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Abstract—Health management has become a primary problem
as new Kinds of diseases and complex symptoms are introduced
to a rapidly growing modern society. Building a better and
smarter healthcare infrastructure is one of the ultimate goals
of a smart city. To the best of our knowledge, neural network
models are already employed to assist healthcare professionals
in achieving this goal. Typically, training a neural network
requires a rich amount of data but heterogeneous and vulnerable
properties of clinical data introduce a challenge for the traditional
centralized network. Moreover, adding new inputs to a medical
database requires re-training an existing model from scratch.
To tackle these challenges, we proposed a deep learning-based
clinical decision support system trained and managed under a
federated learning paradigm. We focused on a novel strategy to
guarantee the safety of patient privacy and overcome the risk
of cyberattacks while enabling large-scale clinical data mining.
As a result, we can leverage rich clinical data for training
each local neural network without the need for exchanging the
confidential data of patients. Moreover, we implemented the
proposed scheme as a sequence-to-sequence model architecture
integrating the attention mechanism. Thus, our objective is to
provide a personalized clinical decision support system with
evolvable characteristics that can deliver accurate solutions and
assist healthcare professionals in medical diagnosing.

Index Terms—clinical decision support system, healthcare,
artificial intelligence, sequence-to-sequence network, attention
mechanism, federated learning

I. INTRODUCTION

Remarkable advances in digital and Internet-of-Things (IoT)
technologies bring great potential to transform a wide range
of cities into smart cities. With the rise of the smart cities
concept, automation strategy, based on a tremendous de-
ployment of IoT devices and software solutions, helps to
improve cities’ services and makes more efficient use of their
existing infrastructures and assets [1]. Smart cities take the
advantages of information and communications technology
(ICT) to enhance a better quality of life for their citizens by
delivering smarter infrastructures in education, transportation,
healthcare, economy, and environmental management [2]—[4].
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Thus, the goal of every smart city is to keep a balance
in terms of sustainability in economic, environmental, and
social impact [5]. Despite the countless benefits of smart
city innovations, many challenges need to be focused on,
as rapid urbanization introduces new problems to an already
complex environment of a highly-populated area. Among
them, health management has become one of the primary
issues as new kinds of infectious diseases (i.e., Ebola, plague,
COVID-19, etc.) are introducing to a rapidly growing modern
society [6]. To prevent such disease outbreaks leading to
the global pandemic, the authorities keep investigating the
medical science and provide better innovations to the health
management sector [7].

In recent years, artificial intelligence (AI) has contributed
numerous kinds of innovations to the smart city domain and
gains great attention in many different and popular applica-
tions [8]. Al also plays as a key component in developing
better healthcare infrastructures ranging from patient moni-
toring to clinical data mining. As many Al algorithms are
capable of learning from data, various types of supervised
machine learning models can provide Al-based solutions for
medical diagnoses and deliver accurate results to healthcare
professionals [9]. A sufficient amount of clinical data is an
important prerequisite for accelerating and promoting health-
care services through Al technology. For training a better
medical diagnosis system, clinical data such as electronic
health records (EHRs) from different sources of the medical
organization need to be collectively organized [10]. However,
these data may involve not only the privacy of individual
patients but also the experimental details of medical organi-
zations. Due to the heterogeneous and vulnerable properties,
dealing with limited clinical data becomes a huge obstacle
for big data analysis to facilitate precision medicine while
developing better healthcare infrastructures [11].

In this paper, we proposed a deep learning-based clinical de-
cision support system that can provide healthcare professionals
with accurate predictions of potential diseases according to
patients’ symptoms in their medical records. We integrate the
aid of edge AI that allows the processing of Al algorithms
locally on edge devices (i.e., healthcare professionals’ personal
computers or mobile phones) for reducing the cost of data
communication to perform the real-time operations and avoid-
ing the transmission of vulnerable clinical data for a privacy
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Fig. 1: System overview.

perspective [12]. We exploit the federated learning paradigm
that can work with a certain degree of non-IID (Independent
and Identically Distributed) data from heterogeneous sources
by learning a shared global model at the central server while
keeping all the sensitive clinical data on each local device [13].
As a result, local models can benefit from a global model with
a predictive capacity of training on a rich source of clinical
data while not compromising their data as well as preventing
the cause of misdiagnosis.

Moreover, most of the existing medical diagnosis models
need to be re-trained from scratch whenever new input features
(i.e., symptoms) and target labels (i.e., diseases) are added
in order to expand the prediction for new diseases [14],
[15]. In our proposed system, we designed a sequence-to-
sequence network for training local medical diagnosis models
in which symptoms and diseases are treated as input and
output sequences, respectively. For the models to be able
to focus more on the relevant input sequences and predict
accurate output sequences, we adopt the attention mechanism
in designing the network architecture [16]. Thus, our system
can easily adapt new input features and target labels and evolve
to predict new kinds of diseases from heterogeneous sources
without re-training the models from scratch [17].

Our objective is to provide an evolvable clinical decision
support system that can assist healthcare professionals in the
process of medical diagnosis while preserving the patients’
privacy. Hence, patients can also be provided with higher
quality, safer, and more efficient healthcare services. The main
contributions of this paper can be listed as follows:

o« We design the system architecture of an edge-based
personalized clinical decision support system to jointly
work with Al technology.

e We apply the attention mechanism in sequence-to-

sequence network of our medical diagnosis model for
each edge device.

We exploit the federated learning framework to train our
personalized models collaboratively in a distributed man-
ner on the datasets of non-IID symptom-disease network.
We adopt a centralized global model to capture the shared
knowledge of all personalized models by aggregating
their gradients, regardless of their private information.
We also design our models with evolvable characteristics
to be able to adapt to new kinds of symptoms and diseases
without re-training from scratch.

The rest of this paper is organized as follows: Section II
explains the system architecture and methodologies of the
proposed clinical decision support system. Section III presents
the experiment settings for training the models. Simulation
results are discussed in Section IV. Finally, Section V presents
our conclusions and future works.

II. SYSTEM ARCHITECTURE

Let us consider a personalized healthcare architecture in
which different medical diagnosis models jointly participate
in learning the heterogeneous clinical data from the EHRs
of regional healthcare professionals. The global model in
the centralized server does not take part in the training
process but captures the shared knowledge of all local models
and monitors their training rounds. Each local model trains
its own neural networks on its private training dataset of
medical records. Each trained model is deployed onto the
personal devices of individual healthcare professional to assist
in classifying the diseases based on the related symptoms.
Classification outputs from those models are analyzed by the
healthcare professionals based on their expert knowledge to



evaluate the final result. The evaluated results of symptom-
disease pairs are stored in the local database for the model
calibration. The local model sends its model updates to the
central server after each round of the training process. The
server aggregates the collected local model updates and creates
a new single global model. Then, the aggregated global model
is distributed for replacing the local models and updating
their performance. Fig. 1 shows an overview of our proposed
clinical decision support system operating under the federated
learning paradigm.

A. Attention on Edge Al-based Medical Diagnosis Model

We design the architecture of our proposed clinical decision
support system as a deep recurrent neural network (Deep
RNN). While constructing the local medical diagnosis models,
we process the sequence-to-sequence modeling for symptom-
disease mapping, where symptoms are input sequences as well
as diseases are treated as output sequences. Each mapping is
comprised of two RNN models for the encoder network and
decoder network, respectively. We establish direct shortcuts
between the input symptoms and the target diseases by apply-
ing the attention mechanism in the encoder-decoder network.
The encoder network with hidden states h, processes the input
sequence z and each of the source hidden state h, is compared
with the current target hidden state h; by a score function in
Bahdanau’s additive style [18] which can be defined as

score(hy, hs) = v;— tanh(Wyih; + Wah,), (1)

where W7, W5 and v, are the weight matrices. Then, the result
is normalized and the attention weights o;4 are produced by

exp(score(hy, hs)) 2
5 —.
> _qexp(score(hy, hy))
Based on the calculated attention weights, a smaller dimen-
sional representation of the input sequence, which is known
as a context vector c; is computed as the weighted average of
the source states and can be defined by

Ct :Zats}_l& (3)

The decoder network is initialized with the context vector and
trained to generate an output sequence y. The context vector
is concatenated with the current target hidden state and yields
the attention vector a; which can be derived by

s =

at = f(ct, hy) = tanh(Weles; hyl). €]

The final attention vector is used to derive the softmax
logit and loss. By processing our symptom-disease mapping
problems as sequence-to-sequence models and applying the
attention mechanism, our models do not need to be re-trained
from scratch whenever new input features are added to the
training data. The architecture of an attention network embed-
ded in each local medical diagnosis model of our proposed
system is shown in Fig. 2.

B. Collaboration of Federated Learning

For a neural network to work well, it is required to be trained
on a rich data source. In the traditional training pipeline of
a neural network, the training process is centralized and it
becomes infeasible to communicate as the data to be collected
grows larger. To alleviate the expensive communication costs
together with security and privacy issues of the centralized
training scheme, we collaborate the federated learning settings
to our model architecture [19]. In the federated learning
paradigm of our proposed system, the centralized server ini-
tially distributes a base global model M g;054; to be employed
in each personal device of the healthcare authority as a local
model M, that is parameterized by the weight Wj. Each
device stores the personalized symptom-disease knowledge
dataset D, = {Xj,Yx} in its local database, where Xj
denotes the input features (i.e., symptoms) and Y) denotes
the related target labels (i.e., diseases), respectively. Each
dataset Dy, is used to train the local medical diagnosis model
My, : Xy, — Y. The training procedure for each local model
can be defined as

W]: = arg minL(Mk, Dk, Wk), (5)
Wy

where T/ denotes the updated weight after training and L(.) is
the general loss function of each local model argumented with
model structure My, training data Dy, and the local weight
parameter Wj,. At the end of each training round, a local model
sends its model updates W, back to the server. The central
server aggregates all the weight updates collected from the
local models and produces a new global model M gjopq; that
is parameterized by the global weight W,. The aggregation
mechanism is known as the weighted average of local model
parameters which can be defined as

|Dy|

Wy=> =0
I ,; Zk—H |Dk+1|
where m denotes the number of devices participating in the
proposed system. The aggregated global model is distributed
back to the local models after each round of global model
updates. By training our RNN models under the federated
learning settings, we can reduce the communication costs
between the local models and the server. As well as the local
clients are no longer required to reveal their sensitive data to
the central server or between each other. The aforementioned
procedure of the federated learning setting is listed in Algo-
rithm 1.

(6)

III. EXPERIMENT SETTINGS

In this section, we analyze the effectiveness of our proposed
personalized clinical decision support system by demonstrat-
ing a proof-of-concept scenario.

A. Datasets

We use the manually preprocessed dataset [20] retreated
from a Disease-Symptom Knowledge Database [21] which is
generated by an automated method based on the information
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Fig. 2: Attention network architecture.

Algorithm 1 Federated learning for global model update

1: Inputs: Local model My = {M;, Ms,....Mg} with
parameter Wy, Global model M ;4. With parameter W,
Input feature X}, Target label Yy, Local private datasets
Dy, ={D1, D, ..., Di }, where each Dy, = { X}, Y}

: Outputs: Trained global model Mo, With updated
parameter I,

. Inmitialize: W, = random()

: for communication round ¢t = 1,2,...,T do

for each client k£ = 1,2, ..., K in parallel do

Wi, Wg

for local training step n =1,2,..., N do
Train My, : X}, — Y, with training data Dy
Update local model parameter:

W, = argminL(My, Dy, Wy)
Wi

[\

R AR

10: return updated local parameter W, to the cen-
tral server

11: end for

end for

Update global model parameter:

—
(SIS

1K
W, =— W
g K; k

14: end for
: return W,

—_
wn

in textual discharge summaries of patients at New York
Presbyterian Hospital in 2014. In the original database, the
first column shows the types of diseases combined with UMLS
codes obtained from MedLEE natural language processing
system [22]. The second column shows the count of disease

occurrence. And, the third column shows the associated symp-
toms obtained by the statistical methods based on frequencies
and co-occurrences. The original dataset is uncleaned and for
the training processes to be more accurate, we use a manually
preprocessed dataset that contains both training and testing
sets of symptoms and diseases. The preprocessed dataset is
cleaned and extensive, where the associations of symptoms
are one hot encoded related to each disease. It contains 4,920
training samples having 41 unique types of diseases and 132
unique types of symptoms. The description of the preprocessed
dataset is described in Table. I, where # denotes the number.

TABLE I: Statistics of dataset.

Data Description

# of unique diseases 41
# of unique symptoms 132
# of clients 5
# of instances for client 1 1,000
# of instances for client 2 1,000
# of instances for client 3 1,000
# of instances for client 4 1,000
# of instances for client 5 920

We shuffle and split the training data into five subsets re-
garding local datasets for five clients. Four of the local datasets
contain 1,000 instances and the remaining one contains 920
instances of diseases with related symptoms. We convert the
datasets into text files in which symptoms and diseases are
paired as input and output sentences. For the convenience
of using with sequence-to-sequence networks, we add start
and end tokens to each sentence and create a word index for
mapping symptom to id and a reverse word index for mapping
id to disease, respectively.
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Fig. 3: Training history for centralized models.

B. Local Models

We consider the personal devices of healthcare professionals
as the clients for local models and construct one RNN model
for each client of the local medical diagnosis system. For con-
structing the encoder-decoder network, we implement a gated
recurrent unit (GRU) with 1,024 cells. Then, we apply the
Bahdanau attention mechanism [23] to our neural networks.

C. Training Settings

We train each local model on the dataset of the individual
client in a distributed manner. For each client’s data, we use
80% for training and 20% to validate the model. We randomize
the initialization parameters of models and conduct five times
of local training for each client per federated round. Then,
we aggregate the weights of all local models by a weighted
averaging mechanism and update the global model’s weight.
In the next round of federated training, all the local model
weights are updated with the aggregated global model weight.
We perform 30 times of federated training for a better accuracy
of the disease prediction system.

IV. SIMULATION RESULTS

In this section, we analyze the performance of our proposed
clinical decision support system by executing the simulations
on the Google Colab GPU backend. We consider a federated
learning-based global healthcare architecture where regional
healthcare professionals are participating as local clients with
their own datasets. We develop the medical diagnosis models
by using TensorFlow API [24]. We consider five clients
participating as the local models in our healthcare architecture.
Each local model is trained on the private dataset of an
individual client. We illustrate the training and testing loss of
each model as the benchmark centralized approach comparing
to our proposed federated learning scheme.

The training history for the centralized models are shown in
Fig. 3. As the individual local model is trained on its own local
dataset and evaluates the results on the same dataset, all the
local models converge after five rounds of the training process.
However, the results of the testing processes are evaluated on
the dataset of various clinical data. Thus, the testing losses
of the local models fluctuate as the testing dataset includes
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unknown data for each local model. Fig. 3a shows the model
performance of local client 1 where the training loss converges
to the value of 2.1083e-05 and the testing loss varies from
0.0094 to 0.8976 throughout the whole simulation process. The
model performance of local client 2 is shown in Fig. 3b where
the training loss converges to the value of 2.5834e-05 and the
testing loss varies from 0.0250 to 0.9088. Fig. 3c shows the
model performance of local client 3 where the training loss
converges to the value of 2.0466e-05 and the testing loss varies
from 0.0089 to 0.6527. Fig. 3d and Fig. 3e show the model
performances of local client 4 and local client 5, respectively.
In Fig. 3d of local client 4, the training loss converges to the
value of 2.1468e-05 and the testing loss varies from 0.0147 to
0.6586. In Fig. 3e, the training loss converges to the value of
2.7095e-05 and the testing loss varies from 0.0092 to 1.2760
throughout the whole simulation process.

Fig. 4 shows the training history for the global model.
Here, the global model is created with the aggregation of local
models and the evaluation results are conducted based on the
training data of all clients. After some communication rounds,
as the global model has gained reasonable predictive capacity,
its training loss becomes stable and satisfied with the value of
1.4985e-04 at 30" communication round. During the testing
process, as the global model is aggregated by all the local
models, it has already gained the predictive capacity based on
various local datasets and the testing loss is stable and satisfied
with the value of 4.1726e-03 at the 30" communication
round. According to Fig. 3 and Fig. 4, there is a proof
that our proposed federated learning scheme outperforms the
centralized approaches in testing with different distributions
of clinical data.

The sample prediction results evaluated on the testing
dataset are shown in Fig. 5, 6, 7, and 8, where each predic-
tion represents tuberculosis, diabetes, bronchial asthma, and
pneumonia, respectively. As a result of utilizing the attention
mechanism in sequence-to-sequence network architecture, the
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Fig. 6: Prediction of diabetes.

prediction results of diseases are shown with attention weights,
where the most relevant symptom is represented by the yellow
color.

V. CONCLUSIONS

In this paper, we proposed a deep learning-based person-
alized clinical decision support system trained and managed
under a federated learning paradigm to assist healthcare pro-
fessionals in medical diagnosing. We integrated the aid of
edge Al to train the local models distributively on the personal
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devices of healthcare professionals for reducing the data com-
munication cost and avoiding the transmission of vulnerable
data. We exploited the federated learning framework to train
our personalized models collaboratively by learning a shared
global model at the central server while keeping all the privacy
of clinical data on each local device. As a result, our proposed
clinical decision support system outperforms the benchmark
centralized scheme by enabling large-scale clinical data mining
while preserving the sensitive information of patients and
medical organizations. Moreover, we adopted the attention
mechanism in designing our medical diagnosis models as
sequence-to-sequence networks. Thus, our system possesses
the evolvable characteristics that can easily adapt new input
symptoms and expand the prediction for new diseases. For a
more detailed scenario as optimizing the communication costs
of the federated model to account for the noisiness of various
biomedical data is considered as our future work.
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