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Abstract

Statistical inferences on RNA-Seq data, e.g., detecting differential gene expression, are meaningful 

only after proper normalization. However, there is no consensus for choosing a normalization 

procedure from among the many existing procedures. We evaluated several RNA-Seq 

normalization procedures by (1) correlating estimated RNA-Seq expression values to those of 

microarrays, (2) examining the concordance of stable and differential gene detection between the 

platforms, and (3) applying the procedures to simulated RNA-Seq data. Results suggested that 

RNA-Seq normalization procedures have little effect on both inter-platform gene expression 

correlation as well as inter-platform concordance of genes detected as stably or differentially 

expressed. However, the results of simulated analysis suggested that some normalization 

procedures are more robust to changes in distribution of differentially expressed genes. These 

results may provide guidance for selecting RNA-Seq normalization procedures.

1. Introduction

Next-Generation Sequencing (NGS) technology has become a major platform for studying 

both genomics and transcriptomics [1]. RNA-Seq for quantifying RNA expression, one of 

the major applications of NGS technology, has received increased attention because of its 

potential to replace microarray technology. Some of the perceived benefits of RNA-Seq over 

microarrays include (1) improved dynamic range of expression detection and (2) the ability 

to detect a wide variety of RNA forms, e.g., small RNAs and splice variants, among others 

[2, 3]. Analogous to microarrays, normalization of RNA-Seq data to obtain quantitative and 

comparable RNA expression values is an important step [4–6]. Several experimental factors 

in the sequencing pipeline, e.g., library preparation, sequencing depth, and base calling, etc., 

can introduce biases in downstream RNA-Seq analysis. The purpose of the normalization 

step is to detect and calibrate such biases. However, it is unclear (1) how existing RNA-Seq 

normalization procedures differ when applied to the same data and (2) what NGS factors 
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affect normalization performance in terms of correlation with “true” reference RNA 

expression and detection of stable and differential gene expression. Using two NGS datasets, 

two microarray datasets (as “true” references) and simulated datasets, we compared several 

existing procedures for RNA-Seq normalization and evaluated them in terms of detecting 

stably and differentially expressed genes (SEGs and DEGs).

Current RNA-Seq normalization procedures consist of both simple and sophisticated scaling 

methods based on procedures for microarray normalization. Most of these procedures are 

simple global normalization procedures that use constant scaling factors for all genes within 

a single sequencing sample. We investigated some existing RNA-Seq normalization 

procedures including “Reads Per Kilobase of exon model per Million mapped reads 

(RPKM)” [7], “Trimmed Mean of M values (TMM)” [8], “Relative Log Expression (RLE)” 

[9], and “Quantiles” [10]. RPKM adjusts the total number of mapped reads per sample and 

the length of template transcripts per gene. However, RPKM can be biased by relatively 

small proportions of highly-expressed genes and, as such, can bias DEG detection [10]. The 

number of reads expected to map to a gene is not only dependent on the expression level and 

length of the gene, but also on the composition of the sampled RNA population. 

Normalization procedures such as TMM, RLE, and Quantiles attempt to estimate scaling 

factors between two samples to adjust total RNA output [8]. The TMM method trims log-

ratio (M values) and log-average (A values) to find possible sets of stably expressed genes to 

estimate scaling factors. The RLE method generates a reference library by calculating the 

geometric mean of each gene across all samples; the median ratio of each sample to the 

reference is taken as the scaling factor. The Quantiles method uses the ratio of quantiles 

(e.g., upper quartile) between two samples as the scaling factor. The TMM, RLE, and 

Quantiles procedures belong to the group of global normalization procedures. The difference 

between these methods and RPKM is that they consider adjusting total RNA output rather 

than library size, which can reduce biases caused by highly-expressed genes.

In section 2, we describe RNA-Seq and microarray datasets used in our study as well as 

preprocessing, normalization and evaluation methods—i.e., correlation, stable and 

differential gene detection, and simulated data. In section 3, we present the results obtained 

after evaluating these methods. Lastly, we conclude this work in section 4.

2. Methods

Figure 1 illustrates the workflow of this study. We collected microarray and RNA-Seq 

datasets from online repositories and prepared them using several preprocessing and 

normalization steps. Our objective was to observe the effect of existing normalization 

procedures on (1) correlation between two platforms and (2) reproducibility of detecting 

stable and differential gene expression. We divided the evaluation methods into two 

categories: comparison with microarray datasets, including correlation analysis and 

SEG/DEG analysis, and simulation analysis. For correlation analysis, we explored the 

correlation between all possible pairs of datasets. For SEG/DEG analysis, we used 

algorithms to find sets of SEGs and DEGs from each dataset, and then observed the effect of 

normalization procedures on the concordance of these sets between datasets. Lastly, we 
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simulated datasets containing different RNA-Seq expression distributions to observe their 

effect on the performance of each normalization procedure.

2.1. Data acquisition

In this study, all datasets contain both kidney and liver samples. We obtained two NGS 

datasets (SRP000225 [11] and ERP000546 [12]) from the Sequence Read Archive (SRA) 

[13] and two microarray datasets (accession numbers: GSE11045 [11] and GSE3526 [14]) 

from the Gene Expression Omnibus [15]. Table 1 summarizes these datasets.

SRP000225 and GSE11045 belong to the same study and are composed of three technical 

replicates for each tissue (kidney or liver) and platform (microarray or NGS) combination. 

Data were acquired using Illumina Genome Analyzer and Affymetrix GeneChip HG U133 

Plus 2.0 Arrays. These two datasets are denoted as NGS_1 and MA_1.

The ERP000546 study contains transcription profiling data from Illumina’s Human 

BodyMap 2.0 project. This project sequenced 16 human tissues, including kidney and liver, 

using the Illumina HiSeq 2000 platform. The dataset includes both single-end and paired-

end sequencing data for each biological sample. This dataset is denoted as NGS_2.

The GSE3526 study used Affymetrix GeneChip HG U133 plus 2.0 Arrays to profile the 

gene expression of 353 biological samples representing 65 tissues. Each tissue has three to 

nine biological replicates. Among them, there are four liver samples, four kidney cortex 

samples, and four kidney medulla samples. This dataset is denoted as MA_2.

2.2. NGS and microarray data preprocessing

We used caCORRECT and Robust Multichip Average (RMA) to calculate microarray 

probeset expression in the log-base two scale [16, 17]. To directly compare expression 

values between NGS and microarray technologies, we aligned reads from the NGS datasets 

to microarray probeset sequences. We focused on probeset expression rather than gene 

expression to avoid the complexity of mapping probesets to genes. We used an alignment 

reference composed of target sequences from the Affymetrix GeneChip HG U133 Plus 2.0 

Array with an additional padding of 100 base pairs at both the 3’ and 5’ ends. We obtained 

padding sequences from the original exemplar or consensus mRNA transcripts of the same 

microarray chip. We used BLAT [18] to find the location of target sequences in the 

exemplar/consensus mRNA transcripts. Padding is necessary because we do not want to 

ignore reads aligned to the boundary of target sequences.

We then filtered probesets based on number of aligned short sequences. Probesets with low 

expression (i.e., with only a small number of short sequences aligned) may contribute to 

noise in the gene expression estimation. We discarded a probeset if any of its expression 

values across all samples in the dataset falls below 5, 10, or 30 aligned short sequences. 

Table 2 lists the number of probesets remaining in each dataset after quality filtering.

We calculated expression values for RNA-Seq data by considering the deepest coverage of 

all base pairs within the target sequence region of each probeset. We used bwa [19] to align 

the sequences, resulting in around 3.3% and 11.2% of reads uniquely aligning to target 
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sequence regions for the NGS_1 and NGS_2 datasets, respectively. We transformed all NGS 

expression values to the log-base two scale in order to more closely match microarray gene 

expression values.

2.3. Correlation analysis

We used Pearson correlation to examine cross-platform gene expression concordance for six 

combinations of four datasets to better understand the influence of normalization 

procedures. The factors we explored include normalization procedures as well as quality 

filtering thresholds. We also used a test for equality of multiple correlation coefficients [20] 

to determine if differences between correlations were statistically significant.

2.4. Analysis of stably expressed genes

Assuming a dataset has multiple samples {T_1,T_2,…,T_m}, and each sample has 

expression values {E_(T_i,1),E_(T_i,2),…,E_(T_i,n)} for all probesets. Given a threshold C 

> 0, a probeset “x” is claimed to be stably expressed if

(1)

We ranged threshold C from 0.1 to 1.9, which corresponds to fold-changes of 1.07 to 3.73.

We applied equation (1) to all four datasets and obtained SEG sets. The following sets are 

defined from the original SEG sets (named as in Table 1): NGS_1∩MA_1, NGS_1∩MA_2, 

NGS_1∩MA_1∩MA_2 for NGS_1 dataset, and NGS_2∩MA_1, NGS_2∩MA_2, 

NGS_2∩MA_1∩MA_2 for NGS_2 dataset. Based on the assumption that microarrays are 

the true reference, we calculated the proportion of SEG calls that are simultaneously 

supported by NGS and microarray datasets to those supported by microarray datasets only. 

The factors we investigated include normalization procedures as well as quality filtering 

thresholds.

2.5. Analysis of differentially expressed genes

Assuming a dataset as described in section 2.4. Given a threshold D > 0, a probeset “x” is 

claimed to be differentially expressed if

(2)

We ranged threshold D from 1.0 to 3.0, which corresponds to fold-changes of 2 to 8. The 

evaluation process is the same as that of SEG analysis.
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2.6. Simulation analysis

We assessed the robustness of normalization procedures to various distributions using 

simulated RNA-Seq datasets. Table 3 summarizes seven expression distributions. We 

directly simulated raw counts of aligned short sequences so that we can eliminate errors 

introduced from the sequencing and alignment steps. Using both realistic and hypothetical 

distributions, we can identify pros and cons of each normalization procedure. The 

underlying assumption is that these distributions represent true absolute expression levels 

that normalization procedures should be able to quantify.

3. Results and discussion

3.1. Correlation analysis

Figure 2 demonstrates the concordance of probeset expression between each pair of four 

datasets. Intra-platform comparisons generally have higher correlation. For NGS data, 

increasing the quality filtering threshold decreases the correlation coefficient.

An important result of this study is that there is no difference between normalization 

procedures in terms of correlation coefficients (i.e., we obtained a p-value of 1 using the test 

for equality of multiple correlation coefficients [20] with a null hypothesis that there is no 

significant difference among all correlation coefficients). This is a reasonable conclusion 

since correlation coefficient is unaffected by changes to data scale. We used scaling 

normalization procedures. Thus, the differences among these methods cannot be detected via 

correlation coefficient.

3.2. Analysis of stably expressed genes

We compared sets of SEGs identified in datasets NGS_1, MA_1, NGS_2, and MA_2. Stable 

gene expression is biologically significant because it implies that a gene is functionally 

essential. Such stably expressed genes are widely used as references in transcriptome studies 

[21–23]. The distribution of overlap percentage between NGS (with quality filtering of 30) 

and microarray SEG sets is illustrated in Figure 3.

The overlap between SEGs identified from NGS_1 and SEGs identified from the microarray 

datasets is consistent regardless of the microarray dataset (MA_1, MA_2, or MA_1 · MA_2) 

(Figure 3a). Results are similar for NGS_2 (Figure 3b). Although microarray data is 

notoriously noisy, there is high inter-platform concordance of biological information 

generated from microarrays [24]. This supports our use of microarrays as “true” references 

for assessing NGS normalization procedures. The raw count of the aligned short sequences 

seems to be the worst expression estimation procedure, identifying the lowest proportion of 

shared SEGs with both microarray datasets. The RPKM procedure did not perform 

consistently on different NGS datasets, with ~14% lower overlap of SEGs in NGS_2 

compared to NGS_1. The other three procedures, i.e. TMM, RLE, and Quantiles, 

consistently identified SEGs when applied to either NGS_1 or NGS_2.
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3.3. Analysis of differentially expressed genes

We used fold-change to detect DEGs from four datasets and compared the concordance of 

these DEG sets. The overlap of DEGs between NGS (with quality filtering of 30) and 

microarray datasets is illustrated in Figure 4.

The performance of all five methods (Raw, RPKM, TMM, RLE, Quantiles) varied 

depending on which NGS dataset was used. The key observation from Figure 4 is that 

TMM, RLE, and Quantiles performed similarly. However, the overlap between DEGs varied 

depending on the dataset. In contrast to SEG analysis, the raw count of NGS alignment 

performed fairly well for NGS_1 and NGS_2 in terms of concordance with microarrays.

3.4. Simulation analysis

Using microarray data as a reference, RNA-Seq normalization procedures appeared to have 

little to no effect on gene expression correlation and on concordance of SEG/DEG sets. 

Thus, based on our limited study of four datasets, we cannot draw any conclusions about the 

relative performances of normalization procedures. However, the assumption that 

microarrays can be used as a reference may be problematic. Noise in microarray datasets 

(especially in such small sample datasets), can hinder the detection of SEGs or DEGs. We 

simulated several RNA-Seq expression distributions so that we can compare the results of 

RNA-Seq normalization methods to a true, expected result rather than to a questionable 

microarray result.

The distributions of simulated datasets are listed in Table 3. In Figure 5, row 1 we computed 

the fold-change between data2 and data1 and expected a 10-fold-change for some of the 

probesets. TMM and RLE detected the correct fold-changes, but RPKM and Quantiles did 

not. In row 2 of Figure 5, we computed the fold-change between data3 and data1. Again, 

TMM and RLE were able to detect the correct 3-fold-change, whereas RPKM and Quantiles 

were biased. Row 3 is an extreme and unrealistic case; it assumes that the data is uniformly 

distributed. TMM was the only method to correctly compute differential expression values 

for this case. Row 4 is a case in which the data contains many zero expression values. The 

only failed procedure in this case was RPKM. Row 5 compared data6 to data1. Data6 was 

generated from data1 with additional random noise for all probesets. Since the noise is 

small, all normalization procedures performed well. Row 6 is a similar case to Row 2 but 

with only 5% of probesets up- or down-regulated instead of 20%. Since the number of 

differentially expressed genes is small and the multiplier is only 3-fold, all procedures 

worked well in this case.

These simulated data results suggest that TMM is the most robust procedure because it 

correctly computed differential gene expression in a variety of RNA-Seq distributions. The 

RPKM and Quantiles procedures were susceptible to data distributions with either a few 

highly-expressed genes or many differentially expressed genes. RLE is also a robust 

procedure; the only case in which it failed was the extreme case of uniformly distributed 

expression values.
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4. Conclusion

Normalization methods to quantify gene expression from RNA-Seq data directly influence 

downstream analysis. We explored some existing RNA-Seq normalization procedures, 

including RPKM, TMM, RLE, and Quantiles, to assess their performance in terms of 

correlation with microarrays, reproducibility of SEGs and DEGs, and tolerance to different 

RNA-Seq expression distributions. In this study, we treated microarrays as “true” references. 

Results suggested that normalization has no effect on correlation between RNA-Seq and 

microarray data. All procedures generated the same Pearson correlation coefficients. In 

analyzing the overlap of SEGs between RNA-Seq and microarray datasets, RPKM 

performance changed slightly depending on the NGS dataset while TMM/RLE/Quantiles 

performed identically regardless of the NGS or microarray dataset. In analyzing the overlap 

of DEGs between RNA-Seq and microarray datasets, the choice of NGS or microarray 

dataset affected performance, but the TMM/RLE/Quantiles methods performed identically. 

Using simulated realistic and hypothetical RNA-Seq expression distributions, we observed 

that TMM worked well in all cases, and RLE failed only in an extreme case. Quantiles and 

RPKM were both affected by the distribution of DEGs.

To conclude, detecting the differences among RNA-Seq normalization methods depends on 

the evaluation criteria. When using microarrays as a “true” reference, the differences among 

methods are difficult to detect. However, careful analysis using simulated NGS datasets 

revealed that some of these RNA-Seq normalization methods are sensitive to the distribution 

of DEGs. Thus, DEG distribution is an important factor when choosing a normalization 

method for RNA-Seq data analysis.
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Figure 1. 
Workflow for evaluating RNA-Seq normalization procedures. The evaluation methods 

include SEG and DEG analysis (concordance of gene sets between datasets) and probeset 

level correlation analysis. Abbrev.: SEG – Stably Expressed Genes; DEG – Differentially 

Expressed Genes; MA – MicroArray.
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Figure 2. 
Scatter plots show the relationship between probeset expression from kidney samples for 

each pair of four datasets (NGS_1, NGS_2, MA_1, and MA_2). Expression values For NGS 

datasets have been summed across samples and quality filtered with a threshold of 5. All 

plots use probesets that intersect between pairs of datasets after filtering. Pearson correlation 

coefficients: (a) 0.921, (b) 0.763, (c) 0.611, (d) 0.686, (e) 0.602, (f) 0.618.
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Figure 3. 
Overlap of SEGs between NGS and microarray datasets using five NGS normalization 

procedures: raw alignment count, RPKM, TMM, RLE, and Quantiles. The thresholds for 

SEG detection are C ∈ {0.1, 0.2, …, 1.9}. Three combinations of datasets are used: 

M1Nx/M1, M2Nx/M2, and M1M2Nx/M1M2 (where × is either 1 or 2). The value M1 is the 

number of SEGs in MA_1, and M1Nx is the number of SEGs in both MA_1 and NGS_x 

(x=1 or 2). The value M2 is the number of SEGs in MA_2, and M1M2 is the number of 

Wu et al. Page 11

IEEE Int Conf Bioinform Biomed Workshops. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SEGs in both MA_1 and MA_2. The values M2Nx and M1M2Nx are defined similarly to 

M1Nx.
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Figure 4. 
Overlap of DEGs between NGS and microarray datasets using five NGS normalization 

procedures: raw alignment count, RPKM, TMM, RLE, and Quantiles. The thresholds for 

DEG detection are D ∈ {1.0, 1.1, …, 3.0}. Three combinations of data sets are used: 

M1Nx/M1, M2Nx/M2, and M1M2Nx/M1M2 (where × is either 1 or 2). The value M1 is the 

number of DEGs in MA_1, and M1Nx is the number of DEGs in both MA_1 and NGS_x 

(x=1 or 2). The value M2 is the number of DEGs in MA_2, and M1M2 is the number of 
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DEGs in both MA_1 and MA_2. The values M2Nx and M1M2Nx are defined similarly to 

M1Nx.
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Figure 5. 
Examining the performance of several RNA-Seq normalization methods using various 

simulated distributions of DEGs. The left-most plot of each row is the ground truth. 

Columns 2 to 5 are results for the RPKM, TMM, RLE, and Quantiles methods DEG 

distributions are described in Table 3.
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Table 1

Summary of 2 NGS and 2 Microarray Datasets

Technology Microarray Next-Gen Sequencing

Accession # GSE11045 GSE3526 SRP000225 ERP000546

Replicates Technical Biological Technical Technical

# of Sample {K,L} {3,3} {8,4} {3,3} {2,2}

Name MA_1 MA_2 NGS_1 NGS_2

*
K – kidney and L – liver
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Table 2

Number of Probesets Remaining after Quality Filtering

Quality Filtering Threshold 5 10 30

NGS_1 Dataset 9521 3989 702

NGS_2 Dataset 24924 20609 13238

*
The unit of thresholds is the number of aligned short sequences.

*
Original dataset has 54675 probesets.
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Table 3

Simulated RNA-Seq Expression Distributions

1) Sample 200 probesets from sorted NGS_1 data (Threshold-30, total kidney expression) with equal distance

2) Randomly select 5% of probesets from (1) and increase expression values by 10-fold

3) Randomly select 40% of probesets from (1). Increase expression of half of these probesets by 3-fold, decrease the other half 
by 3-fold

4) Uniform distribution of median expression of (1)

5) Set the lowest 70% probesets in (1) to 0

6) Generate random numbers following the histogram of (1) with a window size of 40

7) Randomly select 10% of probesets from (6). Increase expression of half of these probesets by 3-fold, decrease the other half 
by 3-fold
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