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Abstract. Given a large tensor, how can we decompose it to sparse core tensor
and factor matrices such that it is easier to interpret the results? How can we
do this without reducing the accuracy? Existing approaches either output dense
results or give low accuracy. In this paper, we propose VEST, a tensor factoriza-
tion method for partially observable data to output a very sparse core tensor and
factor matrices. VEST performs initial decomposition, determines unimportant
entries in the decomposition results, removes the unimportant entries, and up-
dates the remaining entries. To determine unimportant entries, we define and use
entry-wise ‘responsibility’ for the decomposed results. The entries are updated it-
eratively using a carefully derived coordinate descent rule in parallel for scalable
computation. VEST also includes an auto-search algorithm to give a good trade-
off between sparsity and accuracy. Extensive experiments show that our method
VEST is at least 2.2 times sparser and at least 2.8 times more accurate compared
to competitors. Moreover, VEST is scalable in terms of dimensionality, number
of observable entries, and number of threads. Thanks to VEST, we successfully
interpret the decomposition result of real-world tensor data based on the sparsity
pattern of the factor matrices.

Keywords: Scalable tensor factorization · Tucker · Interpretability · Sparsity

1 Introduction

How can we factorize a large tensor to sparse core tensor and factor matrices such
that outputs are easier to interpret? How can we do this without sacrificing accuracy? A
tensor is a powerful tool for representing multi-modal data. Tensor factorization outputs
a core tensor and factor matrices which reveal the latent relation of the data. Tensor
factorization can also be viewed as a tool for multi-linear regression problem where
only the target values, i.e., values of input tensor entries, are known. In this perspective,
the columns of factor matrices act as latent components, their values as latent feature
values, and the cells of the core tensor as weights of the relations between the latent
components [8]. Sparse tensor factorization aims to output sparse core tensor and factor
matrices. As sparse linear regression model enhances its interpretability [19], sparse
factor matrices and a core improve interpretability.

There are two widely used approaches for sparse factorization. The first approach
adds an L1 norm as sparse regularizer to the factorization objective function [14,12].
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Fig. 1: Sparsity and accuracy of VEST and competitors on Yelp-s and AmazonFood-s.
VEST generates sparse and accurate results that generalize well on unseen data: points
are located in the bottom right areas of both RE (reconstruction error) and Test RE plots.
However, the sparsity is sensitive to lambda values. The second approach removes ele-
ments with small values from the core tensor or the factor matrices [21,2,22]. However,
removing such elements does not necessarily leads to small reconstruction error, and
thus value-based pruning sacrifices accuracy.

Other application-specific approaches include utilizing domain-specific knowledge
as sparsity constraints [11], constructing factor matrix from sparse input sampling [10,13],
using smoothing matrices [17,7], and learning sparse dictionary for image data [18,23,5].
These methods are based on several strong assumptions. The first approach assumes that
prior classification of each mode, e.g., gene sets in omics data, are known. The second
approach assumes that input tensors are already sparse and interpretable, e.g., network
data. The third and fourth approaches assume values in input tensor are smooth, and
unsmoothing them does not affect the overall meaning of the data, e.g., image data.
However, these strong assumptions limit their use in general tensor factorizations.

In this paper, we propose VEST (VEry Sparse Tucker factorization), a scalable and
accurate Tucker factorization method to generate sparse factors and a core tensor for
large-scale partially observable input tensor. VEST outputs very sparse factorization
results by carefully determining the importance of elements of factors and the core,
and pruning unimportant ones. VEST guarantees that the sparsity non-decreases in the
update process by carefully derived update rules. Often, increasing sparsity too much
degrades accuracy. VEST gives an algorithm to automatically determine a reasonable
sparsity which offers a good balance with regard to accuracy. The very sparse result
of VEST helps interpreting the result of Tucker factorization and easily revealing the
relations of dimensions in multilinear regression.
Our main contributions are as follows:

– Algorithm. We propose VEST, an efficient Tucker factorization method for par-
tially observable data, which produces very sparse outputs for better interpretability
without loss of accuracy. VEST also provides an algorithm to automatically deter-
mine a sparsity which gives a good trade-off with regard to accuracy.

– Theory. We carefully derive parallelizable coordinate decent update rules for core
tensor and factor matrices, and prove their correctness. We also analyze the time
and space complexity of VEST.

– Performance. VEST provides better sparsity, accuracy, and scalability compared
to other methods (see Figure 1).

The codes and datasets used in this paper are available at http://github.com/
leesael/VeST.

http://github.com/leesael/VeST
http://github.com/leesael/VeST
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2 Preliminaries and Related Works

We introduce concepts of tensor and its operations, Tucker factorization, and the stan-
dard algorithm for Tucker. Table 1 lists the symbols used.

Table 1: Table of symbols and definitions.
X input tensor (∈ RI1×...×IN ) G core tensor (∈ RJ1×...×JN )
N order of X In, Jn dimensionality of the nth mode of X

and G, respectively
A(n) nth factor matrix (∈ RIn×Jn) a

(n)
injn

(in, jn)th element of A(n)

Ω set of observable entries of X |Ω| number of observable entries of X
Ω

(n)
in

set of observable entries whose nth
mode index is in

λ regularization parameter for core and
factor matrices

‖X‖F Frobenius norm of tensor X ‖X‖1 sum of absolute values of tensor X
α an entry (i1, ..., iN ) of input tensor X β an element (j1, ..., jN ) of core tensor G

αin=i an entry (i1, ..., in = i, ..., iN ) of input
tensor X

βjn=j an element (j1, ..., jn = j, ..., jN ) of
core tensor G

2.1 Tensor and its Operations

Tensor is multi-dimensional array that contains numbers. An ‘order’ or ‘mode’ is the
number of tensor dimensions, where a 1st-order tensor represents a vector and a 2nd-
order tensor represents a matrix. We denote vectors by boldface lowercase letters (e.g.,
a), matrices by boldface capital letters (e.g., A), and three or higher order tensors
by boldface Euler script letters (e.g., X). An entry of a 3rd-order tensor can be ex-
pressed with three indices. For example, the (i1, i2, i3)th entry of a 3rd-order tensor
X ∈ RI1×I2×I3 is denoted by xi1i2i3 , where index in spans from 1 to In.

The size of a tensor is often evaluated by the Frobenius norm. Given an N -order

tensor X (∈ RI1×...×IN ), the Frobenius norm of X is ||X||F =
√∑

∀α∈X X2
α, where

α = (i1, · · · , iN ) is an index to an entry of input tensor X. Tensor decomposition often
involves matricization of a tensor, and product between a tensor and a matrix. The mode-
n matricization of a tensor X ∈ RI1×···×IN is denoted as X(n) and the mapping from an
entry (i1, · · · , iN ) of X to an entry (in, j) of X(n) is given by j = 1+

∑N
k=1,k 6=n[(ik−

1)
∏k−1
m=1,m 6=n Im]. Also, the n-mode product of a tensor X ∈ RI1×···×IN with a matrix

U ∈ RJ×In is denoted by X ×n U (∈ RI1×···×In−1×J×In+1×···×IN ). Entry-wise, we
have (X×n U)i1···in−1jin+1···iN =

∑In
i=1(Xαin=i

uji).

2.2 Tucker Factorization

Our proposed method VEST is built on top of Tucker factorization, one of the most
popular tensor factorization methods. Given an N th-order tensor X (∈ RI1×···×IN ),
Tucker factorization approximates X by a core tensor G (∈ RJ1×···×JN ) and factor
matrices {A(n) ∈ RIn×Jn |n = 1 · · ·N} by minimizing the full reconstruction error:
minG,A(1),...,A(N) ‖X− G×1 A

(1) · · · ×N A(N)‖F .
Figure 2 illustrates a Tucker factorization result for a 3rd-order tensor. Typically, a

core tensor G is assumed to be smaller and denser than the input tensor X. Each factor
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Fig. 2: Tucker factorization of a 3-way tensor.
matrix A(n) represents the latent features of the object related to the nth mode of X,
and each element of a core tensor G indicates the weights of the relations composed of
columns of factor matrices.

However, in real-world, data are often incomplete with some missing entries. To ac-
commodate for the missing data, a partially observable Tucker factorization is needed.
Given a tensor X (∈ RI1×...×IN ) with observable entries Ω, the goal of partially ob-
servable Tucker factorization of X is to find factor matrices A(n) (∈ RIn×Jn , n =
1, · · · , N) and a core tensor G (∈ RJ1×...×JN ), which minimize the following loss:

LF (G,A
(1), ...,A(N)) =

∑
∀α∈Ω

Xα −
∑
∀β∈G

Gβ

N∏
n=1

a
(n)
injn

2

+λ(‖G‖2F+
N∑
n=1

‖A(n)‖
2

F ),

(1)
where α is an observable entry (i1, ..., iN ) of input tensor X, β is an element (j1, ..., jN )
of core tensor G, and λ > 0 is a regularization parameter. Note that the reconstruction
error in Eq. (1) depends only on the observable entries of X, and LF regularization is
used in Eq. (1) to prevent overfitting.

Tucker factorization often results in dense core and factor matrices. One of the ap-
proaches for sparsifying results is by including a sparsity constraint in the form of L1

norm, a.k.a., Lasso, into the objective function. Given a tensor X with observable en-
tries Ω, the goal of partially observable Tucker factorization via sparse regularizer of
X is to find factor matrices and a core tensor that minimize the following loss:

L1(G,A
(1), ...,A(N)) =

∑
∀α∈Ω

Xα −
∑
∀β∈G

Gβ

N∏
n=1

a
(n)
injn

2

+λ(‖G‖1+
N∑
n=1

‖A(n)‖1)

(2)
which changed the L2 regularization term of Eq. (1) to L1. Again the reconstruction
error in Eq. (2) depends only on the observable entries of X, and L1 regularization is
used to enforce sparsity. Another approach for sparsifying results is by pruning. That
is, a partially observable Tucker factorization via minimal element value pruning of X
is to optimize on either Eq. (1) or Eq. (2), and sets the smallest s ratio of the elements
to zero in the core and factor matrices.

Evaluation of tensor decomposition and the prediction of the missing entry val-
ues (a.k.a., tensor completion) involves reconstruction. Given core tensor G and factor
matrices A(n), the reconstruction of the original tensor X is defined as X ≈ G ×1

A(1) · · · ×N A(N).
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2.3 Tucker ALS Algorithm

A widely used technique for minimizing the loss functions Eq. (1) and Eq. (2) in a
standard tensor factorization is alternating least squares (ALS) [8], which updates a
factor matrix or a core tensor while keeping all others fixed.

Algorithm 1: Tucker-ALS for Fully Observable Tensors (HOOI)
Input : Tensor X ∈ RI1×I2×···×IN , and core tensor dimensionality J1, ..., JN .
Output: Factor matrices A(n) ∈ RIn×Jn (n = 1, ..., N), and core tensor

G ∈ RJ1×J2×···×JN .
1 initialize all factor matrices A(n)

2 repeat
3 for n = 1...N do
4 Y← X×1 A

(1)T · · · ×n−1 A
(n−1)T ×n+1 A

(n+1)T · · · ×N A(N)T

5 A(n) ← Jn leading left singular vectors of Y(n)

6 until reconstruction error converges or exceeds maximum iteration;
7 G← X×1 A

(1)T · · · ×N A(N)T

Algorithm 1 describes a vanilla Tucker factorization algorithm based on ALS, which
is called the higher-order orthogonal iteration (HOOI) (see [8] for details) that works
on fully observable tensor. Notice that Algorithm 1 assumes missing entries of X as
zeros during the update process (lines 4-5). However, setting missing values to zero
enforces Tucker ALS to factorize the original tensor such that missing values becomes
zero when reconstructed. Note that the missing values are often nonzero values that are
unknown. Thus, setting missing values to zero inserts false information into the fac-
torization which results in higher reconstruction error as well as higher generalization
error. Moreover, Algorithm 1 computes SVD (singular vector decomposition) given
Y(n), which often results in dense matrices, thus tensor-ALS results in overall dense
core tensor and factor matrices. Also, Algorithm 1 requires storing a full-dense matrix
Y(n), and the amount of memory needed for storing Y(n) is O(In

∏
m 6=n Jm). The re-

quired memory grows rapidly when the order, the mode dimensionality, or the rank of
a tensor increase, and ultimately causes intermediate data explosion [6].

In summary, the vanilla Tucker-ALS algorithm results in high generalization error
in the presence of missing data, results in dense and thus hard-to-interpret core tensor
and factor matrices, and cannot be applied to large data. Therefore, Algorithm 1 needs
to be revised to focus only on observed entries, make sparse outputs, and be scaled for
large-scale tensors at the same time.

3 Proposed Method

In this section, we propose VEST (Very Sparse Tucker factorization), a method for
partially observed large scale tensor, that results in very sparse core tensor and factor
matrices. Sparse results of tensor factorization increase interpretability and provide a
scheme for better compression. To maximize sparsity without losing accuracy, VEST
iteratively updates core tensor and factor matrices, and prunes unimportant elements
from the core tensor and factor matrices. However, there are several challenges in de-
signing an efficient update and pruning rules.
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– Evaluating importance of elements. Vital elements of core tensor and factor ma-
trices should not be pruned. How can we evaluate their importance?

– Automatically determining the sparsity. There is a trade-off relationship between
sparsity and accuracy. How can we automatically determine an appropriate sparsity
which gives a good balance with regards to accuracy?

– Updating factors while guaranteeing non-decreasing sparsity. The update pro-
cess of factors and the core in the regular Tucker-ALS does not guarantee that the
sparsity improves over the update process. How can we guarantee that update rules
improve the sparsity?

We have the following main ideas to address the above challenges which we describe
in detail in later subsections.

– Design responsibility indicator to evaluate contribution of each element on the
accuracy (Section 3.2).

– Design auto-search algorithm VESTauto∗ to find a good sparsity that resides near
the maximum sparsity just before the reconstruction error shoots up (Section 3.3).

– Design element-wise update rules to independently update each element of factor
matrices and the core tensor. Element-wise update rules guarantee that the sparsity
non-decreases by keeping pruned elements to zeros (Sections 3.4 and 3.5).

3.1 Overview

Algorithm 2: VEST: Very Sparse Tucker Factorization
Input : Tensor X ∈ RI1×I2×···×IN , core tensor dimensionality J1, ..., JN , and target

sparsity s (if manual-mode).
Output: Sparse factor matrices A(n) ∈ RIn×Jn(n = 1, · · · , N) and sparse core tensor

G ∈ RJ1×J2×···×JN .

1 randomly initialize A(n)(n = 1, · · · , N) and G; set pr = INIT PR, iterN = 0.
2 repeat
3 update unpruned elements of A(n)(n = 1, · · · , N) . Algorithm 4
4 update unpruned elements of G . Eq.(12) or (14)
5 compute RE using observable entries Ω . Eq.(4)
6 if should prune() then
7 prune pr=min(INIT PR*iterN , MAX PR) ratio of elements e in A(n) and G based

on Resp(e) of the elements . Algorithm 3

8 until RE converges or iterN++ exceeds maximum iteration;
9 for n = 1...N do

10 U(n)B(n) ← A(n), and set A(n) ← U(n)

11 G← G×n B(n)

VEST is a scalable Tucker factorization method that results in very sparse core ten-
sor and factor matrices for partially observable data (see Algorithm 2). First, VEST
initializes all elements of the core tensor and factor matrices with random real values
between 0 and 1 (line 1). Next, VEST iteratively updates the core tensor and factor
matrices while pruning their elements (lines 3-7). In lines 3-4, VEST updates unpruned
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elements of the core tensor and factor matrices by element-wise update rules (Sec-
tion 3.4), guaranteeing that the sparsity non-decreases. Then VEST prunes unimportant
elements in the core tensor and factor matrices (lines 6-7). Importance of each element
e is evaluated by responsibility Resp(e) which indicates how largely the element con-
tributes to the accuracy (Section 3.2). should prune() function determines when to
stop pruning: if desired sparsity s is achieved (in the manual version VESTman∗ ) or the
reconstruction error shows a rapid increase (in the automatic version VESTauto∗ ). Mo-
tivated from simulated annealing, we gradually increase the pruning ratio as iterations
proceed (line 7); this enables to explore larger search space in the beginning, while
reducing the extent of the search to reduce to a minimum in the later iterations. The
iterations proceed until the reconstruction error converges or the maximum iteration is
reached. Finally, VEST standardizes all columns of factor matrices such that their norm
is equal to one, and updates core tensor accordingly (lines 9-11). Specifically, A(n) is
decomposed to U(n) ∈ RIn×Jn and B(n) where columns of U(n) are unit vectors and
B(n) is a diagonal matrix whose (i, i)th element is the norm of A(n)’s ith column. The
core tensors are updated to maintain the same reconstruction error [9].

3.2 Evaluating Importance of Elements by Responsibility

VEST calculates the responsibility of each element which represents its contribution
to the overall reconstruction accuracy over the observable elements of the input tensor
to determine and prune unimportant elements. The intuition is that reconstruction error
increases significantly when a vital element of the core tensor or factor matrices is set to
zero, i.e., pruned. On the other hand, if the reconstruction error after pruning is similar
or even smaller to that before pruning, the pruned element is insignificant. Formally, the
responsibility is defined as follows.

Definition 1 (Responsibility). Responsibility of an element e in a factor matrix (e =

a
(n)
ij ) or core tensor (e = Gγ) is given by

Resp(e) =
RE(e)−RE

RE
, (3)

where

RE =

√√√√√ ∑
∀α=(i1,··· ,iN )∈Ω

Xα −
∑

∀β=(j1,··· ,jN )∈G

Gβ

N∏
n=1

a
(n)
injn

2

/||X||F (4)

is the normalized reconstruction error over the observable entries Ω of the original
tensor X, and RE(e) is residual reconstruction error defined when the element e is set
to zero (Eq. (5) and (6)). ut

Definition 2 (Residual reconstruction error). The residual reconstruction errorRE(Gγ)
for (j1, ..., jN )th element γ in core tensor G is as follows:

(RE(Gγ))
2 =

∑
∀α=(i1,··· ,iN )∈Ω

(
Xα −

∑
∀β=(j1,··· ,jN )6=γ∈G

Gβ
N∏
n=1

a
(n)
injn

)2
||X||2F

(5)
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The residual reconstruction error RE(a
(n)
i,j ) for an (i, j)th element a(n)i,j in a factor

matrix A(n) is as follows:

(RE(a
(n)
ij ))2 =RE2 +

∑
∀α∈Ω(n)

in

(
2 · (Xα −B(α)) +Bjn=j(α)

)
· (Bjn=j(α))

||X||2F
,

(6)

where B(α) is the entry-wise reconstruction defined as

Xα=(i1,··· ,iN ) ≈ B(α) =
∑

∀β=(j1,··· ,jN )∈G

Gβ

N∏
n=1

a
(n)
injn

, (7)

and Bjn=j(α) and Bjn 6=j(α) are the partial reconstruction functions defined as

Bjn=j(α) =
∑
∀βjn=j

Gβjn=j

N∏
n=1

a
(n)
injn

, Bjn 6=j(α) =
∑
∀βjn 6=j

Gβjn 6=j

N∏
n=1

a
(n)
injn

. (8)

ut
The proof of correctness for the derivation of the Eq.(6) is provided in the supple-

mentary material [16]. Note that both definitions are derived from the element-wise
reformulation of the reconstruction error.

3.3 Pruning

After calculation of responsibility values, VEST prunes core tensor and factor matrices.
Pruning is performed iteratively, each time after the core tensor and factor matrices are
updated. The process of pruning an element consists of setting the value of the element
to zero and marking the element as pruned in a marking table. The marked elements
are excluded from the update step. To prune elements with low responsibility values,
VEST sorts elements of the core tensor and each factor matrix, respectively, by the
responsibilityResp(e) in ascending order. Then, VEST prunes smallest pr|G| elements
from core tensor and smallest pr|A(n)| from each factor matrix, where pr is the pruning
rate of the current iteration. VEST starts with a small pruning rate pr (INIT PR) and
slowly increases pr until maximum pruning rate (MAX PR) is reached. The default
values of INIT PR and MAX PR are set to 0.01 and 0.1, respectively.

To determine when to stop pruning, VEST provides two different algorithms, the
manual version VESTman∗ and the automatic version VESTauto∗ ; the subscript * denotes
whether L1 or LF regularization is used.

– VESTman∗ takes a target sparsity s as an input from the user and stops pruning
when the total sparsity reaches s. That is, VESTman∗ enables users to decide on the
lower bound of the final sparsity.

– VESTauto∗ determines the final sparsity automatically. VESTauto∗ does this by track-
ing changes in the reconstruction error and determines to stop pruning when an
elbow point of the reconstruction error curve is reached. The elbow point is es-
timated as the point when the second derivative of the RE curve, estimated as
(REt + REt−2 − 2 ∗ REt−1)/prt where REt and prt are RE and pruning rate
at tth iteration, respectively, exceeds a small threshold (0.05 used).
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3.4 Element-Wise Update Rules

VEST updates elements of the core tensor and factor matrices based on a coordinate
decent approach in parallel. It enables VEST to update the core tensor and factor matri-
ces without changing the value of the pruned elements. VEST checks the marking table
which indicates whether elements have been pruned, and updates only the un-pruned
elements. The update of an element is performed with observable tensor entries and
fixed values of other elements in the factor matrices and the core tensor. The update
rules for the core tensor and factor matrices are derived by setting the partial derivative
of the loss function to zero and solving for each element. In previous works [15,11],
this approach has been shown and proven to converge faster with higher accuracy than
existing approaches. Advantages of our update rules are that 1) accuracy is high and
convergence is faster [15], 2) parallelization and selective updates are possible because
all the elements are independently updated, and 3) the size of intermediate data is small,
making the algorithm scalable.

Element-wise update rules with LF regularization The update rule for an element
a
(n)
injn

of factor matrix A(n) is derived by setting the partial derivative of loss function

(Eq. (1)) with regard to a(n)injn
to zero.

Lemma 1 (Update rule for factor matrices with LF regularization).

a
(n)
injn
←− arg min

a
(n)
injn

LF (G,A(1), ...,A(N)) =

( ∑
∀α∈Ω(n)

in

Xαδ
(n)
α (jn)

)
−
( ∑
∀t6=jn

v
(n)
injn

(t) · a(n)int

)
v
(n)
injn

(jn) + λ
,

(9)
where v

(n)
injn

is a length Jn vector whose jth element is

v
(n)
injn

(j) =
∑

∀α∈Ω(n)
in

δ(n)α (j)δ(n)α (jn), (10)

δ
(n)
α is a length Jn vector whose jth element is

δ(n)α (j) =
∑

∀βjn=j∈G

Gβjn=j

∏
k 6=n

a
(k)
ikjk

, (11)

Ω
(n)
in

is the subset of Ω whose index of nth mode is in, and λ is a regularization param-
eter. ut

The derivation of the core tensor update rule is similar to that of the factor matrix.
The update rule for the βth element Gβ of the core tensor G is given as follows.

Lemma 2 (Update rule for core tensor with LF regularization).

Gβ ←−

∑
∀α∈Ω

(Xα −
∑
∀γ 6=β

Gγ
N∏
n=1

a
(n)
injn

) ·
N∏
n=1

a
(n)
injn

λ+
∑
∀α∈Ω

(
N∏
n=1

a
(n)
injn

)2
(12)



10 M. Park et al.

ut

Element-wise update rules with L1 regularization For an element a(n)injn
of factor

matrix A(n), the element-wise update rule with L1 regularization is provided in the
following Lemmas.

Lemma 3 (Update rule for factor matrix with L1 regularization).

arg min
a
(n)
injn

L1(G,A
(1), ...,A(N)) =


(λ− gfm)/dfm if gfm > λ

−(λ+ gfm)/dfm if gfm < −λ
0 otherwise

(13)

where gfm = 2
( ∑
∀α∈Ω(n)

in

Xαδ
(n)
α (jn)

)
−
( ∑
∀t 6=jn

v
(n)
injn

(t) · a(n)int

)
, dfm = 2v

(n)
injn

(jn),

and v
(n)
injn

, δ(n)α , Ω(n)
in

, and λ follow the same specification provided in Lemma 1. ut

For an element Gβ of core tensor, the element-wise update rule with L1 regulariza-
tion is as follows:

Lemma 4 (Update rule for core tensor with L1 regularization).

arg min
Gβ

L1(G,A
(1), ...,A(N)) =


(λ− gc)/dc if g > λ

−(λ+ gc)/dc if g < −λ
0 otherwise

(14)

where gc = −2
∑
∀α∈Ω

(
Xα−

∑
∀γ 6=β

Gγ
N∏
n=1

a
(n)
injn

)
·
N∏
n=1

a
(n)
injn

, and dc = 2
∑
∀α∈Ω

( N∏
n=1

a
(n)
injn

)2
.

ut

The proofs of Lemmas 1 to 4 are provided in the supplementary material [16].

3.5 Parallel Update Algorithms

Responsibility calculation and factor matrices updates are performed in parallel. Algo-
rithm 3 describes the pruning process where responsibility values of the core tensor and
factor matrices are calculated in parallel for each observable entries of the input tensor.
Note that the use of B(α) in line 5 enabled fast computing of Resp(Gβ) in line 6; for
a given β in line 4, computing line 5 requires O(|Ω|) rather than O(|Ω||G|) since there
is no need to compute

∑
∀β 6=γ∈G Gγ

∏N
n=1 a

(n)
injn

in Eq. (5) from scratch.
The element-wise update of factor matrix A(n) is performed in parallel for each

rows of factor matrices using either the LF or L1 regularization (see Algorithm 4).
Elements of the core tensor are dependent on each other and thus cannot be updated in
parallel. However, considering that typical size |G| of the core tensor is small, the core
tensor updates are a minor burden in the computational process.



VEST: Very Sparse Tucker Factorization of Large-Scale Tensors 11

Algorithm 3: Parallel Pruning

Input : Tensor X ∈ RI1×···×IN , factor matrices A(n) ∈ RIn×Jn(n = 1, · · · , N), core
tensor G ∈ J1 × ...× JN , and pruning ratio pr.

Output: Pruned A(n)(n = 1, · · · , N) and G

1 for α = ∀(i1, ..., iN ) ∈ Ω do . in parallel

2 calculate B(α) =
∑

∀β=(j1,··· ,jN )∈G
Gβ

N∏
n=1

a
(n)
injn

3 calculate Xα −B(α) . Eq.(4)

4 for β = ∀(j1, ..., jN ) ∈ G do . in parallel

5 calculate
∑
∀α∈Ω

(Xα −B(α) + Gβ
N∏
n=1

a
(n)
injn

)

6 calculate Resp(Gβ) . Eq.(3), (5)

7 sort core tensor elements by Resp(Gβ) values in an ascending order
8 for in = 1...In do
9 for jn = 1...Jn do . in parallel

10 for α = ∀(i1, ..., iN ) ∈ Ω(n)
in

do
11 calculate (2(Xα −B(α)) +Bjn=j(α)) ·Bjn=j(α)

12 calculate Resp(a(n)injn
) . Eq.(3), (6)

13 sort factor matrix elements by Resp(a(n)ij ) values in an ascending order

14 prune smallest pr|G| and pr|A(n)| elements of G and A(n)(n = 1, ..., N), respectively.

Algorithm 4: Parallel Element-Wise Factor Matrix Update

Input : Tensor X ∈ RI1×···×IN , factor matrices A(n) ∈ RIn×Jn(n = 1, · · · , N), and
core tensor G ∈ J1 × ...JN .

Output: Updated factor matrices A(n) ∈ RIn×Jn(n = 1, · · · , N)

1 for n = 1...N do . nth factor matrix
2 for in = 1...In do . in parallel
3 for jn = 1...Jn do
4 if a(n)injn

is pruned then
5 continue

6 for α = ∀(i1, ..., iN ) ∈ Ω(n)
in

do
7 for β = ∀(j1, ..., jN ) ∈ G do . compute δ

8 δ
(n)
α (jn)←− δ(n)α (jn) + Gβ

∏
∀k 6=n

a
(k)
ikjk

9 accumulate Xαδ
(n)
α (jn), and update v

(n)
injn

. Eq.(10),(11)

10 update a(n)injn
using Eq. (9) for LF (use Eq. (13) for L1)

Lemma 5 (Complexity of VEST per iteration).
The time complexity per iteration of VEST is O(N2J |G||Ω|/T + NIJ log(IJ) +
|G| log |G|), and the memory complexity is O(TJ + JN + NIJ) , where T is the
number of threads, N is the order, I is the dimensionality of input tensor, and J is the
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dimensionality of the core tensor assuming the dimensionalities are equal for all modes.
ut

The full proof of Lemma 5 is in the supplementary material [16].

4 Experiments

We conduct experiments to answer the following questions.
1. Performance comparison (Section 4.2). How accurately and sparsely does VEST

decompose a given tensor compared to other methods?
2. Sparsity and accuracy (Section 4.3). Does VEST successfully prune redundant

information in the decomposition without hurting the accuracy? Does VESTauto∗
find reasonable sparsity and accuracy trade-off point?

3. Data scalability (Section 4.4). How scalable is VEST?
4. Interpretable discoveries (Section 4.5). How interpretable are the VEST results

for discoveries on real-world tensors?

4.1 Experimental Settings

Datasets. We used three real-world datasets and synthetic datasets as summarized in
Table 2. The real-world datasets are MovieLens3, Yelp4, and AmazonFood5. Movie-
Lens is a 4th order tensor of movie ratings containing (user, movie, year, hour). Yelp
is a 3rd order tensor of business services rating data containing (user, business, year-
month). AmazonFood is a 3rd order tensor of food review scores from Amazon con-
taining (product, user, year-month). To compare with other methods, we used subsets
Yelp-s and AmazonFood-s of 3rd order tensors which are made denser than their origi-
nals. The density of Yelp-s and AmazonFood-s are 0.01 and 0.02, respectively. We also
generated synthetic random tensors of various sizes and orders to test data scalability.

Table 2: Summary of datasets and hyperparameters used.

Name Order Dimensionality Ranks |Ω| |Ω|test
MovieLens 4 138K × 27K × 21× 24 6× 6× 2× 2 18M 2M
Yelp 3 71K × 16K × 108 10× 10× 10 301K 33K
AmazonFood 3 74K × 256K × 143 9× 9× 14 511K 57K
Yelp-s 3 50× 50× 10 5× 5× 5 235 32
AmazonFood-s 3 50× 50× 10 5× 5× 5 444 51
Synthetic 3− 10 103 − 108 3× · · · × 3 103 − 107 -

Environment. VEST was written in C++ with OPENMP [4] and ARMADILLO [20]
libraries for parallelization. Methods L1 (Lasso) and Value Pruning were run on VEST
framework with the difference just in the pruning approaches. We used the codes pro-
vided by the authors for TTP [21] (R) and Sparse CP [2] (Matlab). Tucker-ALS was

3 https://grouplens.org/datasets/movielens/
4 http://www.yelp.com/dataset_challenge/
5 http://snap.stanford.edu/data/web-FineFoods.html

https://grouplens.org/datasets/movielens/
http://www.yelp.com/dataset_challenge/
http://snap.stanford.edu/data/web-FineFoods.html
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performed via Tensor Toolbox for Matlab [3]. All experiments were done on a single
machine equipped with an Intel Xeon E5-2630 v4 2.2GHz CPU (10 cores/20 threads)
and 512GB memory. All reported measures are averages of five runs, unless otherwise
stated.
Competitors. We compared VEST with the following methods.
• L1 (Lasso): A Tucker factorization method with lasso sparsity constraint imple-

mented as VESTmanL1
with sparsity s = 0.

• Value Pruning: A Tucker factorization method with value pruning at the last step
implemented as VESTman∗ with sparsity s = 0 followed by value pruning with
ratio 0.6 for LF and L1 losses.

• TTP [21]: A tensor decomposition method that results in sparse components.
• Sparse CP [2]: CP decomposition method with lasso penalty.
• Tucker-ALS [8]: Conventional Tucker factorization method (HOOI).
• PTucker-Approx [15] : Tucker decomposition method for partially observable ten-

sor with iterative element value pruning.

4.2 Performance Comparison

We compared the accuracy of VESTautoLF
and VESTautoL1

with those of the competitors
on datasets Yelp-s and AmazonFood-s (Table 2). The comparison was performed on
smaller and denser datasets of order three and not on original real-world datasets due to
limitations of the TTR and Sparse CP.

We measured and compared normalized reconstruction errors (RE) over observable
entries in input tensors. As shown in Fig. 1(a), VESTautoLF

and VESTautoL1
decomposed

a given tensor with at least 2.8 times lower RE compared to other methods at a similar
sparsity. Fig. 1(a) also shows that at a similar RE value, VEST∗LF and VEST∗L1

output at
least 2.2 times more sparse factor matrices and core tensor compared to other methods,
where the sparsity is measured as the ratio of number of nonzero values in G and A(n)

over |G|+ |
∑N
n=1 A

(n)|.
To answer how well VEST predicts missing entries compared to other methods, we

measured REs of the reconstructed missing values (Test RE). After learning the factor
matrices and the core tensor using 90% of the observed entries, we calculated the Test
REs on the remaining 10% of the observable entries. Fig 1(b) shows that VEST predicts
missing entries at least 1.8 times more accurately compared to others, in addition to
providing at least 1.7 times sparser results.

4.3 Sparsity and Accuracy

We tested the sparsity and accuracy of outputs of VEST on three full size real-world
datasets: MovieLens, Yelp, and AmazonFood, in Figure 3. First, we investigated how
the sparsity affects the normalized reconstruction error (RE). Note that the REs are not
affected much until the sparsities are above 0.6; this shows that there is redundant in-
formation in the decomposition results, and VEST successfully finds and removes such
redundancies to get compact outputs. Second, we investigated how VESTauto∗ auto-
matically finds a desired sparsity which gives a good tradeoff with regard to accuracy.
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Fig. 3: Sparsity against reconstruction error (RE) of VEST with varying target sparsity
s. Note that 1) VEST successfully removes redundant information in the decomposition
without hurting the accuracy, and 2) VESTauto∗ automatically finds the sparsity at the
elbow point of the RE curve.
Note that in all the datasets, VESTauto∗ successfully finds sparsity points at the elbows
of the RE curves, resulting in reasonable sparsity and RE trade-offs. Similar trend was
observed for the sparsity and the test RE (see the supplementary material[16]).

4.4 Data Scalability
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Fig. 4: Scalability of VEST. Data scalability of VEST varying (a) tensor order, (b)
tensor dimensionality, (c) number of observable entries, and (d) number of threads.

We evaluated the scalability of VEST by generating synthetic tensors varying the
order, the dimensionality, and the number of observable entries, and measuring the
running time (see Figure 4). For convenience, the dimensionality of each mode in
the input tensor, as well as the dimensionality of core tensor, were set equal, i.e.,
I1 = I2 = ... = IN and J1 = J2 = ... = JN = 3, respectively.
Order. Data scalability on the order of input tensor is tested on synthetic tensors of
varying orders from 3 to 10. For each input tensor, the dimensionality and the number
of observable entries were fixed to |Ω| = 103. Figure 4 (a) shows that VEST scales
quadratically with regard to order, as discussed in Section 3.5.
Dimensionality. Data scalability on the dimensionality was tested on input tensors of
varying dimensionalities from 103 to 108 with each mode having equal dimension. The
order was set to three, and |Ω| was set equal to the dimensionality. Figure 4 (b) shows
that VEST has near-linear scalability in terms of the dimensionality.
Number of Observable Entries. Data scalability on the number of observable entries
was tested on input tensors by varying the number of observable entries from 103 to
107. The order was set to three, and the dimensionality was fixed to 103. Figure 4 (c)
shows that VEST has near-linear scalability in term of the number of observable entries.
Effectiveness of Parallelization. We evaluated the parallelization scalability of VEST
by increasing the number of threads from 1 to 20 and measuring Time1/T imeT where
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TimeT is the running time per iteration using T threads. Figure 4(d) shows near-linear
scalability of VEST in terms of the number of threads used.

4.5 Discovery

We evaluated interpretability of VEST by investigating the factorization results of Movie-
Lens dataset and visually showing that the sparse results enhance interpretability. It is
difficult to analyze dense results generated by vanilla methods without post-processing.
In contrast to existing methods, we can easily identify interesting factors generated by
VEST based on sparsity of each row of a factor matrix.

Discovery of Greatest Movies. We found that a few rows of the movie-associated
factor matrix are fully dense although the goal of VEST is to generate sparse results.
Such rows corresponded to popular movies rated by diverse users. Figure 5 shows pop-
ular movies which have the largest number of non-zero and the sums of values. Ac-
cording to Empire magazine [1], 14 out of 20 movies we found were included in the
100 greatest movies. The remaining six movies, including ‘Sixth Sense’, ‘Kill Bill’, and
‘Fifth Element’, that were not in the 100 list were also very famous.

VeST Popular Movie Selections
Title Rank Title Rank

1 11
2 12
3
4 14
5 15
6 16
7
8
9 19

Schindler's List (1993) 

Amelie (2001)

Godfather, The (1972) 

Lord of the Rings: The ... 

Dark Knight, The (2008) 

Sixth Sense, The (1999) 

Star Wars: Episode V ... 

Donnie Darko (2001) 

Indiana Jones and the Last.. 

Trainspotting(1996) 10 20

-0.010

-0.005

-0.000

13

17
18

Fight Club (1999)

Ferris Bueller's Day Off ... 

Heat (1995)

Reservoir Dogs (1992)

Kill Bill: Vol.2 (2004) 

Postman, The (1994) 

Gladiator (2000)

American History X(1998) 

Ususal Suspects, The(1995) 

Fifth Element, The (1997)

Fig. 5: Popular movies discovered by VEST. 14 of 20 movies we find are included
in the 100 greatest movies introduced in Empire magazine. The remaining six movies
(Sixth Sense, Kill Bill, Ferris Bueller’s Day Off, Postman, American History X, and
Fifth Element) are also famous movies and were rated by various users.

5 Conclusion

We proposed VEST, a very-sparse Tucker factorization method for sparse and par-
tially observable tensors. By deriving the element-wise partial differential equations,
determining the importance of elements by responsibilities, and parallel distribution of
computational work, VEST successfully offers very sparse and accurate results that are
applicable for large partially observable tensors. VEST generates at least 2.2 times more
sparse results compared to other methods for partially observable tensors and at least
2.8 times accurate results compared to other sparse factorization methods. VEST also
shows near linear scalability regarding tensor dimensionality, number of observable en-
tries, and number of threads. Thanks to the increased sparsity that leads to improved
interpretability by VEST, we were able to discover interesting patterns related to the
greatest movies in the factor matrix of a real-world movie rating tensor data. Future
works include better initialization for Tucker factorization, integration of prior knowl-
edge, and effective visualization of tensor results.
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