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Identification of Possible Common Causes by
Intrinsic Dimension Estimation

Jing Song
Hokkaido University
songjing @complex.ist.hokudai.ac.jp

Abstract—The effect of confounding factors cannot be ignored
in real world causal discovery tasks. A common cause is a general
confounder between two variables. In this paper, we propose
using intrinsic dimension estimation as a necessary condition to
determine a possible common cause for two variables. Simulated
application showed that the proposed method worked well for
both linear and non-linear functions. Testing using different types
of noise showed that it generally worked well for different types
of added noise. In particular, it worked better than a kernel-based
conditional independence test for Poisson noise. Testing of how
the estimated intrinsic dimension is affected by different types
of distributions showed that the estimated dimension is nearly
not affected by the type of distribution. Simulation of mixed
pattern showed that the proposed method can still tell a possible
common cause when it is mixed with causal relationship. Finally,
experiments using variables from the CauseEffectPairs dataset
showed that the proposed method can give correct inferred results
for real world data.

Index Terms—common cause identification, intrinsic dimen-
sion, conditional independence test

I. INTRODUCTION

Confounding may exist in causal analysis of real world
data. Stratification or matching can be used to deal with
confounding in causal analysis [1], [2]. Stratification was used
to fix the value of confounders in ceitain subgroups through
which the effect of confounders can be reduced or vanishes [3].
Matching can be viewed as a special case of stratification and
is frequently used in case-control studies [4]. Stratification or
matching variable should be carefully chose since bad choice
of it would induce extra errors [4]. Some causal relationships
have been analyzed using stratification. [5] analyzed the causal
relationship between energy consumption and GDP growth
by dividing the data into four income categories. Their ex-
perimental results showed that causal relationships differed
among the four categories. Coondoo and Dinda analyzed the
causal relationship between income and emissions by dividing
countries into specific groups [6]. The experimental results
showed that the causal relationships varied among the groups
as well. The above experiments showed that the effects of
confounders should be considered when doing causal analysis
since the analysis result may change after considering certain
confounder.

A common cause (Figure 1) or selection bias (Figure 2)
can induce spurious correlation between two variables. If
the data was unbiased, the possible confounding comes from
unconsidered common cause. [7] discussed the responses of
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several causal discovery models to confounding which showed
that some models can avoid the effect of confounding to a
certain degree and some cannot. To correctly analyze causal re-
lationship between two variables, finding and testing possible
observable confounders is needed. Conditional independence
is a necessary condition for a common cause. To test whether
a third variable Z is a possible confounder for two variables X
and Y, a conditional independence test can be conducted. [8]
proposed a framework for crowd-based causal analysis of open
data in which conditional independence test was used as an ini-
tial step to filter unrelated words. The remained related words
were then used to further learn causal relationship between
variables. To filter unrelated words, methods like conditional
independence test are needed to identify possible common
causes. However, many methods for conditional independence
test have certain assumptions of data distributions, function
forms or additive noise. When these assumptions are not
satisfied, the conditional independence test may fail. Besides,
causal relationship may be mixed with common causes in the
real world problem. In this case, conditional independence test
will fail to tell a possible common cause. Here we propose
using intrinsic dimension estimation as an alternative to detect
a possible common cause for two variables. The proposed
method is a necessary condition and can be used to filter
unrelated words in the candidates for confounders. It can be
combined with other causal dicovery methods to realize causal
relationship analysis while considering specific confounders.
The proposed method generally worked well for different
types of added noise. In particular, it worked better than a
kernel-based conditional independence test for Poisson noise.
Besides, the proposed method can infer a possible common
cause when it is mixed with causal relationship.

In Section II, we introduce related machine learning meth-
ods for causal discovery. In Section III, we introduce intrinsic
dimension estimation and its application to causal discovery.
In Section IV, we first present the simulation results for
different types of function forms. We then present the noise
test results. Besides, we present the results of how the type
of distribution affects the estimated dimension. Finally, we
present the simulation results of mixed pattern. In Section V,
we present test results for real world data. In Section VI, we
summarize the key points.
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Fig. 2. Selection Bias

II. RELATED WORK

Causal discovery [9], [10] has attracted the interest of
researchers in various fields. The concept of causality was
discussed and refined [11], [12]. Many causal discovery meth-
ods have been proposed until now. Some causal discovery
models are based on cyclic models [13], which take into
account feedback between variables in a causal relationship.
Most causal discovery models use a directed acyclic graph
(DAG) to express the causal relationships between variables
[9], [10], [14]. The PC (Peter and Clark) algorithm [14]
is a constraint-based algorithm to determine a set of DAGs
in the same Markov equivalence class in which conditional
independence test was used as a subroutine. Several methods
have been proposed to test the conditional independence
between variables and then apply them into causal discovery.
[15] proposed using weakly additive noise models that use
local permutation to measure conditional dependence. [16]
proposed a kernel-based conditional independence (KCI) test
in which there is no assumption about the specific functional
form between variables and there is no constraint on the
data distribution. The above methods either had additive noise
assumption or used the uncorrelatedness of residual function to
do the conditional independence test. When these assumptions
were not satisfied, the conditional independence test may fail.
The PC algorithm did not take into account the effect of
confounding which is sound and complete in the assumption
of causal sufficiency and faithfulness. The latterly proposed
FCI (Fast Causal Inference) algorithm and RFCI algorithms
extends the PC algorithm and handles the common cause and
selection bias.

Cause effect pairs belong to the same Markov equivalence
class and the general PC algorithm cannot learn its structure
using conditional independence test. To discover the causal di-
rection between cause and effect, additional assumptions have
been added. [17] proposed expressing the relationship between
cause and effect as an equation: effect = f(cause) + noise,
where cause and additive noise are independent. The causal
direction can be learned by fitting the data in both directions. If
the data are generated according to the model assumption, the
independence of assumed cause and corresponding residuals

will exist in only one direction which can be inferred as the
true one. Zhang et al. [18]-[21] proposed a post-nonlinear
(PNL) model in which another non-linear function is added
outside the equation: effect = f5(f1(cause)+noise). The PNL
model takes into account the effect of external sensor distortion
in addition to the nonlinear effect of causes and additive noise.
In addition to using structural equation modeling to define the
relationship between cause and effect, a probabilistic latent
variable model was proposed by [22] to distinguish between
cause and effect using standard Bayesian model selection.
[23] proposed using information-geometric causal inference
(IGCD) to distinguish cause from effect. IGCI assumes no
additive noise between cause and effect and may fail in
the large noise case. The above methods follows the causal
sufficiency [24], [25] which assumes no unobserved common
cause exists. Some methods have been proposed to deal with
the unobserved common cause when telling cause from effect.
Janzing et al. extended the original additive noise model [17]
to identify confounding cases [26]. The proposed model is
identifiable under suitable conditions. Shimizu et al. proposed
a variant of the linear non-Gaussian acyclic model [27] to
detect causal direction between two variables when there are
latent confounding variables [28]. The above machine learning
methods handle unobserved common causes and did not make
it clear that which variable is confounding.

III. PROPOSED METHOD

We propose using intrinsic dimension estimation to test
possible common causes. The proposed method was inspired
by the IGCI causal discovery method [23] in which the
asymmetries between cause and effect are identified by an-
alyzing the complexity loss of their distributions. We studied
the manifold of data in ordinary three-dimensional Euclidean
space for the common cause case, as shown in Figure 1.
After introducing the intrinsic dimension estimation method
we used, we describe its application to causal discovery.

A. Intrinsic Dimension Estimation

The intrinsic dimension can be interpreted to mean the
smallest number of variables needed to express the entire
dataset; it is usually less than the total number of observed
variables [29] and can be used to characterize fractals. Estima-
tors of the intrinsic dimension are related to fractal geometry,
e.g., the correlation dimension. We use the correlation dimen-
sion estimator introduced by Grassberger and Procaccia [30].
There are several methods to estimate the intrinsic dimension.
We chose correlation dimension estimation because it is easy
to be calculated and the estimated result can be proven theoret-
ically. The correlation dimension is based on the assumption
that the number of data points in a hypersphere with radius ¢
is proportional to the dimension £ [29]. The number of data
points lying in a hypersphere within radius ¢ is given by

1 N—-1 N
C(e) = A}gnoom Z Z H(e — |lzi — z;), (D)

i=1 j=i+1



where H(z) is the Heaviside step function. Dimension d is
estimated as € approaches zero:

log C(E).

d = lim
loge

e—0 (2)
Since calculating the limit is impossible in practice, an approx-
imate value is estimated in accordance with the L’Hospital
rule, where £; and 5 are set between the minimal and
maximal pairwise distances measured in the data set [29]. An
example of pseudocode was shown in Algorithm 1.

log C' (g2) — log C (&1)

d~
loges — log ey

3)

Algorithm 1 Intrinsic dimension estimation
Input: Normalized input data D without duplicated data-
points
Qutput: Estimated intrinsic dimension d
[m, n] <+ size(D)
distance < list[]]]
while ¢ < m do
if i # m then
j=1+1
l + zeros(m)
while j < m do
Az = |z —
I[j] «+ Ax
j=j+1
end while
end if
distance.append(l)
i=1+1
end while
v <— no zero values of distance
g1 + median(v), g5 < max(v)
s1  length(v < €71), s2 < length(v < &9)
Cri + (2/(nx(n—1))) xs1
Cry <+ (2/(nx(n—1))) % s2
d = (log(Crz) —log(Cry))/(log(e2)

— log(e1))

B. Observable Common Cause Identification

The estimation results for the common cause case shown
in Figure 1 differ from that for the selection bias case shown
in Figure 2 (Table I). For the common cause case, the data
are distributed in a one-dimensional manifold (a line), and the
estimated intrinsic dimension is 1 ideally. For the selection bias
case, the data are distributed in a two-dimensional manifold
(a surface), and the estimated intrinsic dimension is 2 ideally.

For the common cause case, suppose that X; = am;,Y; =
Bm;, Z; = m,;. The distance between two points x; and z;

with coordinates (X;,Y;, Z;) and (X, Y}, Z;) respectively can
be calculated using

2

s =yl =02 m — g + B2 e — )+ (m — )

=va?+ %2+ 1|m; —m;]

=v/a? + (2 4+ 1Am x Am.
4)

Suppose that the datapoints exist in a line with unit length The
distance between two adiacency dataponits would be ~ - Thus,
the convergence rate of ¢ is proportional to that of 1 For the
common cause case, a suitable value proportional to % can
be found for ¢ which makes that H (¢ — ||x; — z;||) equals
one only when z; is the next nearest point (Am — 0) except

the last pomt This means that ZJ i1 H(e = |lzi —x5]) =

14+0+4---+0. We thus get

N—i—1

logC e —0,¢ i =

g ) OCN =

1 N-1 (5
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The estimated dimension d can then be derived:

d =

lim

log C'
e—0,ex1/N 08 (E

)/loge
[mnmmN—UﬂWN—Dﬂ%4(®

[ lgn log (1/N) /loge}

= lim
e—0,ex1/N

= lim
e—0,ex1/N

which is approximately equal to 1.
For the selection bias case, suppose X; = m;,Y; =n;, Z; =
am; + Bn;. The distance between z; and z; is given by

i — 2;] =v/(a? 4+ 1) Am2 + (82 + 1) An2 + 2a3AmAn.
o \/Am2 + An? + AmAn,

(7

where Am = m; —m;, An = n; —n;. In this case, the value
of ||z; — ;]| is affected by the values of Am and An. The
x; could be the next nearest point in two directions: Am —
0,An = 0 or An — 0, Am = 0. The datapoints distributed
in a surface and the convergence rate of € is proportional to
that of \/% In this case, suitable values €1, € proportional to
ﬁ can be found which makes that H (¢ — ||z; — z;||) equals
one when z; is the next nearest point in the two directions. If
€1 = €9, we can thus get that ZJ i1 H(e = |l — z4) =
1+41+0+---40 when ¢ # N — 1. When ¢ = N — 1,

N—i—2



Z;.V:Z.H H(e — ||z; — z;||) = 1. In this case,

1
logCle = 0,ex — | =
g ( \/N)

N-2
lim log 1+1+0+---+0] +1
i=1 N—i—2
(3)

The estimated dimension d is given by

d= lim logC (¢)/loge
e—>0,ao<1/\/ﬁ s ()/ 5

= lim lim lo N —-2)41]/N (N —-1) /loge
o B [ Jim log [2(N —2) + 1]/ ) Jloge]

= lim hm log[2/N — 1/N (N —1)]/loge
€*>0€O(1/\/7|: g[ / / / & ]

o lim log[2/N — 1/N (N —1)]/log N~%?
N —o0

. 1 —0.5
O(ng%o log N /logN .
©))

If &1 # €9, the next nearest point would lie in the direction
with the smaller €. We can get that

1
logCle —0,ex — | =
¢ ( m)

N—1 (10)
1+0+--40

N—i—1

i
i log ,
i=1

The estimated dimension d is given by

d= lim log C'(¢)/loge

e—0,e0x 1/\/N

lim log (N —1)/N (N

N —o0

= lim [
e—0,ex 1/\/7

—1) /loge}

lim

hm log (1/N) /10 8:|
e—0 socl/\/7|: g / s
1 —-0.5
m}\;gnoo log N™ /logN .
1D

The estimated dimension was not affected by whether ¢;
equals €5 or not. Eqs. 9 and 11 are both approximately equal
to 2. Scatter plots of the simulation data' are shown in Figures
3 and 4. The manifold for the common cause case is a
line with an intrinsic dimension around 1 while that for the
selection bias case is a surface with an intrinsic dimension
around 2. These characteristics can be used to detect possible
confounders for variables x and y.

Suppose that variables x and y are dependent. To test
whether a variable z is a possible common cause, z can be
added into the data. If the estimated correlation dimension
is around 1, there is high possibility that z is a confounding
common cause variable for « and y. Here it is hard to assert

!'Simulation data for the common cause case were generated using = =
2y = 23 those for the selection bias case were generated using z = x +y.

TABLE I
IDEAL ESTIMATED INTRINSIC DIMENSION FOR TWO CONFOUNDING
CASES.
Variable 1 | Variable 2 | Variable 3 | Estimated Dimension
x=f(z) y=g(z) z around 1
X y z=h(X,y) around 2

that z is a common cause variable for x and y because the
Markov equivalence class exists.

Fig. 3. Simulation: Common Cause

Fig. 4. Simulation: Selection Bias

Like a conditional independence test, correlation dimension
estimation cannot distinguish the following three patterns
belonging to the same Markov equivalence class.

1) Achain: X - 272 —>Y

2) Another chain: X + Z + Y

3) Aforkki X <~ Z =Y

For the first two patterns, X and Y have an indirect causal
relationship via variable Z. For the last pattern, Z works as a
common cause for X and Y. For all three patterns, if variable
Z is fixed, the path between X and Y can be blocked [9].

An estimated dimension of 1 works as a necessary condition
for variable z to be a common cause for x and y. The
necessity can be used to determine whether a third variable
is a possible common cause for two observed variables. If
the estimated dimension is around 1, the third variable is
a possible common cause for the two observed variables.
As far as we have known, no machine learning methods
are sufficient to decide a common cause even the generally



used (conditional) independence test. The necessity can help
filter the unrelated variables. To distinguish the exact DAG,
additional assumptions are needed. For example, an additive
noise model [17] needs to be assumed. Nevertheless, the
proposed method is effective and efficient as an initial step
in detecting possible confounding variables and is easy to
implement.

IV. SIMULATION

We simulated application of the proposed method for linear
and non-linear functions and their combination and compared
the results with those for the KCI test proposed by [16].
Our proposed method worked better in the Poisson noise case
and slightly better in the multiplicative noise case. Simulation
of the selection bias case (Figure 2) showed that the pro-
posed method was not affected by Berkson’s paradox. To test
how the type of distribution affects the estimated correlation
dimension, we generated simulation data using three types
of distributions: logistic, Gaussian, and uniform. Finally, we
simulated the mixed pattern with causal relationship and
showed that the proposed method can tell a possible common
cause even when it is mixed with causal relationship.

A. Simulation of Common Cause Case

We used linear and non-linear functions for the common
cause simulation. The artificial data were generated using two
equations,

X =axZ+pBx*272

12
Y =2xaxZ+ 73, (12

where « and [ are used to control the nonlinearity of the
function. We set parameter [ to 0 and varied parameter « from
0.1 to 1 for the linear function. For the nonlinear function, we
set v to 0 and varied the value of 3 instead. The experimental
results are presented below.

1) Different Types of Function Forms:

a) Linear Function: In the linear function simulation,
we set 5 to 0 and varied the value of «. For each a, we
repeated the randomized experiment 20 times and took the
average of the estimated correlation dimension. As shown by
the plot in Figure 5, the estimated dimension was negligibly
affected by the value of alpha. In all cases, the estimated
dimension was very close to 1. We did the same simulation
with the method proposed by [16] in which a was varied and
for each v 20 randomized experiments were run. The p-value
was not affected by the value of « either. However, in 200
randomized experiments, the independence of X and Y given
Z was accepted only eight times (o = 0.05).

b) Non-linear Function: In the non-linear function sim-
ulation, we set o to 0 and varied the value of 8 to simulate
a non-linear function in the no additive noise case. As shown
in Figure 6, the estimated intrinsic dimension was very close
to 1. The same simulation was run for the KCI test [16] with
varied § values. The p-value was not affected by the value of
[ either. In 200 randomized experiments, the independence of
X and Y given Z was accepted ten times.

Linear Function

0.4 05 06 07
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Fig. 5. Estimated Correlation Dimension for Linear Function
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Fig. 6. Estimated Intrinsic Dimension for Non-Linear Function

Estimated Correlation Dimension
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¢) Combination of Linear and Non-Linear Functions: In
the combination simulation, both v and 3 were set to 1, and the
randomized experiment was repeated 20 times. The average
estimated intrinsic dimension was 1.0082 with a standard
deviation of 0.0221, indicating that the estimated dimension is
negligibly affected by the type of function between variables.
The same simulation was run for the KCI test [16]. In all 20
randomized experiments, the independence of X and Y given
Z was not accepted. KCI test assumed uncorrelatedness of
residual function given the common cause. Less of residuals
made KCI test fail. Compared with KCI test, our proposed
method worked better in all the above cases.

2) Noise Test: We tested the effect of three different types
of noise: Poisson noise, multiplicative noise, and Gaussian
noise (Figure 7).

a) Poisson noise: Poisson noise is a general kind of
image sensor noise that is not stationary and neither additive
nor multiplicative. We simulated data using Eq. 12, where
« and B were set to 1, and Z was generated in a standard
normal distribution. We added noise into the generated data
through the Poisson process. If the no-noise data was 1, the
noised data was generated from a Poisson distribution with
expectation 1. Randomized experiments were run 100 times,
and the average estimated intrinsic dimension was 0.9053 with
a standard variance of 0.0239. The proposed method worked
well in the Poisson noise case. For comparison, we ran the KCI
test with the same experiment settings. In the 100 randomized
experiments, the conditional independence between X and Y



Fig. 7. Scatter Plot of Artificial Data with Poisson Noise, Multiplicative
Noise, and Gaussian Noise

given Z was accepted 47 times (« = 0.05). That is, about half
of them were rejected. These experimental results showed that
the proposed method worked better than the KCI test when
there was Poisson noise.

b) Multiplicative noise: We added multiplicative noise to
the data generation process using the equation J =1 +n 1,
where n is random noise with mean 0. We added noise
with different variances from 0.01 to 0.05 into the generated
artificial data. The experimental results showed that the es-
timated correlation dimension was negligibly affected by the
variance of the noise. We conducted randomized experiments
100 times; the average estimated correlation dimension was
0.8972 with a standard variance of 0.0445. We did the same
simulation for the KCI test. In the 100 randomized tests, the
conditional independence of X and Y given Z was accepted
95 times (a = 0.05).

¢) Gaussian noise: We added Gaussian noise with dif-
ferent variances to the generated artificial data. The estimated
correlation dimension with Gaussian noise for variances from

0.01 to 0.05 is shown in Figure 8. We ran randomized exper-
iments 20 times for each variance. The estimated correlation
dimension was a little larger than 1; the estimated intrinsic
dimension tended to initially increase and then decrease as
the degree of noise increased. We conducted additional ran-
domized experiments with variances from 0.0001 to 10. When
the variance was 0.0001, the average estimated correlation
dimension was 1.1361 with a standard variance of 0.0608.
When the variance was 10, the average of estimated correlation
dimension was 1.0208 with a standard variance of 0.0173.
The estimated intrinsic dimension was close to one when the
added Gaussian noise was very little or very large. In all
the randomized experiments, the estimated intrinsic dimension
was less than 1.7. We did the same simulation for the KCI test.
In the 100 randomized tests, the conditional independence of
X and Y given Z was accepted 94 times.

Estimation with Gaussian Noise

16
! i i
14
13
0.01 0.02 0.03 004 0.05
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Fig. 8. Estimated Correlation Dimension for Added Gaussian Noise with
Different Variances

These results show that the proposed method generally
worked well for different types of added noise. The estimated
value of the correlation dimension is affected by the type
of noise and number of samples. The estimated correlation
dimension after adding Gaussian noise was below 1.7 (Fig.
8). Thus, we think 1.7 would be a suitable upper limit value
for the proposed method. The estimated correlation dimension
was above 0.8 in our simulation (Figs. 5 and 6). Since the
real world data has limited data points and the observed
data is discrete, the estimated dimension tends to be lower.
Therefore, we reduced the lower limit by 0.1 to 0.7. According
to the above experimental results and considerations, we set
the confidence interval to be [0.7, 1.7] when applying the
correlation dimension to causal discovery.

B. Simulation of Selection Bias Case

We simulated the selection bias case (Figure 2) using
Z = X +Y3. We first randomly generated 2000 pairs of X-Y
data values from a uniform distribution (0, 1) and calculated
the corresponding Z values. Next, we counted the instances of
Z in each sub-interval. Finally, we selected the X and Y with
Z in the interval with the most instances. Figure 9 shows the
count of Z in the sub-intervals of interval (0, 2.0). Figure 10
shows a scatter plot of 205 instances of the selection bias data
with Z in the interval (0.9, 1.0). We used the KCI test [16] to
test the independence of X and Y. The p-value was 0, which



means that X and Y were not independent although they were
randomly generated and thus should have been independent.
However, selection bias can make two randomly generated
variables dependent (Berkson’s paradox). Intrinsic dimension
estimation using the selected biased data shown in Figure 10
gave an estimated value of 1.8322. The average estimated
dimension for 20 randomized experiments was 1.8273 with
a variance of 0.0568, demonstrating that the proposed method
can give a correct estimation even when the data is biased.

50 -

0 0.2 04 0.6 0.8 1.0 12 14 16 18 2.0
Interval

Count of Z in Sub-intervals of Interval (0, 2.0)

Fig. 10. Scatter Plot of Selection Bias Data for Z in (0.9, 1.0)

C. Further Study

1) Different Types of Distributions: To test how the type
of distribution affects the estimated intrinsic dimension, we
used three different types of distributions: logistic, Gaussian,
and uniform (Figure 11) with kurtosis of 1.2, 0, and -1.2
for normalized data with mean O and variance 1 2. The
estimated dimensions are shown in Table II. For all three
types, the estimated dimension was close to 1, indicating
that the estimated dimension is slightly affected by the data
distribution.

2) Mixed Pattern of Common Cause and Causal Relation-
ship: Common cause and causal relationship may be mixed
with each other in the real world. If causal relationship
exists between X and Y, the conditional independence test
cannot tell a possible common cause of X and Y any more.
However, even when real causal relationship exists, the effect

Zhttps://en.wikipedia.org/wiki/Kurtosis

— Logistic
—— Gaussian
040
Uniform
0.35
0.30 [

Probability Density

Fig. 11. Probability Density Function for Three Types of Distributions

TABLE 1T
ESTIMATED DIMENSION FOR DIFFERENT TYPES OF DISTRIBUTIONS.

Distribution | Kurtosis (mean: 0, variance: 1) | Estimated Dimension
Logistic 1.2 0.9204
Gaussian 0 0.9207
Uniform -1.2 1.0009

of confounding should be considered as well. As shown by
the existing researches, causal relationship may change after
considering the effect of specific confounder [5], [6]. Our
proposed method can still decide possible common cause when
it is mixed with causal relationship. We ran simulation to show
the experimental results. The artificial data was generated by
X =27+27%Y =2«Z+ 73+ X in which Z was a common
cause for X and Y, X causes Y. The average of estimated
intrinsic dimension was 0.9410 with standard variance 0.0299.
The simulation results showed that the proposed method can
give correct inference when causal relationship and common
cause are mixed with each other.

V. REAL WORLD DATA

Finally, we used real world data obtained from the Cause-
EffectPairs (CEP) dataset [31] to test our proposed method.

A. Altitude, Temperature, Sunshine

The pairs “altitude—temperature” and “altitude—sunshine”
are two cause effect pairs in the CEP dataset. They were taken
from the UCI Machine Learning Repository [32]. Temperature
and sunshine are variables confounded by a common cause,
altitude. The p-value from a KCI test for temperature and
sunshine was 0.002. Given the altitude, the p-value for tem-
perature and sunshine was 3.2779e-04. The independence of
temperature and sunshine given the altitude was thus rejected
(v = 0.05). For the three variables, although altitude is a
common cause for the other two variables, sunshine causes
temperature as well in human cognition. Conditional inde-
pendence test cannot tell a possible common cause anymore
when the two are mixed with each other. Although altitude is
a common cause for temperature and sunshine, the KCI test
failed to detect it. With our proposed method, the estimated
intrinsic dimension was 0.7132, which lies in the interval [0.7,



1.7], showing that the variable “altitude” can be a common
cause for “temperature” and “sunshine.”

B. Cement, Blast Furnace Slag, Compressive Strength

The pairs “cement—compressive strength” and “blast fur-
nace slag—compressive strength” are two more cause effect
pairs in the CEP dataset. We combined the data to get a real
world example of “selection bias” (Figure 2). The p-value
from a KCI test for cement and blast furnace slag was 0,
which shows that the data was biased. The estimated intrinsic
dimension was 2.0156. Application of dimension estimation
to finding possible confounding variables did not suffer from
the effects of Berkson’s paradox and was useful in common
cause identification.

VI. CONCLUSION

We proposed using intrinsic dimension estimation to detect
a possible common cause for two variables. The proposed
method does not need certain assumptions of function forms,
data distributions. Comparison experiment was conducted with
a kernel-based independence test. The experimental results
showed that the proposed method worked comparatively or
better than the existing method. Besides, the proposed method
can still tell a possible common cause when it is mixed
with causal relationship while conditional independence test
cannot. The proposed method does not suffer from the effects
of Berkson’s paradox. The estimated intrinsic dimension was
around 1 for the common cause case and around 2 for the
selection bias case. In a scatter plot of data, the topology of
the data generated for the common cause case would be a
line while that for the selection bias case would be a surface.
Simulation testing showed that the estimated correlation di-
mension is slightly affected by the type of distribution. Testing
using variables from the CauseEffectPairs dataset showed that
the proposed method can estimate the common cause for real
world data.
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