundary pixels usu-
ally contain overlapping information from the spot and the background
signal. Therefore, it is not a good representative of the background
signal in the local area. Fig. 2 presents a sample-reconstructed region.

IV. DISCUSSION

A. Notes About the Algorithms

Due to the high signal variability that exists across the microarray
surface, when working directly with the raw microarray information,
propagating the information of the border region �� along a level line
(isophotes) would be impotent. Therefore, rather than using the raw
image, it is suggested that producing a smoothed version of the image
data would not only be advantageous but also more effective in terms
of the overall goal. In our algorithm, the DIFFUS template has been
used as a smoothing operator. Although this isotropic diffusion tem-
plate causes blurring effects, it can achieve the required refining result
by calculating the region (local) average intensities.

Anisotropic diffusion would be a better alternative for the diffusion
operator not only as a smoothing operator (see line 3 in algorithm 1)
but also in evaluating the NSE as well. However, the anisotropic dif-
fusion models require the noise-level estimate � that determines the
magnitude of the edges to be conserved during the smoothing process.
� could be set according to the a priori knowledge about the noise
statistics or could be estimated from the absolute gradient histogram
[6], [18]. However, in a locally connected parallel processing archi-
tecture, it would be very difficult to calculate these values. Thus, other
approaches should be sought to achieve this target. Rekeczky et al. [19]
proposed a possible method to estimate the noise level roughly as the
minimum of the maximal local variations at the nodes of the coarse-grid
model.

To evaluate the outcome of the proposed approach, the results have
been compared with the output image by two other algorithms that
are dedicated specifically for reconstructing (inpainting) images. These
two algorithms are Bertamio’s method [4] and the “f-Inpaint” method
[25]. Although the isotropic diffusion operator has been applied as a
first step in Bertalmio’s algorithm (and anisotropic diffusion there-
after), the microarray characteristics do cause a very long settling time.
The “f-Inpaint” method uses the information of single-bit thickness
layer to reconstruct the spot’s area. Although the “f-Inpaint” method
is remarkably faster than CNN-NSIR, it causes more spots to be con-
sidered as a bad region and therefore omitted in later analyses.

B. Data Set Characteristics

The images used in this paper are derived from the human gen1 clone
set data. These experiments were designed to contrast the effects of
two cancer inhibiting drugs (PolyIC and LPS) over two different cell
lines. One cell line represents the control (untreated) and the other the
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treatment (HeLa) line over a series of several time points. In total, there
are 47 distinct slides with the corresponding GenePix results presented.
Each slide consists of 24 gene blocks, with each block containing 32
columns and 12 rows of gene spots. The gene spots in the first row of
each odd-numbered block are known as the Lucidea ScoreCard [21]
and consist of a set of 32 predefined genes that can be used to test
various experiment characteristics.

C. Evaluation

In order to quantify the performance capabilities of our technique, a
quality measure is required to allow the judgment of how the estimated
background affects the quantification of the gene spot. For this purpose,
a systematic objective method, which is based on the descriptive sta-
tistical interclass correlation coefficient (ICC) measures [12], is used
to compare the results produced by different techniques. The rational
is justified as follows. The set of 32 predefined genes is used in the
comparison process. Using these controls, we base our analysis on the
following assumptions: 1) The better the reconstruction is, the higher
the correlation within the same control should be (minimum ��� ); 2)
the better the reconstruction is, the lower the correlation between the
genes within the array should be (maximum ��� ); and 3) the better the
reconstruction is, the higher the ICC value should be.

In order to compare the proposed algorithm with a commonly used
median background estimation, we estimate the reliability of each
method for each experiment using the components of the variance
model ��� � �� � ��� , where ��� is the log-expression ratio for the
� spot and the � replicate. The error variance component ��� , which
is associated with ��� , represents the reproducibility of the method,
i.e., how much the spots signals within several replicates differ from
the real gene’s expression. The variance component ��� , which is
associated with ��, represents the true spot-to-spot (gene-to-gene)
variability, i.e., the variance of all spot signals from the real mean
of all genes’ expressions. Then, the intraclass correlation coefficient
(ICC) represents the reliability of the method. The ICC is used as a
measure of reproducibility over a measure such as the error variance
or its square root �� alone because it guards against algorithms that
produce ratio estimates that are all shrunk to a central value.

The variance component, which is the error within genes and
between replicates, is estimated by ���� �

�

���

�

���
���� �

�����
�������� � ��	, where �� is the number of replicate ar-

rays, �� is the number of genes, and ��� � �

���
������ is the

mean of every individual gene’s log-expression ratios over the
replicate arrays. The between-gene variance component is esti-
mated by ���� �

�

����
��� � ������

����� � �� � �������, where
����� �

�

���
�

���
���������� is the mean of all genes in all arrays.

The estimated ICC is ICC � ��������
�

� � �����.
Fig. 3 presents the estimated variance components and the ICC for

the data set images and on average. The reliabilities of all methods are
high, with the CNN-NSIR method appearing on average to be more
reliable than the other methods. Note that even the within-spot vari-
ability ���� (the noise) is notably smaller for the CNN-NSIR method,
although the between-spot variability (the signal) is bigger for the f-In-
paint method. Bertalmio’s method with a smoothing step at its begin-
ning works very well for most images. When it comes to the high-
throughput microarray images, Bertalmio’s method cannot be applied
directly as the processing becomes very time consuming. In fact, our
proposed algorithm improves the applicability of Bertalmio’ method in
terms of reducing the processing time. It is shown that our algorithm
could facilitate potentially the hardware implementation of Bertalmio’s
method in order to reconstruct the microarray image.

It should be pointed out that the blind algorithm (i.e., an operator-
independent algorithm) limits our ability to discriminate between bad
spots from the good ones. However, this will give a better insight about

Fig. 3. “Y-axes”: (a) Within-spot estimated variance. (b) Between-spot esti-
mated variance. (c) Average ICC over the data set. (“X-axes:” The methods are
“No Background Correction,” “Median Background Estimation,” “Bertalmio,”
“CNN-NSIR,” and “f-Inpaint” [25]).

Fig. 4. (a) Box plot for one specific gene. (b) Box plot for one experiment, one
image, and data (all genes). (The methods are “No Background Correction,”
“Median Background Estimation,” “Bertalmio,” “CNN-NSIR,” and “f-Inpaint”
[25]).

the robustness of the implemented methodology. In our analysis, every
signal less than 100 is considered to be a bad reading and consequently
omitted from the analysis.

Fig. 4 gives more detailed plots about the data. Fig. 4(a) shows that
not only the range of the signal has been changed due to the recon-
struction algorithm application but the average values have also been
changed as well. The distribution of the signals, i.e., after applying the
reconstruction methods (median background estimation, Bertalmio’s
method, f-Inpaint, and CNN-NSIR), has a narrower normal distribution
with the data skewed toward the lower side. Note that 50% of the genes’
values fall within a 0.1 range around 0.5 for our method. Furthermore,
while the middle 50% values of “No Est.” fall into the 0.4 range width
and the whole range is 1.1, the middle 50% values of “CNN-NSIR” fall
into the 0.7 range width, and the whole range is 1.6 [see Fig. 4(b)].

V. CONCLUSION

In this paper, we have presented a novel image-reconstruction
framework that attempts to improve the quantification results of the
microarray image. Specifically, the framework consists of several
components that process a microarray image based on a given mask
(could be the output of any automated segmentation process) without
human intervention. The algorithm of CNN image reconstruction (i.e.,
CNN-NSIR), which is outlined in algorithm 1, has been found to
have the following advantages over current implementations: 1) the
proposed algorithm achieves the reconstruction of the microarray in a
simple yet robust way; 2) the algorithm is an operator-free method that
takes only the raw data and a mask as the input; 3) the algorithm can
be applied on CNN-UM [20] and therefore allows the researchers to
process the image itself and get the quantitative data for further anal-
ysis not only in efficient time but also with remarkably high accuracy;
and 4) as it has been mentioned earlier, the potential of the algorithm
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is proven based on the direct comparisons between our proposed
approach with other methods such as Bertalmio’s, “f-Inpaint,” and
median-background-estimation methods.
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Supervised Ordering in : Application to Morphological
Processing of Hyperspectral Images

Santiago Velasco-Forero, Student Member, IEEE, and Jesus Angulo

Abstract—A novel approach for vector ordering is introduced in this
paper. The generic framework is based on a supervised learning formula-
tion which leads to reduced orderings. A training set for the background
and another training set for the foreground are needed as well as a su-
pervised method to construct the ordering mapping. Two particular cases
of learning techniques are considered in detail: 1) kriging-based vector
ordering and 2) support vector machines-based vector ordering. These
supervised orderings may then be used for the extension of mathematical
morphology to vector images. In particular, in this paper, we focus on
the application of morphological processing to hyperspectral images,
illustrating the performance with practical examples.

Index Terms—Hyperspectral imagery, learning an ordering, mathemat-
ical morphology, supervised learning.

I. INTRODUCTION

Mathematical morphology is a nonlinear image processing method-
ology based on the application of lattice theory to spatial structures [1],
[2]. This means that the definition of morphological operators needs a
complete lattice structure, i.e., the possibility of defining an ordering
relationship between the points to be processed. From a theoretical
viewpoint, a partial ordering is sufficient to construct complete lattices;
however, as discussed below, in practical algorithms, we should require
a total ordering (i.e., any pair of unequal points must be ordered). Ex-
tending ordering to multivariate data is not straightforward, because
there is no notion of natural ordering in a vector space, as opposed to
1-D (scalar) case [3]. Therefore, the extension of mathematical mor-
phology to vector spaces, for instance to hyperspectral images, is nei-
ther direct nor trivial due to the high-dimensional nature of the data. For
a general account on mathematical morphology, the interested reader
should refer to [4]–[7], whereas the theoretical formulation of vector
morphology is extensively discussed in [8]–[10]. To overcome the lack
of natural ordering, the following four families of ordering for multi-
channel samples have been identified in the literature [3], [11]. In mar-
ginal ordering (M-ordering), components of vectors are ordered inde-
pendently (pointwise ordering). This approach produces new vectors
which were not originally present in the input image thus, in the case
for instance of color images, introducing color artifacts into the output
image [8]; this is known in the literature as the false color problem.
However, by an appropriate color representation, typically a hue/satu-
ration/luminance, marginal ordering can lead to good results [12]. To
strictly preserve input vectors, the conditional ordering (C-ordering)
approach, also known as lexicographic ordering, is frequently used.
The C-ordering is based on the ordering of the components selected se-
quentially according to different conditions or priorities. When all the
components are used, the C-ordering is a total ordering. Note that this
approach does not use simultaneously the full vector nature of the input.
The P-ordering is based on the partition of the vectors into groups,
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