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Abstract—Unsupervised image translation aims to learn the
transformation from a source domain to a target domain given
unpaired training data. Several state-of-the-art works have
yielded impressive results in the GANs-based unsupervised
image-to-image translation. It fails to capture strong geometric
changes between domains, or it produces unsatisfactory results
for complex scenes, compared to local texture mapping tasks
such as style transfer. Recently, SAGAN [35] showed that
the self-attention network produces better results than the
convolution-based GAN. However, the effectiveness of the self-
attention network in unsupervised image-to-image translation
tasks have not been verified. In this paper, we propose an
unsupervised image-to-image translation with self-attention
networks, in which long range dependency helps to not only
capture strong geometric change but also generate details using
cues from all feature locations. In experiments, we qualitatively
and quantitatively show superiority of the proposed method
compared to existing state-of-the-art unsupervised image-to-
image translation task. The source code and our results are
online: https://github.com/itsss/img2img_sa and http://itsc.kr/
2019/01/24/2019_img2img_sa
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I. INTRODUCTION

In computer vision and graphics there are many image-
to-image translation tasks, including inpainting [17]], [26],
super resolution [10]], [19], colorization [36], [37], style
transfer [[11]], [15], [25] and so on. This cross-domain image-
to-image translation topic has become a major concern of
researchers.

In many cases, given a paired dataset, it is possible
to solve the problem with conditional image translation
[18], [22], [30]. However, it is difficult and expensive to
obtain the paired samples. In addition, there are cases where
supervision is not possible.

The goal of the unsupervised image translation is to learn
the transformation from a source domain to a target domain
given unpaired training data. Recent works have yielded
impressive results in the GANs-based unsupervised image-
to-image translation [1]], [8], [16]], [20], [23], [27], [29], [34],
[38]. It can be largely classified into two types. The first is
the style transfer task. This problem is to change low-level
information such as color or texture while maintaining high-
level information such as content or geometric structure.
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Style transfer and conditional GANs-based methods have
yielded excellent results in this research area.

The second is the object transfiguration task. Unlike the
style transfer task, this focuses on changing high-level infor-
mation while keeping the low-level information. CycleGAN
[38], the most representative unsupervised image translation
method, failed to change the high-level semantic meaning
due to the network structure specialized for style transfer.

To solve the unsupervised image-to-image translation
problem, UNIT [23]] made a shared-latent space assumption.
It assumes a pair of corresponding images in different do-
mains can be mapped to a same latent code in a shared-latent
space. MUNIT [16] proposed a multimodal unsupervised
image-to-image translation framework.

To achieve many-to-many cross domain mapping, it mit-
igates a fully shared latent space assumption in UNIT
by decomposing a shared-latent space across domains and
each domain-specific part for the style code. UNIT and
MUNIT experimentally showed impressive animal image
translation from a cropped dataset centered on the head.
When the training image dataset is spatially unnormalized,
it makes the problem more difficult because the absence of
correspondences between the shared semantic parts.

In our experiments, we show that these methods often
fail in various image-to-image translation applications with
strong geometric change. Recently, SAGAN [35] showed
that the self-attention module is complementary to con-
volutions and helps with modeling long range, multi-level
dependencies across image regions. Despite the success
of the self-attention module in non-conditional GANSs, the
effectiveness of the self-attention module for unsupervised
image-to-image translation has not been validated.

In this paper, we propose a unpaired image-to-image
translation model with self-attention networks which allows
long range dependency modeling for image translation task
with strong geometry change. In experiments, we show su-
periority of the proposed method compared to existing state-
of-the-art unsupervised image-to-image translation tasks.

The source code and our results are online:
https://github.com/itsss/img2img_sa and http://itsc.kr/2019/
01/24/2019_1mg2img_sa.
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Figure 1. Self Attention Networks. [35] ® means Matrix multiplication.

II. SELF-ATTENTION GANS

SAGAN [35] showed that the self-attention module is
complementary to convolutions and it helps with long range
modeling, multi-level dependencies across image regions.
Attention mechanisms have become a important part of
models that must capture global dependencies [2], [7]], [[13]],
[24]], (32]], [33]].

Self attention networks adapt a non-local block [31] to
introduce the self-attention to the GAN networks, can enable
both the generator and discriminator to efficiently model
relationships between widely separated spatial regions. The
non-local mechanisms also have become a important part of
image generation [3]-[6[, [9], [12].

In the self attention module (Figure 1.), image features
from the previous hidden layer x are firstly transformed into
two feature spaces f and g to calculate the attention.

exp(s;j)

ZN eXp(s”),where 8ij = f(nci)Tg(gcj)7
i=1 ij
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where f(z) = Wz, g(z) = Wyx and f;; indicates the
extent to which the model attends to the i‘" location when
synthesizing the 5" region. Then the output of the attention
layer is 0 = (01, 02, ..., 0}, ..., 0N ), Where,

N
Oj = Zﬁ],zh(l‘l), h(l‘l) = Whl‘i
=1

In the above formulation, Wy, W, and W), are the learned
weights parameters, which are implemented as 1 x 1 convo-
lutions.

III. METHODS

A. Unpaired Image-to-Image Translation with Self Attention
Networks

We propose an unsupervised image-to-image translation
model with self-attention networks that allows long range
dependency modeling for image translation tasks with strong
geometry change. Combined with self-attention, the gen-
erator can translate images in which fine details at every
position are carefully coordinated with fine details in distant
portions of the image. Furthermore, the discriminator can

also more accurately enforce complicated geometric con-
straints on the global image structure.

In this paper, our network architecture is devised by
combining several self-attention blocks into the generator
and discriminator of the Multimodal Unsupervised Image-
to-Image Translation [16](MUNIT) model.

To explore the effect of the proposed self-attention mech-
anism, we built several SAGAN blocks by adding the self-
attention mechanism to different stages of the generator and
discriminator. For the generator, the self-attention layers are
placed before the downsampling layer in the encoder and
before the upsampling layer in the decoder, respectively. For
the discriminator, it is added before the downsampling layer.
Figure [2| shows architecture of our autoencoder model with
self-attention networks.

B. Loss Function

The full objective of our model comprises a bidirectional

reconstruction loss function and an adversarial loss function.
Same as in [[16]], our model consists of an encoder E; and
a decoder G; for each domain. The latent code of each
autoencoder is divided into a content code ¢; and a style code
si, where (c;,s;) = (Ef(x;), Ef(x;)) = E;(x;). Image-to-
image translation can be performed by exchanging encoder-
decoder pairs.
Bidirectional Reconstruction Loss Bidirectional recon-
struction loss includes image reconstruction loss and latent
reconstruction loss. The image reconstruction loss formula
is as follows:

o

recon

= Egynp(an) [[|G1(ET (21), £ (71)) — z1]|1]-

We should be able to reconstruct an image sampled from
the data distribution after encoding and decoding.
The latent reconstruction loss formula is as follows:

e

recon

Jor

recon

= Ec,np(er),soma(sn) | [ B2 (Galer, 82)) — eal1]
= E61~p(C1),S2~q(52) [|‘E§(G2(Clv s2)) — 52”1]

Given a latent code (content an style) from the latent dis-
tribution, we should be able to reconstruct it after decoding
and encoding.

Adversarial Loss The adversarial loss formula is as follows:

gAN = EqN;ﬂ(ﬁ),Ssz}(Sz)[lOg(l — Do(Ga(c1, 52)))]
+Eq, p(ar) [l0g D2 (22)].

To match the distribution between the translated and target
domain, we employ the adversarial loss.
Full objective The total loss formula is as follows:
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IV. EXPERIMENTAL RESULTS

In this section, we compared the performance of our
model against various unsupervised image-to-image transla-
tion models (CycleGAN [38], DRIT [21]}, UNIT [23], MU-
NIT [16]). In order to evaluate visual quality of translated
images, we performed a user study.

A. Implementation Details

We used the MUNIT default setting for experiments. We
used the Adam optimizer with 5; = 0.05, S = 0.999. Initial
learning rate of 0.0001 and the learning rate is decreased by
half every 100,000 iterations. We used a batch size of 1 and
set the loss weights to A\, = 10, A, = 1, Ay = 1. We trained
our networks on four TITAN X accelerators. We trained it
over 1,000,000 epochs for around 5 days.

B. Datasets

We used cat2dog, face2dog, face2cat, portrait and
edges2shoes for test our network.
cat2dog: This datasets are used in DRIT [21]. This dataset
contains cat(871) and dog(1,364).
face2dog: This dataset contains faces (CelebA dataset,
202,599) and dog(cat2dog dataset, 1,364).

DRIT

Input Image  CycleGAN

Figure 3. Examples of Unsupervised image translation from cat(cat2dog
Dataset, Domain A) to dog(cat2dog Dataset, Domain B) using various
network structures. CycleGAN, DRIT, UNIT, MUNIT are all trained to 64
X 64 resolution using the default settings from the official implementations.

face2cat: This dataset contains faces (CelebA dataset,
202,599) and cat(cat2dog dataset, 871).

portrait: This datasets are used in DRIT [21]]. This dataset
contains portrait(1,814) and face photo(6,452).
edge2shoes: This dataset are used in MUNIT [16]. This
dataset contains edges(50,025) and shoes(50,025).

C. Comparision with Previous Works

cat2dog In the process of changing the image of a
cat(domain A) to a dog(domain B) image(Figure El), Cy-
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Figure 4.  Examples of Unsupervised image translation from human

face(CelebA Dataset, Domain A) to cat(cat2dog Dataset, Domain B) using
various network structures. CycleGAN, DRIT, UNIT, MUNIT are all
trained to 64 X 64 resolution using the default settings from the official
implementations.
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Figure 5.  Examples of Unsupervised image translation from human
face(CelebA Dataset, Domain A) to dog(cat2dog Dataset, Domain B)
using various network structures. CycleGAN, DRIT, UNIT, MUNIT are
all trained to 64 X 64 resolution using the default settings from the official
implementations.

cleGAN is unable to generate a dog image, since it only
takes the color from the image. In the case of DRIT, there
is a problem that the image is broken, and it is hard to see
it as a dog image reflecting the shape and direction of a cat
and dog.

face2cat and face2dog In the process of translating the
human face image(domain A) to cat and dog(domain B),
CycleGAN and DRIT could not obtain the desired results.
Most translated results were distorted. In the case of UNIT

Figure 6. Reverse of FigureEI Examples of Unsupervised image translation
from cat(cat2dog Dataset, Domain A) to human(CelebA Dataset, Domain
B) using various network structures. CycleGAN, DRIT, UNIT, MUNIT are
all trained to 64 X 64 resolution using the default settings from the official
implementations.
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Figure 7. Reverse of FigureEl Examples of Unsupervised image translation
from dog(cat2dog Dataset, Domain A) to human(CelebA Dataset, Domain
B) using various network structures. CycleGAN, DRIT, UNIT, MUNIT are
all trained to 64 X 64 resolution using the default settings from the official
implementations.

and MUNIT, there was a tendency to leave the shape of
human face or be distorted in the translated image (See
Figure [} and Figure [3]).

cat2face and dog2face we also experimented for the transla-
tions from cats and dogs to human faces. In this experiments,
the proposed method showed much better results than the
previous works (See Figure [6] and Figure [7]).

portrait Even at the stage of changing the portrait (domain
A) shown in Figure @ to a face(domain B), CycleGAN has
not been able to convert portrait photos to face at all. In the
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Figure 8. Examples of Unsupervised image translation from por-
trait(portrait Dataset, Domain A) to human face(portrait Dataset, Domain
B) using various network structures. CycleGAN, DRIT, UNIT, MUNIT are
all trained to 64 X 64 resolution using the default settings from the official
implementations.

Input Image CycleGAN DRIT UNIT

Figure 9. Examples of Unsupervised image translation from
edges(edges2shoes Dataset, Domain A) to shoes(edges2shoes Dataset,
Domain B) using various network structures. CycleGAN, DRIT, UNIT,
MUNIT are all trained to 64 X 64 resolution using the default settings
from the official implementations.

SA on SA on
A A
Input Image MUNIT SA on SA on DS-layers <3 DS-layer/
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Figure 10. Ablation-study result of four self attention techniques.

case of DRIT, conversion is not performed by generating
irrelevant images. In the case of UNIT and MUNIT, there
is a problem that the image is distorted although it reflects
the shape.

edges2shoes In the process of translating from the edges
image(domain A) to a shoes(domain B) image, our model
generated more realistic results keeping the pose and style of
A domain than the results from other models (See Figure ).

D. Ablation Study

In this section, the other experiments are conducted to
evaluate the effectiveness of the self-attention(SA) networks
in our unsupervised image-to-image translation model. In
Figure[I0] self attention unsupervised image-to-image trans-
lation models ”SA on downsampling layer (DS-layer)”, ”SA
on upsampling layer (US-layer)” and ”SA on DS-layers x 3
/ US-layers x 3” are compared with a our ”SA on DS-layer
/ US-layer” model.

In case of ”SA on DS-layer”, ”SA on US-layer” and ”"SA
on DS-layers x 3 / US-layers x 3”, we could not obtained
the well-translated results. However, ”SA on DS-layer / US-
layer” model generated more realistic images than other
methods. Based on this experiments, we applied "SA on
DS-layer / US-layer” to our model.

E. User Study

For the qualitative evaluation, we also conducted a user
study on 80 participants. The results of this study are
summarized as follows. First, 192 images were selected
randomly in the questionnaires, and the questionnaires were
used to select the best image that reflects the pose of input
Image and the appearance of target domain well. Figure [T1]
shows that our method yields quantitatively much more
superior results than the existing GAN models.
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Figure 11. User-study result of five image-to-image translation algorithms.

[ Dataset [ CycleGAN | DRIT | UNIT | MUNIT | Ours |
cat2dog 133.21 148.87 101.41 122.04 96.34
face2cat 274.61 117.05 85.78 104.09 79.95
face2dog 279.74 108.29 82.12 133.96 90.70
cat2face 454.99 24278 | 359.62 269.44 208.33
dog2face 366.33 229.21 229.06 228.06 217.58
portrait 233.34 282.29 | 263.28 269.56 256.04
edges2shoes 269.18 273.93 | 250.99 274.11 238.57

Table T

QUANTITATIVE EVALUATION ON 7 IMAGE TRANSLATION EXAMPLES.
WE USED FRECHET INCEPTION DISTANCE(FID) TO MEASURE THE
PERFORMANCE OF VARIOUS NETWORK STRUCTURES.

F. Quantitative Evaluation Analysis

We used Frchet Inception Distance (FID) [14] to measure
the distance between the data distributions of the source and
target domains using the features extracted by the inception
networks [28|]. The lower FID score indicates that the data
distribution of two domains are similar. Table [l shows the
results of the FID score analysis, and we can see that our
model translated more similar images than other image-to-
image translation methods.

V. CONCLUSIONS

In this paper, we proposed a method about unsupervised
image-to-image translation with self-attention networks, in
which long range dependency helps to not only capture
strong geometric change but also generate details using cues
from all feature locations. In experiments, we showed supe-
riority of the proposed method compared to existing state-
of-the-art unsupervised image-to-image translation methods.
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