
Accepted as a conference paper at BigComp 2017

CP-decomposition with Tensor Power Method for
Convolutional Neural Networks Compression

Marcella Astrid
University of Science and Technology

Daejeon, South Korea
Email: marcella.astrid@ust.ac.kr

Seung-Ik Lee
Electronics and Telecommunications Research Institute

University of Science and Technology
Daejeon, South Korea

Email: the silee@etri.re.kr

Abstract—Convolutional Neural Networks (CNNs) has shown
a great success in many areas including complex image classifica-
tion tasks. However, they need a lot of memory and computational
cost, which hinders them from running in relatively low-end
smart devices such as smart phones. We propose a CNN com-
pression method based on CP-decomposition and Tensor Power
Method. We also propose an iterative fine tuning, with which
we fine-tune the whole network after decomposing each layer,
but before decomposing the next layer. Significant reduction in
memory and computation cost is achieved compared to state-of-
the-art previous work with no more accuracy loss.

I. INTRODUCTION

Convolutional neural networks (CNNs) have shown notable
results in image recognition: VGG [10] and GoogleNet [11]
achieved around 90% accuracy for top-5 classification in
ImageNet2012 dataset; AlexNet [7] also achieved around 80%
top-5 accuracy with the same dataset.

On the other hand, there is an emerging need for embedding
or executing CNNs on smart devices such as mobile phones,
robots, and embedded devices, in order to give them more
intelligence. But the barrier here is that CNNs will require
high amounts of memory and computational resources, which
are unfortunately hard to be met by small-sized smart devices.

In order to tackle this problem, several approaches recently
have been proposed based on tensor decomposition, includ-
ing Tucker decomposition [5] and Canonical Polyadic (CP)
decomposition [2], [8]. Kim et al. [5] successfully decom-
pose all the layers by using Tucker decomposition. However,
Tucker decomposition does not seem to compress as much
as CP-decomposition due to the core tensors. Moreover, CP-
decomposition [2], [8] has not been successful in compressing
the whole convolution layers of a CNN because of the CP
instability issue [8].

In this work, we further investigate low-rank CP-
decomposition to compress the whole convolution layers of
a CNN. Our method, called CP-TPM, is based on low-
rank CP-decomposition with Tensor Power Method (TPM) for
efficient optimization. We also propose iterative fine-tuning
to overcome the CP-decomposition instability. We expect the
followings with our method:
• The whole convolution layer decomposition with CP:

To the best of our knowledge, the whole convolution layer
decomposition has not been successful because of CP-
decomposition’s instability [8]. We expect that CP-TPM

can decompose the whole convolution layers in contrast
to previous CP-decomposition approaches [2], [8].

• Overcoming CP-decomposition instability by iterative
fine-tuning: The instability of CP-decomposition, in our
view, is the cause of ill-training, such that the loss does
not decrease or even amplified when all of the layers
are decomposed by CP and fine-tuned once at the final
stage. We believe that CP-decomposition on the whole
convolution layers without fine-tuning in between causes
the loss to be accumulated and become unrecoverable by
the once-and-for-all fine-tuning after decomposition. We
empirically prove in the experiment that this instability
can be overcome by iterative fine-tuning.

Our CP-TPM achieves much reduction in memory and
computational cost without a very small accuracy drop.

II. METHOD

Our approach has two main steps: decomposition and fine-
tuning. We apply the two steps layer-by-layer until all the
layers of a CNN are decomposed and fine-tuned. All the
layers except the fully connected layers are decomposed
by CP decomposition, while the fully connected layers are
decomposed by SVD. After each decomposition, the whole
network is fine-tuned by back propagation.

Before starting the details, these are notations that we use in
this paper. Tensors will be notated in calligraphy font capital
letters, e.g. X . Matrices will be notated in bold capital letters,
e.g. X. Vectors will be notated in bold small letters, e.g. x.
Scalars will be notated in regular font small letters, e.g. x.
Regular font capital letters, e.g. X , will be used for dimension
size.

A. Kernel Tensor Decomposition

CP decomposes a tensor as a linear combination of rank
one tensors (1). The number of components is the tensor rank
R. Each component is an outer product of n vectors, where n
corresponds to the number of ways of the target tensor. Rank
R determines the amount of weight reduction, i.e., the smaller
the R is, the more reduced the weights in a convolution layer.

X =

R∑
r=1

ar ⊗ br ⊗ cr (1)

ar
X

iv
:1

70
1.

07
14

8v
1

 [
cs

.L
G

]
 2

5
Ja

n
20

17

Accepted as a conference paper at BigComp 2017

Convolution kernel tensor: In general, convolution layers
in CNNs map a 3-way input tensor X of size S×W ×H into
a 3-way output tensor Y of size S ×W ′ ×H ′ using a 4-way
kernel tensor K of size T×S×D×D with T corresponding to
different output channels, S corresponding to different input
channels, and the last two dimensions corresponding to the
spatial dimension (for simplicity, we assume square shaped
kernels and odd D)

Yt,w′,h′ =

S∑
s=1

D∑
j=1

D∑
i=1

Kt,s,j,iXs,wj ,hi
(2)

wj = (w′ − 1)4+j − p and hi = (h′ − 1)4+i− p,

where 4 is stride and p is zero-padding size.
CP decomposition: Now the problem is to approximate the

kernel tensor K with rank-R CP-decomposition. This can be
represented as in (3). Spatial dimensions are not decomposed
as they are relatively small (e.g., 3× 3 or 5× 5).

Kt,s,j,i =

R∑
r=1

U(1)
r,sU

(2)
r,j,iU

(3)
t,r (3)

where U
(1)
r,s , U (2)

r,j,i, and U
(3)
t,r are the three components of sizes

R× S, R×D ×D, and T ×R, respectively.
Substituting (3) into (2) and performing simple manipula-

tions gives (4) for the approximate evaluation of the convolu-
tion (2) from the input tensor X into the output tensor Y .

Yt,w′,h′ =

R∑
r=1

U
(3)
t,r (

D∑
j=1

D∑
i=1

U (2)
r,j,i(

S∑
s=1

U(1)
r,sXs,wj ,hi)) (4)

Equation (4) tells us that the output tensor Y is computed
by a sequence of three separate convolution operations from
the input tensor X with smaller kernels (Fig. 1(b)):

Zr,w,h =

S∑
s=1

U(1)
r,sXs,w,h (5)

Z
′

r,w′,h′ =
D∑

j=1

D∑
i=1

U (2)
r,j,iZt,wj ,hi

(6)

Yt,w′,h′ =

R∑
r=1

U
(3)
t,rZ

′

r,w′,h′ (7)

where Zr,w,h and Z ′

r,w′,h′ are intermediate tensors of sizes
R×W ×H and R×W ′ ×H ′, respectively.

Fully Connected Layers (FC): Fully connected layer
calculation has the form in (8):

yT = xTW (8)

where yT is the transpose vector of the output of size M , xT

is the transpose vector of the input of size N , and W is a
weight matrix of size M ×N .

T

H

W

D

D

S

H’

W`

Filter size: T×S×D×D

(a)
S

H

W

D
H

W

R

R

H’

W`

H’

W`

T

D

Filter size: R×S×1×1 R×1×D×D T×R×1×1

(b)

Fig. 1. Convolution layer. (a) Original convolution layer. (b) CP decomposed
convolution layer in this paper.

Decomposition of FC: As the weights are in a matrix form,
we apply Singular Value Decomposition (SVD) to decompose
the weight matrix as in (9):

W = UDVT = (UD)VT (9)

where U and VT are left and right singular matrices of sizes
M ×R and R×N , respectively, and D is a R×R diagonal
singular-value matrix.

Substituting (9) into (8) and performing grouping gives (10)
for approximate evaluation of a fully connected layer with
smaller weight matrices.

yT = (xT (UD))VT (10)

Therefore, one fully connected layer can be represented as
two fully connected layers as in (11) and (12):

zT = xT (UD) (11)

yT = zTVT (12)

where zT is an intermediate layer of size R.

B. Complexity Analysis

The initial convolution operation in (2) requires TSD2

parameters and TSD2W ′H ′ multiplication operation. With
CP decomposition, the compression ratio E and speed-up ratio
C are given by:

E =
TSD2

RS +RD2 + TR
(13)

C =
TSD2W ′H ′

RSWH +RD2W ′H ′ + TRW ′H ′
(14)

The initial operations in FC of (8) is defined by MN
parameters and requires the same number of multiplication-
addition operations. Therefore, the compression ratio E and
speed-up ration C are the same and given by:

Accepted as a conference paper at BigComp 2017

E = C =
MN

MR+RN
(15)

C. Rank Selection

Ranks play a key role in CP decomposition. If the rank is
too high, compression would not be maximized, and if it is
too low, the accuracy would drop too much to be recovered
by fine-tuning. However, there is no straight algorithm to find
the optimal tensor rank [6]. In fact, determining the rank is
NP-hard [3].

Thus, we apply a primitive principle in determining the
rank: the higher the accuracy loss caused by a layer, the higher
rank the layer needs. Rank proportion is the proportion of
rank of a layer among other layers. In order to figure out how
sensitive a layer is to decomposition, we perform kind of prior
decomposition of each layer with a very low, but constant rank
(e.g., 5), and then fine-tune the whole network (one epoch).

D. Computation of Tensor Decomposition

In general, tensor decomposition is an optimization prob-
lem, i.e., minimizing the difference between the decomposed
tensor and the target tensor. We employ Tensor Power Method
(TPM) [1]. TPM is known to explain the same variance with
less rank compared to ALS [1] because the rank-1 tensors
found in the early steps of the process explains most of the
variances in the target tensor.

TPM approximates a target tensorW by adding rank-1 ten-
sors iteratively. First, TPM finds a rank-1 tensor,Wdecomposed,
to approximate W by minimizing ||W − Wdecomposed||2
in a coordinate descent manner. The main idea in the de-
composition is that it utilizes the residual Wresidual =
W − Wdecomposed, so that the next iteration approximates
the residual tensor Wresidual by minimizing ||Wresidual −
Wdecomposed||2. This continues until the number of rank-1
tensors found is equal to R. More details can be found in
[1].

E. Fine-Tuning

As the accuracy will usually drop after decomposition
because of the error in decomposition, fine-tuning is needed
to recover the accuracy drop. However, as Lebedev et al. [8]
pointed out, CP decomposition has not yet successfully applied
to the whole convolution layers of a CNN with one-time fine-
tuning because of its instability [5], [8].

To overcome the instability, we iteratively fine-tune the
whole network after decomposing each layer in order to
prevent the errors from getting too big to recover. In the
iterative fine-tuning, no layer is frozen because freezing some
layers makes the approach greedy, which usually tends to
stuck in local minima. As experimented in [12], letting the
layers unfrozen shows better results compared to freezing. In
this way, all the layers including the already decomposed can
adjust to the newly decomposed layer.

III. EXPERIMENTS

In this section, we test our approach on AlexNet [7], one
of the representative CNNs using Caffe framework [4]. Before
describing the main experiments to all of layers, we first briefly
introduce AlexNet.

A. AlexNet Overview

AlexNet is one of famous object recognition architectures
and its pre-trained model is available online in Caffe model
zoo [4]. As a baseline, we evaluated the accuracy of the
pre-trained model using 50,000 validation images from the
ImageNet2012 [9] dataset for 1,000 class classification. Top-1
accuracy is 56.83% and top-5 accuracy is 79.95%. AlexNet
has eight layers in total consisting of five convolution layers
and three fully connected layers.

B. Whole Network Decomposition

In this section, we explain the results of decomposing the
whole network with CP-TPM and iterative fine tuning. As
mentioned before, to the best of our knowledge, CP-based
decomposition has not yet been successful to the whole con-
volution layer decomposition because of its instability causing
the network to be ill-trained. To overcome the problem, we
apply fine tuning iteratively so that the errors from each
decomposition are not amplified, which usually is with normal
one-shot fine tuning performed after the whole convolution
layer decomposition.

Fig. 2 shows the steps of our method in AlexNet. Decom-
position and fine tuning are performed for each layer. This
process iterates from Conv1 to FC8 in sequence.

C
o
n
v
1
_
a

C
o
n
v
1
_
b

General approach

C
o
n
v
1

C
o
n
v
2

C
o
n
v
3

C
o
n
v
4

C
o
n
v
5

F
C

6

F
C

7

F
C

8

C
o
n
v
1
_
a

C
o
n
v
1
_
b

C
o
n
v
2

C
o
n
v
3

C
o
n
v
4

C
o
n
v
5

F
C

6

F
C

7

F
C

8

C
o
n
v
1
_
a

C
o
n
v
1
_
b

C
o
n
v
3

C
o
n
v
4

C
o
n
v
5

F
C

6

F
C

7

F
C

8

C
o
n
v
2
_
a

C
o
n
v
2
_
b

C
o
n
v
2
_
c

C
o
n
v
2
_
a

C
o
n
v
2
_
b

C
o
n
v
2
_
c

C
o

n
v
3

_
a

C
o
n
v
3
_
b

C
o
n
v
3
_
c

C
o
n
v
4
_
a

C
o
n
v
4
_
b

C
o

n
v
4

_
c

C
o
n
v
5
_
a

C
o
n
v
5
_
b

C
o
n
v
5
_
c

F
C

6
_

a

F
C

6
_

b

F
C

7
_

a

F
C

7
_

b

F
C

8
_

a

F
C

8
_

b

.

.

.

Fig. 2. Black solid arrow shows connection between layer. Red dotted line
shows the decomposition process while black dotted line means that the
weights are taken from the previous iteration. Purple block arrow means fine-
tuning by backpropagation to all layers. First, Conv1 is decomposed into 2
layers (red dotted line) while the others remain the same (black dotted line).
Then, fine-tuning is performed to all the layers. Afterward, the next layer,
Conv2, is decomposed into 3 layers while the others are same. The process
repeats until all the layers are decomposed and fine-tuned.

In order to decompose a layer, we first need to figure out
the rank. It is desirable for a layer to have as low rank as
possible assuming the same level of accuracy. That means each
layer should have ranks proportional to its sensitivity, which
is defined as the ratio of loss/total loss.

Accepted as a conference paper at BigComp 2017

TABLE I
SETTINGS AND RESULTS COMPARISON WITH ORIGINAL NETWORK AND TUCKER METHOD OF KIM ET AL. [5]. LR: LEARNING RATE. STEPSIZE:

FREQUENCY (IN NUMBER OF EPOCH) OF DECREASING LEARNING RATE BY FACTOR OF 10. OTH.: OTHER LAYERS. 1-2: CONV1 AND CONV2.

Rank
Epoch

Batch Learning rate
Stepsize

Top-1 Top-5
Weights

Comp.
Conv FC 1-2 Oth. 1-2 Oth. Acc Acc Cost

Original - - - - - - - 56.83 79.95 61.0M 724M

Tucker[5] VBMF 15 128 0.001 5 no 78.33 11.2M 272M
(one-shot) data (-1.62) (×5.46) (×2.67)

This work 150 300 15 128 32 0.001 0.002 5 54.98 78.53 8.7M 205M
(each layer) (-1.84) (-1.42) (×6.98) (×3.53)

In order to calculate sensitivity, we first give the same but
very small rank (e.g., 5) to all layers and decompose the layers
with that rank, which allows us to get the top-5 accuracy loss
as in TABLE II. For example, the total loss for Conv layers
is 57.99, and each convolutional layers is assigned with a rank
proportional to its sensitivity value from a total of 750 ranks.
The same method is also applied to the fully connected layers
and in this case we use a total of 900 ranks, which is higher
than for the convolutional layers because the FC layers will
certainly have much more effects on accuracy.

TABLE II
RANK CALCULATED FROM THE TOP-5 ACCURACY LOSS.

Layer Top-5 Top-5 Rank
Acc Loss

Conv1 74.57 5.38 69
Conv2 68.06 11.89 154

Conv Conv3 68.09 11.86 153
(Ave=150) Conv4 66.27 13.68 178

Conv5 64.78 15.17 196
Total 57.99 750
FC6 51.36 28.59 365

FC FC7 58.45 21.50 275
(Ave=300) FC8 59.64 20.31 260

Total 70.40 900

As seen in Table I, We achieved a better compression results
in both the number of weights and computation cost compared
with [5] while maintaining roughly the same level of accuracy.
Specifically, we achieved 1.42% accuracy loss which is less
than Tucker accuracy loss of 1.62%, with better compression
rate. Our method achieved ×6.98 parameter reduction and
×3.53 speeding-up, which is better than Tucker-based method
that shows ×5.46 and ×2.67 respectively.

IV. CONCLUSION

We have demonstrated that a TPM-based low-rank CP-
decomposition combined with the iterative fine-tuning can
achieve a whole network decomposition, which has not been
tried before with CP. This approach outperforms the previous
Tucker-based decomposition method of Kim et al. [5] for
the whole network decomposition. Specifically, our method
achieves ×6.98 parameter reduction and ×3.53 speeding-up in

Alexnet, while Tucker-based method shows ×5.46 and ×2.67
respectively.

There remains much work to be further researched. Firstly,
there can be many variations in the iterative fine-tuning, for
example, freezing layers after fine-tuning and unfreezing in
the final fine-tuning; or starting fine-tuning from the last layer.
Secondly, this work has focused more on convolution layers
than fully connected layers, where we just have applied SVD.
Thus, finding the best algorithms for fully connected layers
still needs to be tried. Finally and the most importantly,
figuring out the ranks in a systematic manner rather than
arbitrary will be another key issue in the further research.

ACKNOWLEDGEMENT

This work was supported by the ICT R&D program of
MSIP/IITP. [B0101-15-0551, Technology Development of Vir-
tual Creatures with Digital Emotional DNA of Users].

REFERENCES

[1] G. Allen. Sparse higher-order principal components analysis. In
AISTATS, pages 27–36, 2012.

[2] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus.
Exploiting linear structure within convolutional networks for efficient
evaluation. In Advances in Neural Information Processing Systems,
pages 1269–1277, 2014.

[3] C. J. Hillar and L.-H. Lim. Most tensor problems are np-hard. Journal
of the ACM (JACM), 60(6):45, 2013.

[4] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[5] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Compression
of deep convolutional neural networks for fast and low power mobile
applications. arXiv preprint arXiv:1511.06530, 2015.

[6] T. G. Kolda and B. W. Bader. Tensor decompositions and applications.
SIAM review, 51(3):455–500, 2009.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[8] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky. Speeding-up convolutional neural networks using fine-tuned cp-
decomposition. arXiv preprint arXiv:1412.6553, 2014.

[9] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[10] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–9, 2015.

[12] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are
features in deep neural networks? In Advances in neural information
processing systems, pages 3320–3328, 2014.

	I Introduction
	II Method
	II-A Kernel Tensor Decomposition
	II-B Complexity Analysis
	II-C Rank Selection
	II-D Computation of Tensor Decomposition
	II-E Fine-Tuning

	III Experiments
	III-A AlexNet Overview
	III-B Whole Network Decomposition

	IV Conclusion
	References

