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Abstract

Predicting user affinity to items is an important problem in applications
like content optimization, computational advertising, and many more. While
bilinear random effect models (matrix factorization) provide state-of-the-art
performance when minimizing RMSE through a Gaussian response model on
explicit ratings data, applying it to imbalanced binary response data presents
additional challenges that we carefully study in this paper. Data in many
applications usually consist of users’ implicit response that are often binary —
clicking an item or not; the goal is to predict click rates (i.e., probabilities),
which is often combined with other measures to calculate utilities to rank
items at runtime of the recommender systems. Because of the implicit nature,
such data are usually much larger than explicit rating data and often have an
imbalanced distribution with a small fraction of click events, making accurate
click rate prediction difficult. In this paper, we address two problems. First,
we show previous techniques to estimate bilinear random effect (BIRE) models
with binary data are less accurate compared to our new approach based on
adaptive rejection sampling, especially for imbalanced response. Second, we
develop a parallel bilinear random effect model fitting framework using Map-
Reduce paradigm that scales to massive datasets. Our parallel algorithm is
based on a “divide and conquer” strategy coupled with an ensemble approach.
Through experiments on the benchmark MovieLens 1M data, a small Yahoo!
Front Page Today Module data set, and a large Yahoo! Front Page Today
Module data set that contains 8M users and 1B binary observations, we show
that careful handling of binary response as well as identifiability issues are
needed to achieve good performance for click rate prediction, and that the
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proposed adaptive rejection sampler and the partitioning as well as ensemble
techniques significantly improve model performance.

1 Introduction

Personalized item recommendation is an important task in many web applications,
such as content optimization (Agarwal et al.,|2008]), computational advertising (Broder,
2008)), and others. Such systems recommend a set of items like article links, ads,
product links, etc for each user visit; users respond by clicking and/or engaging in
other activities post-click. Personalizing such recommendations based on the user’s
demographic information and browsing history, typically leads to better user engage-
ment and profit for organizations. Accurate prediction of the probability of a user
clicking an item, is an important input to facilitate such personalization.

For a user 7 and an item j, let p;; be the probability of user ¢ clicking item j. If
we let r; denote the utility of clicking item j (e.g., the ad revenue associated with
a click on item j), the system may rank items based on some function of r; and p;;
to maximize the utility. In computational advertising for instance, ranking is based
on the expected revenue r;p;;. Click probabilities are usually estimated through a
statistical model trained on past click data. Intuitively, we can think of the click
data as a binary matrix Y, such that entry y;; = 1 if user ¢ clicked item j, and
y;; = 0 if user ¢ viewed but did not click on j. We note that Y is a highly incomplete
matrix with many unobserved entries since each user usually views a small number
of items. The goal is to predict p;; for unobserved (7, j) pairs. We also note that
in many web applications the click-rates are small giving rise to highly imbalanced
binary response data.

1.1 Background and Literature

The problem of personalized item recommendation described above is closely re-
lated to a rich literature on recommender systems and collaborative filtering. An
overview can be seen in |Adomavicius and Tuzhilin| (2005). Recommender systems
are algorithms that model user-item interactions to facilitate the process of personal-
ized item recommendations. There are two types of approaches that are widely used
in recommender systems: content-basedapproaches andcollaborative filtering. The
content-based approaches use only user and item covariates to model the user-item
interaction. Collaborative filtering approaches model user-item interactions by user’s
past response alone, no covariates are used. However, in real recommender systems
we often observe both “warm-start” and “cold-start” scenarios: “Warm-start” means



we have past observations from this user/item so that both the past responses and
covariates can be used in modeling. “Cold-start” scenario represents when a new
user/item comes to the system; hence we do not have any past responses but may
still have the covariates. To handle both scenarios a hybrid approach that combines
content-based and collaborative filtering is often used in recommender systems.

Nearest-neighbor methods are widely used in collaborative filtering (e.g. Sarwar
et al.| (2001), Wang et al. (2006)). They are very popular in large-scale commercial
systems, such as |[Nag (2008), |Linden et al.| (2003). The basic idea of the nearest-
neighbor methods is to compute item-item similarity or user-user similarity from
Pearson correlation, cosine similarity or Jaccard similarity of the responses of a
pair of users/items. Then for each unobserved user-item pair, the prediction is
simply a weighted average of the set of nearest neighbor’s responses, and the weights
come from the similarity measures. More recently, |Agarwal et al.| (2011]) proposed a
Bayesian hierarchical modeling approach to model the item-item similarity in a more
principled way.

Since the Netflix challenge (Bennett and Lanning), |2007), the SVD-style matrix
factorization methods have been well known to provide state-of-the-art performance
for recommender problems. In this paper, we shall refer to the class of matrix factor-
ization models as bilinear random effects (BIRE) models. A theoretical perspective
of this problem was first provided in Srebro et al. (2005). [Bell et al.| (2007); Bennett
and Lanning] (2007) have successfully used this strategy in collaborative filtering ap-
plications. Salakhutdinov and Mnih| (2008a.b) formulate a probabilistic framework
using a hierarchical random-effects model where the user and item factors are mul-
tivariate random-effects (factor vectors) that were regularized through zero-mean
multivariate Gaussian priors. These papers used bilinear random effects as a tool
to solve pure collaborative filtering problems; they do not work well in applications
with significant cold-starts which is commonplace in several applications.

In light of the “cold-start” problem, a desirable approach would be to have a
model that provides predictive accuracy as BIRE for warm-start scenarios but fall-
backs on a feature-based regression model in cold-start scenarios. Incorporating
both warm-start and cold-start scenarios simultaneously in collaborative filtering
is a well studied problem with a rich literature. Several methods that combine
content and collaborative filtering have been studied. For instance, |Balabanovic
and Shoham (1997) present a recommender system that computes user similarities
based on content-based profiles. In|Claypool et al.| (1999), collaborative filtering and
content-based filtering are combined linearly with weights adjusted based on abso-
lute errors of the models. In Melville et al.| (2002), content based models are used to
fill up the rating matrix followed by recommendation based on similarity (memory)



based methods (Breese et al., 1998). In Good et al| (1999)); Park et al. (2006), fil-
terbots are used to improve cold-start recommendations. [Schein et al.| (2003) extend
the aspect model to combine the item content with user ratings under a single prob-
abilistic framework. In Agarwal and Chen (2009); Stern et al.| (2009)), a principled
solution is proposed by using linear model regression priors on the user and item
random effects through features. This is generalized in [Zhang et al. (2011) so that
the regression priors can be non-linear functions which further improves the model
predictive accuracy. These solutions based on incorporating features into random
effects itself are superior than the classical methods of dealing with warm-start and
cold-start scenarios simultaneously.

1.2 Statistical Challenges

The basic idea of the bilinear random effect (BIRE) models is to approximate the
response y;; from user ¢ and item j by an inner product of the user random effect u;
and the item random effect v;. For Gaussian responses, the loss function is usually
RMSE, i.e. miny_, (y;; — ujv;)* over observed (i, j) pairs. Due to a preponderance
of missing entries in Y, the user/item random effects have to be regularized further
to avoid over-fitting the training data. This is usually done by constraining latent
profiles through the Ly norms or equivalently assuming zero-mean Gaussian priors on
the user/item random effects. To handle cold-start scenarios, instead of zero-mean
Gaussian priors, covariates-based regression priors can be used on the user/item ran-
dom effects, and both random effects and the regression parameters are estimated
simultaneously through a Monte Carlo EM (MCEM) algorithm (Booth and Hobert),
1999). |Agarwal and Chen| (2009); Zhang et al.| (2011]) show that this modeling frame-
work gives state-of-the-art performance, especially for Gaussian user-item interaction
responses. However, in some real recommender systems we often observe the follow-
ing two major challenges:

e Imbalanced binary response: Many web applications depend on implicit
user feedback that are in the form of events like clicks. Further, these events
are usually rare; this gives rise to imbalanced binary response data. Accurate
estimation of probabilities with imbalanced binary response is known to be a
difficult problem (Owen| 2007) even in the case of ordinary logistic regression;
performing such estimation for elaborate BIRE models introduces additional
challenges that have not been carefully studied before.

e Large scale data: As every display of an item to a user generates an ob-
servation, data collected from these applications is massive for large systems



such as major websites. In fact, the entire data often does not fit into memory
and resides in large distributed data clusters. Scalable model fitting using dis-
tributed computing paradigm like Map-Reduce (Dean and Ghemawat|, 2008)
is an attractive option. However, the EM algorithms used to fit such BIRE
models require sequential processing of data and are not directly amenable to
computing in a Map-Reduce paradigm. Therefore, scalable model fitting for
such massive datasets is still a challenge.

We address both of the challenges mentioned above in this paper. First, although a
variational approximation method has been proposed in /Agarwal and Chen| (2009)) to
perform approximate sampling of the user/item random effects for binary response
data in the E-step of the Monte Carlo EM model fitting procedure, we show such an
approximation does not give optimal prediction accuracy, especially for imbalanced
binary response. By using an adaptive rejection sampling (ARS) technique to sample
the factors exactly in the E-step, we can significantly improve prediction accuracy.
We also find model identifiability issues when dealing with imbalanced binary re-
sponse that hurts model accuracy; we show that this can be handled effectively in
our framework by enforcing a few additional constraints on the random effects. To
our surprise, we find the variational approximation deteriorates as the response gets
rare and it happens because the random effect estimates shrink more compared to
the exact ARS sampler.

To handle model fitting for massive datasets, we develop a parallel BIRE model
fitting framework based on Map-Reduce that fits accurate models in a scalable way.
Our method is based on two key ideas — (a) creating several random partitions of the
data and fitting separate models to each in parallel, and (b) an ensemble approach
to refine the random effect estimates. The ensemble is created by using several runs
of random partitioning of the data and averaging over the random effect estimates
from each run. This combination of divide and conquer coupled with ensembles
provides a simple yet effective procedure. Due to multi-modal nature of the posterior
distribution, careful initialization that synchronizes factor estimates across partitions
is important. The partitioning method employed also has an impact on performance;
we provide a detailed study of these issues also.

To summarize, we make the following contributions. We provide a careful study
of fitting regression based bilinear random effect (BIRE) models to binary response
data that are commonplace in many web applications. We show that when modeling
rare response, previously proposed methods can be improved by exact sampling of
factors through an adaptive rejection sampling procedure. We provide a modeling
strategy that scales to massive datasets in a Map-Reduce framework. Our method is
based on a divide and conquer strategy coupled with an ensemble approach. We show



that exact sampling of random effects and carefully handling identifiability issues can
make a significant difference in model performance. We compare our method with
various baselines on benchmark data and illustrate impressive gains on a content
optimization problem on the Today module of Yahoo! front page.

2 Personalized Item Recommendation on Yahoo!
Front Page Today Module

The Yahoo! front page (www.yahoo.com) is a major web portal that attracts hun-
dreds of millions of visitors every day. Figure [I|shows a snapshot of the Yahoo! front
page. The Today module is one of the most obvious modules on the web page. It
displays article links on four positions labeled as F1 through F4. The article link
at the F1 position is displayed in a large and prime area in the module by default,
while article links at F2 to F4 are displayed in the smaller footer area. A mouse
hovering on a non-F1 article link will bring the article link to the prime area. A
click on an article link in the prime area will then lead the user to the actual article
page. Since there are usually multiple links corresponding to one article, including
title, related images and videos, we shall refer the entire bundle of the links as one
article and treat a click on any of the links as a click on the article. The personalized
recommender system of the Today module is a combination of editorial oversight and
statistical modeling. Statistical models are used to predict the probability of a user
clicking an article; hence using the models to rank articles and show the best ones
to the users gives optimal click through rates (CTR, the number of clicks divided by
the number of views of the article) and improves user satisfaction and engagement
for the front page. However, it has been well known that simply applying statistical
modeling on a large and unscreened article inventory to optimize CTR is not opti-
mal, sometimes even dangerous. For example, articles with salacious titles often have
extremely high CTR, but in fact those are inappropriate for such a major web portal
and it will cause Yahoo! to lose reputation. Therefore, in reality trained human
editors at Yahoo! manually create and update the article inventory that contains
30-40 articles at any given time, and statistical CTR prediction models such as the
ones described in this paper, pick the best 4 articles to show on position F1-F4 from
the inventory based on the user’s covariates and previous browsing history. Also,
please note that the lifetime of each article in the inventory is usually quite short,
ranging from several hours to 1 day.


www.yahoo.com

Figure 1: A snapshot of the Yahoo! front page and its Today module.

3 Regression-based Bilinear Random Effects Model

In this section, we describe a probabilistic bilinear random effects (BIRE) model that
leverages covariates to handle the cold-start problem and has been shown to provide
state-of-the-art performance on a number of relatively small datasets
Chenl 2009; Zhang et al, 2011). We only describe the model with logistic link
function for binary response, and refer the readers to Zhang et al| (2011)) for the
Gaussian model for numeric response and Poisson model for count data.

Notation:. Let y;; denote whether user i clicks item j. Since we always use ¢ to
denote a user and j to denote an item, by slight abuse of notations, we let z;, z;
and z;; denote covariate vectors of user ¢, item j and pair (i,j). For example, the
user covariate vector z; may include age, gender and behavioral covariates. The item
covariate vector x; may include content categories, keywords, named entities, etc.
The covariate vector x;; contains observation-specific covariates that are not entirely
attributable to either user or item, e.g., time-of-day of the observation, position of
the item on the displayed web page.



Model: Our objective is to model the unobserved probability p;; that user ¢ would
click item j. Specifically, we assume a Bernoulli model using the logistic link function:

yi; ~ Bernoulli(p;;). (1)
Dij

Let s;; = log 7= denote the log odds. We model s;; by

1=pij
si; = [(xij) + o + B; + ujv;, (2)

where f(z;;) is a regression function based on covariate vector z;;; ; and u, are
latent random effects (factors) representing the user bias and the r-dimensional latent
profile of user i, respectively; and (; and v, are latent random effects (factors)
representing the item popularity and the r-dimensional latent profile of item j.

Flexible Regression Priors: Because the above model is usually over-parameterized
with a large number of latent factors, it is important to regularize the factors to pre-
vent over-fitting. A common practice is to shrink the factors toward zero. However,
it fails to handle the cold-start problem because the predicted factor values of new
users or items will all be zero. A better approach is to shrink factors to values pre-
dicted based on features (Agarwal and Chen, 2009; Zhang et al.l 2011). Specifically,
we put the following priors on «ay, 3;, u; and v;:

o ~ N(g(‘ri)’ U?x)? u; ~ N(G(l‘,), O-’LQI,])’

B ~ N(h(z)),03),  v; ~ N(H(z;),0]), )

where g and h are any choices of regression functions that return scalars, and G
and H are regression functions that return r-dimensional vectors. These regression
functions can be linear as in |Agarwal and Chen| (2009)) or non-linear (e.g., decision
tree, forest, etc.) as in|Zhang et al.| (2011)).

To better understand the usefulness of regression priors, take u; for example. If
user ¢ is a new user, then u; is predicted by G(z;), where the regression function G
is learned based on users who interacted with some items in the training data. Let
G(z;) = (G1(zy),...,Gr(2;)). One example of G is to use a regression tree Gy, for
each latent dimension k£ to predict the value of the k-th dimension of a user’s latent
profile based on his/her covariate vector. If covariates are predictive, we would be
able to make accurate click rate prediction for new users.

4 Model Fitting for Binary Data

In this section, we describe the model fitting procedure based on the Monte Carlo
Expectation Maximization (MCEM) algorithm for datasets that can fit in a single

8



machine. This is the building block for large data scenario stored in distributed
clusters as described in Section[5] We first describe the general fitting procedure using
the MCEM algorithm (Booth and Hobert, |1999) in Section and then introduce
two ways to handle binary response in the E-Step: the variational approximation
method (VAR) in Section and the adaptive rejection sampling method (ARS)
in Section [£.3] Finally, we briefly describe the M-Step in Section [£.4} it is the same
as that in |Zhang et al.| (2011) but repeated here for comprehensiveness.

4.1 The MCEM Algorithm

Let © = (f,9,h,G, H,03,0,,05,07) be the set of prior parameters (also referred to
as hyper-parameters). Let A = {o, 5;, u;, v }vi ; be the set of latent random effects
(also referred to as factors). Let y denote the set of observed binary response. For
M users and N items, the complete data log-likelihood is given by
log L(©; A, y) = log Pr[y, A|®] = constant

— > Yij log(1 + exp(—f(wi;) — ai — B — uv;))

=22 (L= yiy) log(1 + exp(f(zi;) + i + B + wjv;))

- ﬁzi(%‘ —g(x))? = %10%03 (4)

- @ > (B = h(zy))* — §log o
LS, I — G| — 42 log o?

o :
— 35 X, oy — H(x))|? — X log o?.

To apply the standard EM algorithm (Dempster et al. [1977), we can treat A as
missing values and find the optimal estimate for ® that maximizes the marginal
likelihood

Pr{y|O] = [ L(O:A,y)dA. (5)
The EM algorithm iterates between an E-step and a M-step until convergence. Let
©® denote the current estimated value of © at the beginning of the ¢-th iteration.

o E-step: We take expectation of the complete data log likelihood with respect
to the posterior distribution of the latent random effects A conditional on
observed data y and the current estimate of ®; i.e., compute

3(©) = Eallog L(©; A, y) |01 4] (6)

as a function of ©, where the expectation is taken over the posterior distribu-
tion of p(A |©® ) and O is treated as a set of constants. The output of
the E-step consists of a set of sufficient statistics to be used in the M-step.
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e M-step: We maximize the expected complete data log-likelihood from the
E-step to obtain updated values of ®; i.e., find

O+ — arg max (). (7)

Note that in the E-Step, the posterior p(A | e, y) is not available in closed form.
Thus, we compute Monte Carlo means based on Gibbs samples following the MCEM
algorithm (Booth and Hobert, 1999; Agarwal and Chenl [2009; |Zhang et al.l 2011)).
According to [Salakhutdinov and Mnih| (2008a); Agarwal and Chen| (2009)), this ap-
proach provides better predictive accuracy and avoids over-fitting while it remains
scalable compared to other choices such as the iterative conditional mode (ICM)
algorithm.

Before we describe the E-Step, we first provide the formula for ¢,(©). Let 6 =
E[6|0%Y) y] and V[§] = Var[§|©*+V, y], where § can be one of oy, §;, u; and v,.

Then, we have
@(©) = Eallog L(©; A, y) |©Y y] = constant
— > i Vi Ellog(1 + exp(—f(xi5) — ai — B — ujv;))]
=2l —yy)E [10g(1 +exp(f(ziy) + i + B + ujv;))]

2;2 Zz (
2a2 (

202 Z
20'2 Z

It is easy to see that the sufficient statistics for maximizing ¢(©) are &;, Bj, U;, V;
for all 7 and j, as well as >, V{as], >, VI[B;], >_; tr(V[w,]) and _, tr(V]v;]). This
set of quantities is computed based on L Gibbs samples and is the output of the
E-step. We note that the first two terms are difficult to expand and we will use

plug-in estimates of «;, 3;, u; and v; to determine a near optimal solution for f in
the M-step.

‘i‘ V[O./l]) - M log 0'2 (8)
iﬂji) -

Elogaﬁ
||a; — G(x;) H2+tr Viw ) 2 logo?

(H'vj H(z;) ||2+tr NT log o2.

4.2 Variational Method in E-Step

Since Eallog L(©; A, y) | ©")] is not available in closed form, we compute the Monte-
Carlo expectation based on L samples generated by a Gibbs sampler (Gelfand|, [2000)).
The Gibbs sampler repeats the following procedure L times. In the following text,
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we use (0 | Rest), where d can be one of «;, 8, u;, and v, to denote the conditional
distribution of ¢ given all the other latent random effects and the observations y.
Let Z; denote the set of users who rated item j, and J; denote the set of items rated
by user i.

The variational approximation is based on [Jaakkola and Jordan| (2000) and was
proposed in |Agarwal and Chen| (2009) to factorize binary matrices. We note that
there is a typo in the variational approximation formula in |Agarwal and Chen| (2009).
The basic idea is to transform binary response values into Gaussian response values
before each EM iteration and then just use the E-Step and M-Step of the Gaussian
model.

Let &;; be a parameter associated with each observed y;;. We can set all §;; =1
initially.

e Before each E-step, create pseudo Gaussian response for each binary observa-

tion y;; € {0,1}. The pseudo Gaussian response is r;; = ii%&j with variance
ol = ﬁ&j), where \({) = 4 tanh (5).

e Run the E-step using Gaussian pseudo observations (7;;, Ufj). Details will be
provided later.

e Run the M-step in Section 4.4}

2]'

o After the M-step, for each observation y;;, set &; = E[sij

Now we describe the details of the E-step given the pseudo Gaussian observations
(7ij, afj). Repeat the following steps L times to draw L samples of A.

e Draw «; from Gaussian posterior p(«;|Rest) for each user 7.

Let 0 = rij — f(xij) — Bj — u/ivjv

A _ (1 1y-1
Var|o;|Rest] = (% + Zje$ %) . (9)
Ela;i|Rest] = Var[aﬂRest](ggg) +2jes Zz ).

e Draw [3; for each item j (similar to above).
e Draw u; from Gaussian posterior (u; | Rest) for each user i.

Let 04 = rij — f(xij) — i — Bj,

!
VU

VarfuiRest] = (g1 +Xjez, 73') ™" (10)
u i
Elu;|Rest] = Var[ui]Rest](a%G(xi) +Yes OZZ'U])
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e Draw v; for each item j (similar to above).

4.3 Adaptive Rejection Sampling in E-Step

Although for binary data and logistic link function the conditional posterior p(a;|Rest),
p(Bj|Rest), p(u;|Rest) and p(v;|Rest) are not in closed form, precise and efficient
sampling from the posterior can still be achieved through adaptive rejection sam-
pling (ARS) (Gilks, [1992). ARS is an efficient method to draw samples from an
arbitrary univariate density provided it is log-concave. In our E-Step, we can draw
a sample from the joint posterior distribution of A by drawing one number at a
time sequentially from the univariate posterior distribution of each individual ran-
dom effect given all the others using Gibbs sampling. To construct such a Gibbs
sampler, we note that the univariate conditional posterior distributions p(-|Rest) are
all log-concave; hence ARS can be applied.

In general, rejection sampling (RS) is a popular method used to sample from a
univariate distribution. Suppose we want to draw a sample from a non-standard
distribution with density p(x). If one can find another density e(x) that is easier to
sample from and approximates p(z) well and has tails heavier than p(z), then e(z)
can be used to do rejection sampling. The key is to find a constant M such that
p(z) < Me(x) for all points x such that p(x) > 0. For example, the blue curve in
Figure[2)is Me(z) and the black solid curve is p(z). The algorithm then is simple: We
repeat the following steps until we obtain a valid sample. First we draw a number z*
from e(z). Then with probability Aggf;l), we accept z* as a valid sample; otherwise,
we reject it.

Notice that Aﬁ(e"’zx)) is always between 0 and 1. This algorithm can be shown to
provide a sample from p(z), and the acceptance probability is 1/M. Finding an M
that is small often involves knowing the mode of p(x); it is also important to find a
good matching density e(z) in practice. ARS addresses both the issues. It finds a
good matching density e(x) that is composed of piecewise exponentials; i.e., log e(x)
is piecewise linear like the blue curve in Figure 2| ARS does not need to know the
mode of p(z), and the only requirement is the log-concavity of p(z), which is true
for our problem. The piecewise exponentials are constructed by creating an upper
envelope of the target log density. Further, the procedure is adaptive and uses the
rejected points to further refine the envelope which reduces the rejection probability
for future samples.

We use the derivative-free ARS process from |Gilks| (1992)) which can be briefly
described as follows: Suppose we want to obtain a sample x* from a log-concave target
density function p(x). We start from at least 3 initial points such that at least one
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Figure 2: Illustration of upper and lower bounds of an arbitrary (log) density func-
tion.

point lies on each side of the mode of p(x) (this is ensured by looking at the derivative
of the density, which does not require actual mode computation). A lower bound
lower(z) of log p(x) is constructed from the chords joining the evaluated points of p(x)
with the vertical lines at the extreme points. For example, the dotted piecewise linear
curve in Figure[2|is lower(z), while the solid black curve is log p(z). An upper bound
upper(x) is also constructed by extending the chords to their intersection points.
For example, the blue piecewise linear curve in Figure [2|is upper(z). The envelope
function e(z) (upper bound) and the squeezing function s(z) (lower bound) are
created by exponentiating the piece-wise linear upper and lower bounds of log p(x);
i.e., e(x) = exp(upper(z)) and s(z) = exp(lower(z)). Let e;(x) be the corresponding

density function derived from e(z); i.e., e;(x) = f:((f)) ——. The sampling produce works

as follows: Repeat the following steps until we obtain a valid sample.

e Draw a number z* from e;(z) and another number z ~ Unif(0, 1), indepen-
dently.

o If 2 < Zg;» accept x* as a valid sample.

o If2<? Ei:;, accept x* as a valid sample; otherwise, reject z*.
e If z* is rejected, update e(z) and s(z) by constructing new chords using z*.

This goes on iteratively until one sample is accepted. Note that using the squeez-
ing function as the acceptance criteria implies partial information from the original
density p(z); Testing z* based on the squeezing function first is to save computation
since the squeezing function is readily available from the constructed envelope and
evaluation of p(x*) is usually costly.
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The ARS-based E-step works as follows: Repeat the following steps L times to
draw L samples of A.

e Sample «; from p(a;|Rest) for each user ¢ using ARS. The log of the target
density is given by
log p(a;|Rest) = constant
— Y jeg Yijlog(L + exp(—f(zij) — i — B — ujv;))
— > jer, (1 —yij) log(1 + exp(f(zij) + i + Bj + wjvj))

- ﬁ(ai - g($i))2-

e Sample [3; for each item j (similar to above).

e Sample u; from p(u;|Rest) for each user i. Since wu; is an r-dimensional vector,
for each & = 1,--- | r we sample uy, from p(u;;|Rest) using ARS. The log of
the target density is given by

log p(uix|Rest) = constant
= 2 je; Yijlog(1 + exp(—f(wij) — o — Bj — wikvj
= D1k UilUjt))
=2 jeq, (L —yij) log(1 + exp(f(zij) + s + Bj + uivji
+ D1k WitVjt))

(12)

= g7 (wir — Gi(20)*.
e Sample v; for each item j (similar to above).

Initial points for ARS: The rejection rate of ARS depends on the initial points
and the target density function. To reduce the rejection rate, Gilks et al| (1995
suggest using the envelope function from the previous iteration of the Gibbs sampler
to construct 5th, 50th and 95th percentiles as the 3 starting points. We adopted this
approach in our sampling and observed roughly 60% reduction in rejection rates.

Centering: We note that the model proposed in Section |3| is not identifiable. For
example, if we let f(z;;) = f(xy) — 6 and §(z;) = g(z;) + 6 where ¢ can be any
constant, the model using f and ¢ is essentially the same as the one using f and
g. To help identify the model parameters, we put constraints on the random effect
values. Specifically, we require > . a; = 0, Zj B; =0, > ,u; =0 and Zj v; = 0.
These constraints induce dependencies among user random effects and item random
effects. Instead of dealing with these dependencies in sampling, we simply enforce
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these constraints after sampling by subtracting the sample mean; i.e., after sampling
all the random effects, compute & = >, &;/M and set &; = &; — & for all ¢, and so
on. Here, M is the number of users and ¢; is the posterior sample mean of «;.

4.4 M-Step

In the M-step, we find the parameter setting ® that maximizes the expectation
computed in the E-step

¢(©) = Eallog L(©; A, y) |©")]. (13)

It can be easily seen that (f,0?), (g,02), (h,03), (G,0.), and (H,0}) can be op-
timized by separate regressions. Here we simply describe how to estimate (G, o?)
since everything else is quite similar. Recall that u;, and V[uzk] denote the posterior
sample mean and variance of u;; computed based on the L Gibbs samples obtained
in the E-step. It is easy to see that

f— 9 PR— . 2
argmgxqt((-)) = argmGaXzi: l|w; — G(x;)]]°. (14)

Note that G is part of ®, and finding the optimal G is solving a least squares
regression problem using x; as covariates to predict multivariate response w;]. For
univariate regression models, we consider G(z;) = (G1(x;), ..., G;(x;)), where each
G (x;) returns a scalar. In this case, for each k, we find G}, by solving a regression
problem that uses z; as features to predict 4;,. Let RSS denote the total residual
sum of squares. Then, 02 = (32, V[ui] + RSS)/(rM), which is obtained by setting
the derivative of ¢;(©) with respect to o2 to zero.

We note that obtaining the optimal f (i.e., argmax; ¢(@®)) is actually difficult
because of the expectation of the log of some combination of random effects. Thus,
we use plug-in estimates; i.e., solve a logistic regression problem that uses z;; as

features to predict y;; with offset &; + Bj + U;9;.

5 Parallelized Model Fitting for Large Data

In this section we consider fitting algorithms for large data sets that reside in dis-
tributed clusters and cannot fit into memory of a single machine. For such scenarios,
fitting algorithms described in Section 4] do not work. We provide a fitting strategy
in a the Map-Reduce framework (Dean and Ghemawat|, 2008). We first apply the
“divide and conquer” approach to partition the data into small partitions, and then

15



run MCEM on each partition to obtain estimates of ®. The final estimate of ® are
obtained by averaging over estimates of ® from all the partitions. Finally, given ©
fixed, we do n ensemble runs, i.e. re-partition the data n times using different ran-
dom seeds, and for each re-partitioning we only run E-Step jobs on all partitions and
then average the results from them to obtain the final estimate of A. This algorithm
is described in Algorithm [1]

Algorithm 1 Parallel BIRE Model Fitting
Initialize ® and A.
Partition data into m partitions using random seed s.
for each partition ¢ € {1,...,m} running in parallel do
Run MCEM algorithm for K number of iterations using VAR or ARS to obtain
©,, the estimates of © for each partition /.
end for .
Let (':) = # Z ég.
for k=1 t(ﬁ 7; running in parallel do
Partition data into m partitions using random seed sy.
for each partition ¢ € {1, .. m} running in parallel do
Run E-Step-Only job given © and obtain the posterior sample mean Ay for
all users and items in partition /.
end for
end for
For each user ¢, average over all Akg that contain user 7 to obtain ozz and u;.
For each item j, average over all Akg that contain item j to obtain BZ and v;.

Partitioning the data: Extensive experiments conducted by us showed that model
performance depends crucially on data partitioning strategy used in the Map-Reduce
phase, especially when data is sparse. A naive way of randomly partitioning obser-
vations may not give good predictive accuracy. For applications such as content
optimization (Agarwal et al., 2008)), the number of users are often much larger than
the number of items. Also, the number of observations available per user is small for
a large fraction of users; a typical item tends to have a relatively larger sample size.
In such cases, we recommend partitioning the data by users, which guarantees that
all data from a user belongs to the same partition, so that good user random effects
can be obtained. Similarly, when the number of items is larger than the number of
users, we recommend partitioning the data by items. An intuitive explanation of this
can be gleaned by looking at the conditional variance of user random effect u; using
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variational approximation given as Varlu;|Rest] = (% 2L+ e 02 ) . Assuming

item random effects are known for the moment (or estlmated with hlgh precision),
if the user data is split into several partitions, the average information gain (inverse
variance) from the partitioned data is the harmonic mean of information gain from
individual partitions. The information gain from the non-partitioned data can be
written as the arithmetic mean of the individual information gains. Since harmonic
mean is less than arithmetic mean, the information loss in estimating the user random
effects by partitioning is the difference in arithmetic and harmonic means. When the
information in partitions becomes weak, this gap increases. Hence, with sparse user
data, it is prudent to partition by users.

Estimates of ®: We note the ® estimate obtained from each random partition is
unbiased, fitting a model on each partition and then averaging the M-step parameters
O, for ( = 1,--- ,m provide an estimate that is still unbiased and has lower variance
due to lack of positive correlations among estimates. The correlations are absent due
to the random partitioning. Before running the MCEM algorithm, the initial values
of © for all partitions are the same. In particular, we start with zero-mean priors;
ie., g(x;) = h(z;) = 0 and G(z;) = H(x;) = 0. To improve parameter estimation,
one may synchronize the parameters among partitions and run another round of
MCEM iterations; i.e., one may re-partition the data and use the obtained © as the
initial values of ® to run another round of MCEM iterations for each partition to
obtain a new estimate of ®@. However, we observe in practice that iteratively running
this process does not give significantly better predictive accuracy, but instead adds
complexity and training time.

Estimates of A: For each run in the ensemble, it is essential to use a different
random seed for partitioning the data, so that the mix of users and items in partitions
across different runs would be different. Given ©, for each run in the ensemble,
we only need to run E-step once for each partition and obtain the final user and
item random effects by taking the average. Again, the random partitioning ensures
uncorrelated estimates from members of the ensemble and leads to variance reduction
through averaging.

More identifiability issues: After centering the model is in fact still non-identifiable
because of two reasons: (a). Since ujv; = (—u;)'(—wv,), switching signs of w and v
(also the corresponding cold-start parameters) does not change the log-likelihood.
(b). For any two random effect indices k and [, switching w;, with w;, vj with
vj; for all users and items simultaneously also would not change the log-likelihood,
given that the corresponding cold-start parameters are also switched. We have found
empirically that both of the identifiability issues do not matter for small data sets,
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especially single-machine runs. However, for large data sets such as the Yahoo! front-
page data and GG, H defined as linear regression function, we observe that for each
partition after the MCEM step we obtain significantly different fitted values of G and
H, so that after averaging over all the partitions the resulting coefficient matrices
for G and H become almost zero. Hence the identifiability issue can become severe
while fitting parallelized BIRE models for large data sets.

Solution to the identifiability issues: For (a), we put constraints on the item
random effects v so that it is always positive. This can be done through simply
putting a sampling lower bound (i.e. always sample positive numbers) in the adap-
tive rejection sampling. Note that after using this approach we do not need to do
centering on v any more. For (b), we first let 02 = 1 and change the prior of u;
from N(G(z;),02I) to N(G(x;),%,), where ¥, is a diagonal variance matrix with
diagonal values 0,1 > gyu0 > -+ > 04.. The model fitting is very similar; but after
each M-step we re-sort all the random effects by the fitted o,;’s for k=1, --- ,r to
satisfy the constraint.

6 Experiments

We evaluate the proposed methods to address two main questions: (1) How do differ-
ent techniques for handling binary response compare? (2) How do different methods
perform in a real, large-scale web recommender system? For the first question, we
compare variational approximation, adaptive rejection sampling and stochastic gra-
dient descent on balanced and imbalanced binary datasets created from the public
MovieLens 1M dataset. For the second question, we first evaluate the predictive per-
formance using a small balanced data set with heavy users of the Today module on
the Yahoo! front page to allow comparison in the single-machine fitting scenario, and
then provide complete end-to-end evaluation in terms of the click-lift metric through
a recently proposed unbiased offline evaluation method (Li et al.| (2011)), which has
been shown to be able to approximate the online performance) based on massive
imbalanced binary response data collected from the Today module.

Methods: We consider the following different models or fitting methods, all used
with 10 factors per user/item throughout the experiments:
e FEAT-ONLY is the covariate-interaction-only model which serves as our base-
line. Specifically, the model is

sij = f(wyg) + g(ws) + h(x;) + G(x;) H(xy),

where g, h, G and H are unknown regression functions, fitted by the standard
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conjugate gradient descent method on each partition and averaging over esti-
mates from all partitions to obtain estimates of g, h, G and H; no ensemble run
is needed.
MCEM-VAR is our regression-based BIRE model fitted by variational ap-
proximation in the MCEM algorithm.
MCEM-ARS is our regression-based BIRE model fitted by centered adaptive
rejection sampling algorithm in each E-step of the MCEM algorithm.
MCEM-ARSID is our regression-based BIRE model fitted by centered adap-
tive rejection sampling algorithm in each E-step of the MCEM algorithm, incor-
porating positive constraints on the item random effect (factor) v and ordered
diagonal prior covariance matrix of u (see Section [5| for more details).
SGD is a method that fits a similar BIRE model using stochastic gradient
descent. We obtained the code from Charkrabarty et al| (2012). Specifically,
the model is

Sij = (CYZ' +u; + Umz)'(ﬁj + v, + ij),
where U and V' are unknown coeflicient matrices for cold-start to map the
covariate vectors x; and x; into the r-dimensional latent space. For binary
response with logistic link function, it minimizes the following loss function

Z yij log(1 + exp(—s;5)) + Z — i) log(1 + exp(sij;))

Y fuwillP 2D \vj\|2 +A U2+ v (V%
i j

where A, Ay, Ay and Ay are tuning parameters, and ||U|| and ||V'|| are Frobe-
nius norms. Since this code has not been parallelized, we only use it in ex-
periments on small datasets. Trying different tuning parameter values can be
computationally expensive. In the experiments, we set A\, = A\, = Ay = Ay = A
with A\ varying from 0, 107%, 107>, 10~* and 1073. We also tuned the learning
rate by trying 1073, 104, 1073, 102 and 10!

In FEAT-ONLY , MCEM-VAR , MCEM-ARS and MCEM-ARSID, we use linear
regression functions for g, h, G and H.

6.1 MovieLens 1M Data

We first compare three techniques for fitting BIRE-style models with binary response
(MCEM-VAR , MCEM-ARS and SGD) on the benchmark MovieLens 1M dataset.
Note that in |Agarwal and Chen| (2009), the regression-based BIRE model has been
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AUC
Method # Partitions Imbalanced Balanced
SGD 1 0.8090 0.7413

MCEM-VAR 1 0.8138 0.7576
MCEM-ARS 1 0.8195 0.7563
2 0.7614 0.7599
MCEM-VAR 5 0.7191 0.7538
15 0.6584 0.7421
2 0.8194 0.7622
MCEM-ARS ) 0.7971 0.7597
15 0.7775 0.7493

Table 1: AUC of different methods on the imbalanced and balanced MovieLens
datasets (#partitions= 1 indicates single-machine runs)

proved to be significantly better than various baseline models, such as zero-mean
BIRE model and the Filterbot from Park et al.| (2006).

Data: The MovieLens 1M data consists of 1M ratings with scare from 1 to 5 provided
by 6,040 users on set of 3,706 movies. We create training-test split based on the
timestamps of the ratings; the first 75% of ratings serve as training data and the rest
25% as test data. This split introduces many new users (i.e. cold-start) in test data.
To study how different techniques handle binary response with different degree of
sparsity of the positive response, we consider two different ways of creating binary
response: (1) An imbalanced dataset is created by setting the response value to 1
if and only if the original 5-point rating value is 1; otherwise it is set to 0. The
percentage of positive response in this dataset is around 5%. (2) A balanced dataset
is created by setting the response to 1 if the original rating is 1, 2, or 3; otherwise it
is set to 0. The percentage of positive response in this dataset is around 44%. We
report the predictive performance of SGD, MCEM-VAR and MCEM-ARS in terms
of the Area Under the ROC Curve (AUC) for both datasets in Table [6.1]

Comparison between MCEM-ARS and MCEM-VAR : As can be seen from
the Table [6.1] MCEM-ARS and MCEM-VAR have similar performance and both
slightly outperform SGD when running on a single machine (i.e., #partitions = 1).
It is interesting to see that, when running on multiple machines with 2 to 15 parti-
tions, MCEM-ARS and MCEM-VAR still have similar performance on the balanced
dataset, while on the imbalanced dataset MCEM-VAR becomes much worse when
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the number of partitions increases (causing more severe data sparsity). We note that
the degradation of performance when the number of partitions increases is expected
because, with more partitions, each partition would have less and sparser data, which
leads to a less accurate model for the partition.

Comparison with SGD: Since SGD is a popular fitting method for SVD-style
matrix factorization (Koren et al., [2009), we also discuss how our sampling-based
methods compare to SGD. To obtain good performance for SGD, one has to try a
large number of different values of the tuning parameters and learning rates, while
our methods does not need such tuning because all the hyper-parameters are ob-
tained through the EM algorithm. Trying different tuning parameter values can be
computationally expensive, and it is less efficient in exploring the parameter space
compared to an EM algorithm. After our best-effort tuning using the test data, for
imbalanced data, SGD achieves best performance 0.8090 with A = 10~% and learn-
ing rate = 1072. For balanced data, SGD achieves best performance 0.7413 with
A = 107% and learning rate = 1073, Even tuning SGD on test data, the best AUC
numbers of SGD on both balanced and imbalanced datasets are still slightly worse
than the those of MCEM-VAR and MCEM-ARS (which did not touch test data
before testing).

6.2 Small Yahoo! Front Page Data

We now evaluate different BIRE model fitting methods on a previously analyzed
Yahoo! front page dataset (Agarwal and Chen| [2009), which allows comparison of
these methods to prior work.

Data: This dataset consists of 1.9M binary response values (click or non-click)
obtained from about 30K heavy users interacting with 4,316 news articles published
in the Today module on the Yahoo! front page. The observations were sorted by
their timestamps and the first 75% of them are used as training data and the rest
25% as test data. The set of user covariates include age, gender, geo-location and
browsing behavior that is inferred based on users’ network-wide activity (e.g. search,
ad-clicks, page views, subscriptions etc.) Since the original set of user covariates is
large, dimension reduction was done through principal component analysis (Agarwal
and Chen) 2009)), and finally we obtained around 100 numerical user covariates. Item
covariates consist of 43 hand-labeled editorial categories.

Recall that the Today module displays article links on four positions labeled as
F1 through F4, where the F1 article resides in a large and prime area. Also, a hover
on a non-F1 article link will bring the article link to the prime area. A click on
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Method # Partitions Partition Method AUC

FEAT-ONLY 1 — 0.6781
SGD 1 — 0.7252
MCEM-VAR 1 - 0.7374
MCEM-ARS 1 - 0.7364
MCEM-ARSID 1 - 0.7283
2 User 0.7280

MCEM-ARS 5 User 0.7227
15 User 0.7178

2 User 0.7294

5 User 0.7172

MCEM-ARSID 15 User 0.7133
15 Event 0.6924

15 Item 0.6917

Table 2: AUC of different methods on the small Yahoo! front page dataset
(#partitions= 1 indicates single-machine runs)

an article link in the prime area will then lead the user to the actual article page.
For this data set, clicks on article links in the prime area are interpreted as positive
response, while displays of article links in the prime area (i.e. hover on a non-F1
article) without subsequent clicks are considered as negative response. Also note
that user visits with no click on any position were ignored. Hence, in this data set,
the percentage of positive response is close to 50% — it is a balanced data set.

Single-machine results: We first discuss the AUC performance for FEAT-ONLY
, MCEM-VAR, , MCEM-ARS and MCEM-ARSID running on a single machine (i.e.
1 partition), shown in Table [6.2] We observe that MCEM-VAR , MCEM-ARS |,
MCEM-ARSID and SGD all outperform FEAT-ONLY significantly. This is because
these models allow warm-start user random effects (those users having data in the
training period) to deviate from purely covariate-based predictions, in order to better
fit the data. On the other hand, since the test data consists of many new users and
new items, handling cold-start scenarios is still important. It has been shown in Agar-
wal and Chen|(2009) that, for this data set, MCEM-VAR significantly improves upon
BIRE models that use zero mean priors for random effects, which is commonly ap-
plied in many recommender system problems such as Netflix, and MCEM-VAR also
significantly outperformed various other collaborative filtering algorithms. We note

that the performance of MCEM-VAR , MCEM-ARS and MCEM-ARSID are all
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close. This suggests that for balanced datasets, different fitting methods for logistic
models are similar. We also note that MCEM-ARSID perform slightly worse than
MCEM-ARS , because adding constraints on the item random effects v reduces the
flexibility of MCEM-ARSID . We defer the discussion on when MCEM-ARSID can
provide significant benefit to Section [6.3]

Comparison with SGD: Similar to what we see in Section [6.1] even with SGD
tuned on test data, the best AUC 0.7252 (achieved by using A = 107% and learning
rate = 1073) is still slightly worse than the AUC of MCEM-VAR , MCEM-ARS and
MCEM-ARSID for single machine runs.

Number of partitions: In Table for MCEM-ARS and MCEM-ARSID (10 en-
semble runs for both), as the number of partitions grows, we observe the expected
degradation of performance, similar to what we observed in Section [6.1 However,
even with 15 partitions on such a small data set MCEM-ARS and MCEM-ARSID
(user-based partitioning) still significantly outperforms FEAT-ONLY . In general,
increasing the number of partitions would increase computational efficiency, but usu-
ally leads to worse performance. We have observed in our experiments that for large
data sets the computation time of 2N partitions is roughly half of using N partitions.
Therefore we use as few partitions as possible given our computational budget.

Different partition methods: In Table we also show the performance of our
parallel algorithm MCEM-ARSID (10 ensemble runs) with different numbers of par-
titions and various partition methods. As mentioned in Section [5 we note that
partitioning the data by users is better than event-based or item-based partitioning
in our application. The reason for this is that in our application, there are generally
more users than items in the data; hence user partitions are less sparse.

6.3 Large Yahoo! Front Page Data

In this subsection, we show the performance of our parallel algorithms on a large
Yahoo! front page dataset where single-machine fitting algorithms are not feasible.
An unbiased evaluation method is used to estimate the expected click-lifts if these
algorithms were used in the production system (Li et al., 2011)). |Agarwal et al.| (2011)
used the same click-lift metric to measure the model performances.

Data: The training data was collected from the Today module on Yahoo! front
page during June 2011, while the test events were collected during July 2011. The
training data includes all page views by users with at least 10 clicks in the Today
module, and consists of 8M users, ~4.3K items and 1 billion binary observations. To
remove selection bias in evaluating our algorithms, the test data is collected from a

23



randomly chosen user population where, for each user visit, an article is selected at
random from the content pool and displayed at the F1 position. We shall refer to
this as random bucket, which consists of around 2.4M clicks with old users who were
seen in the training period as well as new ones.

Each user is associated with 124 behavior covariates that reflect various kinds of
user activities on the entire Yahoo! network. Each item is associated with 43 editorial
hand-labeled categories. A click on an F1 article link is a positive observation, while
a view of an F1 article link without a subsequent click is a negative observation. The
percentage of positive response here is much lower than that of the small dataset
(4%-10%) — the increased sparsity and imbalance introduces additional challenges.

Experimental setup: Because article lifetimes in the Today module are short (6-24
hours), almost all items in the test period are new. To provide good performance for
new items, one may frequently re-train BIRE models in the test period. However,
since the amount of data is large, frequent re-training is not a feasible solution. Note
that the set of users that come to Yahoo! are much less dynamic than items, hence a
viable solution is to assume the user random effects (factors) from the training period
is fixed and learn the item random effects in an online fashion. More precisely, let x;
denote the behavior covariate vectors of user ¢ and u; denote the user random effect
vector produced by a BIRE model that is learned in training period. For each item
J at time ¢ in test period, we fit an individual online logistic regression (OLR) model
as described in [Agarwal et al. (2010) with log-odds x;3;; +u;d,;, where the unknown
parameters (3;;, ;) are updated online after each test epoch as we collect more data
on each item. The OLR models are initialized with a prior (3,0, d,0) ~ MV N(0,021).
Notice that different BIRE fitting methods generate different u;s. The performance
of a method is based on click-lift of the recommendations generated based on the
OLR models using the u;s.

Unbiased evaluation: The goal of this set of experiments is to maximize total
number of clicks. The precision@1 metric computed on the random bucket test set
was shown to provide an unbiased measure of an algorithm’s performance when it is
actually implemented in production (Li et al., [2011). We provide a brief description
of the evaluation metric below.

For an epoch ¢ (5-minute interval) in the test period, we do the following:

1. Compute the predicted CTR of all articles in the pool for each event in epoch ¢
under the model, based on the user covariates and latent random effects. The
estimates can use all data before epoch t.

2. For each click event at time ¢ in the test data, we select the an article j*
from the current pool with the highest predicted probability, If the article that
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was actually clicked in the test data matches j*, we give the model a reward;
otherwise, we ignore it.

At the end, we compute click lift metric based on the total reward received from the
model. Mathematically, for the test data from a random bucket and model M, the
score S(M) can be defined as

S(M) = Z 1(item clicked = item selected by M). (15)
visits with click

It has been proved that S(M) is an unbiased metric compared to the real click
lift seen in a production system (Li et al., 2011]). Because each article in the random
bucket has an equal probability to be displayed to users, the number of matched
view events for any model is expected to be the same. A better model to optimize
CTR can match more click events. For large amounts of data as in our case, the
variance of the click-lift metric for any model is very small; all differences reported
in our experiments have small p-values and are statistically significant due to large

sample size in the test data.

Two baseline methods:. To show that random-effect-based user covariates (i.e.
u;) provide state-of-the-art performance to personalize content on Yahoo! front page,
in this paper we implement two baseline methods of generating user covariates based
on users’ past interaction on the Today module:

ITEM-PROFILE: Using training data we pick top 1000 items that have highest
number of views. We construct 1000-dimensional binary user profiles to indicate
whether in the training period this user has ever clicked on this item (1 is clicked
and 0 is non-clicked). For cold-start users that did not show up in training data, we
simply let the binary profile vector to be all 0.

CATEGORY-PROFILE: Since in this dataset each item has 43 binary covari-
ates indicating content categories to which the item belongs, we build user-category
preference profiles through the following approach: For user ¢ and category k, denote
the number of observed views as v;; and number of clicks as ¢;;. From the training
data we can obtain the global per-category CTR, denoted as 7,. We then model
Cik as ¢ ~ Poisson(vgyk i), where Ay is the unknown user-category preference
parameter. We assume \;; has a Gamma prior Gamma(a, a), hence the posterior of
Air. becomes (Aik|vik, cir) ~ Gamma(ci + a, vipye +a). We use the log of the posterior
mean, i.e. log(%) as the profile covariate value for user i on category k. Note
that if we do not observe any data for user ¢ and category k, the covariate value
becomes 0. a is a tuning prior sample size parameter and can be obtained through
cross-validation. By trying a =1, 5, 10, 15 and 20, we have found that for this data
set a = 10 is the optimal value.

25



Method #Ensembled Overall Warm Cold

Runs Start  Start

ITEM-PROFILE — 3.0%  141% -1.6%
CATEGORY-PROFILE — 6.0% 20.0% 0.3%
MCEM-VAR 10 56% 18.7% 0.2%
MCEM-ARS 10 74%  26.8% -0.5%
MCEM-ARSID 1 9.1% 24.6% 2.8%
MCEM-ARSID 10 9.7%  26.3% 2.9%

Table 3: The overall click lift over the user behavior covariate (BT) only model.

Experimental Results: We evaluate all methods by reporting click-lift obtained
through the unbiased evaluation method relative to an online logistic model that
only uses behavioral (BT) covariates @;; such a model does not incorporate users’
past interaction with items — its performance on heavy users has large room for
improvement. In Table , we summarize the overall lift, warm start lifts (users
seen in the training set), and cold-start lifts (new users). All models produce lifts
but the performance of MCEM-ARSID is the best for overall and cold-starts, and
MCEM-ARS is the best for warm-starts. The reason that we see no lift for cold-start
users on MCEM-ARS is because of the identifiability issues addressed in Section
Although imposing positive constraints on the item random effects leads MCEM-
ARSID to have slightly inferior performance than MCEM-ARS for warm-start users,
it solves the identifiability issues quite well and hence gives the best performance
for the cold-start users. It is also interesting to see that MCEM-VAR is worse than
CATEGORY-PROFILE, especially for warm-starts. We also observe that using the
ensemble trick improves results as evident from comparing MCEM-ARSID with 1
and 10 ensemble runs.

To further investigate the performance of algorithms in different segments of
warm-start users based on user activity levels on Today module in training period,
we look at click-lifts by Today module activity levels in Figure [8 We split the
users in the test data into several segments by their number of clicks in the training
data. As expected, we see a near-monotone trend; users with more activity are
personalized better by using their prior Today Module activity data. From Figure
we observe that MCEM-ARSID is uniformly better than CATEGORY-PROFILE
and ITEM-PROFILE over all the user segments. Comparing performance of MCEM-
ARSID, MCEM-ARS and MCEM-VAR we find the MCEM-VAR to be quite inferior
to MCEM-ARS and MCEM-ARSID.
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Figure 3: The click lift over the user behavior covariate (BT) only model for different

user segments. The segments are created from the number of clicks in the training
data.

Potential issue with variational approximation: To investigate issues with
MCEM-VAR with data sparsity, we examine the random effect estimates in Fig-
ure [4f which shows the histograms of the fitted u; and v; after 30 EM iterations
for MCEM-VAR and MCEM-ARS , both with 10 factors and 100 partitions. While
the fitted user random effects for both MCEM-VAR and MCEM-ARS are in the
similar scale, the item random effects produced by the variational approximation is
approximately one order of magnitude smaller than those produced by MCEM-ARS
. This phenomenon is in fact surprising and shows that MCEM-VAR tends to over-
shrink the random effect estimates when fitting rare response. Similar phenomenon
has been observed by Zhang and Agarwall (2008)). This explains why the perfor-
mance of MCEM-VAR deteriorates as the binary response gets rare. It seems that
the variational approximation leads to too much shrinkage when working with rare
response.

6.4 Discussion of Results

The experiments clearly show that regression-based BIRE models for binary response
and using a divide and conquer stategy to scale the method in a Hadoop framework
involves several subtle issues. For scenarios where we can fit the model using a single
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Figure 4: The histogram of the fitted w; and v; after 30 iterations of the MCEM
step for MCEM-VAR and MCEM-ARS , both with 10 factors and 400 partitions.

machine, all methods work equally well on balanced binary response, the case widely
studied in prior work.

For highly imbalanced data, MCEM-VAR tends to deteriorate, we do not recom-
mend its use in such scenarios. SGD works well provided that the learning rates and
regularization parameters are tuned carefully, hence we do not recommend its use
unless such tuning is undertaken seriously. Even after tuning, it is inferior to MCEM
methods so we recommend using MCEM if possible. For single machine MCEM,
imposing positivity constraints in MCEM-ARSID hurts performance slightly since it
adds additional constraints. Therefore, we do not recommend it, instead we recom-
mend fitting MCEM-ARS .

The story is totally different when fitting map-reduce with divide and conquer.
Since the BIRE models are multi-modal, each partition may converge to a very
different regression estimate so that simple average of the regression coefficients leads
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to poor performance. Here, we highly recommend making all the efforts to impose
identifiability through MCEM-ARSID and synchronizing the initializations. We also
recommend using the ensemble trick since it only uses the E-step and does not add
too much to the computations. We discourage the use of MCEM-VAR since it breaks
quite spectacularly with high sparsity.

7 Conclusion

In this paper, we introduced the adaptive rejection sampling (ARS) to our probabilis-
tic regression-based bilinear random effects (BIRE) modeling framework to handle
data sets with binary response in a better way. We note that data with binary
response is common in web applications such as content optimization and compu-
tational advertising. We also extended our BIRE model fitting methods to handle
large data sets using Map-Reduce. By extensive experiments on benchmark datasets
and the Yahoo! FrontPage Today Module data sets, we show that our model and
fitting algorithms are stable and can significantly outperform variational approxima-
tion proposed by Agarwal and Chen| (2009); Zhang et al| (2011]) and several other
baselines. We also notice that carefully handling idenfiability issues have crucial

impact on the BIRE model performance while handling large-scale data sets using
Map-Reduce.
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