arXiv:1308.6823v1 [cs.Al] 30 Aug 2013

A Hypergraph-Partitioned Vertex Programming Approach
for Large-scale Consensus Optimization

Hui Miao*, Xiangyang Lil, Bert Huang, Lise Getootf
*Dept. of Computer SciencéDept. of Electrical & Computer Engineering
University of Maryland, College Park, USA
{hui, bert, getoof@cs.umd.edy xyliu@umd.edh

Abstract—In modern data science problems, techniques for
extracting value from big data require performing large-scale
optimization over heterogenous, irregularly structured data.
Much of this data is best represented as multi-relational gaphs,
making vertex programming abstractions such as those of
Pregel and GraphLab ideal fits for modern large-scale data
analysis. In this paper, we describe a vertex-programming
implementation of a popular consensus optimization techmjue
known as the alternating direction of multipliers (ADMM) [1].
ADMM consensus optimization allows elegant solution of com
plex objectives such as inference in rich probabilistic modls.
We also introduce a novel hypergraph partitioning technique
that improves over state-of-the-art partitioning techniques for
vertex programming and significantly reduces the communi-
cation cost by reducing the number of replicated nodes up
to an order of magnitude. We implemented our algorithm
in GraphLab and measure scaling performance on a variety
of realistic bipartite graph distributions and a large synthetic
voter-opinion analysis application. In our experiments, ve are
able to achieve a 50% improvement in runtime over the current
state-of-the-art GraphLab partitioning scheme.

Keywords-consensus optimization; large-scale optimization;
partitioning methods; vertex programming;

I. INTRODUCTION

[7] and GraphLab[[8] are recently proposed frameworks
for parallelizing graph-intensive computation. Theserfea
works adopt a vertex-centric model to define independent
programs on each vertex. Experiments show it outperforms
the MapReduce abstraction by one to two orders of magni-
tude in machine learning and data mining algorithimis [9].

In this paper, we investigate the bipartite topology of
general ADMM-based consensus optimization and develop
its vertex-programming formulation. We also propose a
novel partitioning scheme that utilizes the charactessti
of computation graph based on a hypergraph interpretation
of the bipartite data graph. Our partitioning can reduce the
number of replicated vertices by an order of magnitude over
the current state-of-the-art partitioning scheme, reayci
communication cost accordingly.

Our contributions include the following:

« We develop a scalable, parallel algorithm for ADMM-
based consensus optimization using the vertex program-
ming abstraction. The underlying computation graph

Large-scale data often contains noise, statistical depen-
dencies, and complex structure. To extract value from such .
data, we need both flexible, expressive models and scalable
algorithms to perform reasoning over these models. In this
paper, we show how a general class of distributed optimiza-
tion techniques can be implemented efficiently on graph-
parallel abstractions frameworks.

Consensus optimization usiraternating method of mul-
tipliers (ADMM), is a recently popularized general method
for distributed solution of large-scale complex optimiaat
problems. The optimization problem is decomposed into
simple subproblems to be solved in parallel. The com-
bination of decomposability of dual ascent and the fast

convergence of method of multipliers makes it suitable for e

many problems including distributed signal processing [2]
inference in graphical models|[3],/[4], and popular machine
learning algorithms_[5].

Vertex programmings an efficient graph-parallel abstrac-
tion for distributed graph computation. Pregel [6], Giraph

takes on a bipartite structure.

We propose a partitioning method that treats the bi-
partite graph as a hypergraph and performs a hyper-
graph cut to distribute the nodes across machines. This
strategy enables our replication factor to outperform
the state-of-the-art graph partitioning schemie [8]. The
running time of ADMM-based consensus optimization
using our partition strategy is approximately half of the
time compared to current state-of-the-art methods. Our
partitioning strategy is of independent interest, since
it can be used for any problem that decomposes into a
bipartite computation graph, such as factor-graph belief
propagation[[10].

We implement our algorithm in GraphLab and evaluate
our partitioning scheme on a social network analysis
problem, demonstrating that we can perform large-
scale probabilistic inference on a modest number of
machines, even when the graph has the heavy degree
skew often found in real networks.

http://arxiv.org/abs/1308.6823v1

0.5: REGISTEREDASA, P) — VOTEYA,P),

Il. MOTIVATION 0.3: VOTEYA, P)A KNOWSWELL(B, A) — VOTEYB,P),

Before describing our proposed algorithm (Secfion 1v), 0-1: VOTESA, P)/A KNows(B, A) — VOTEYB,P),
we begin with a simple illustrative example of the kind of 0.05: VoTEYA, P)A BosgB, A) — VoTEYB,P),
problems that can be solved using ADMM. We consider theg 1. VOTEYA, P)A MENTORB, A) s VOTEYB,P),

task of social network analysis on a network of individuals _ _

connected by various social relationships. The goal of the -

analysis is to predict the voting preferences of various

individuals in the SOCiaI- network, using the rela:tions-hipsl:igure 1. Political social network voting program written probabilistic

and some observed voting preferences of other 'ndIVI(_j_ua_|§oft Iogi(;. Additionally, the \OTES predicate is constrained to have total

in the network. The problem can be cast as a probabilisti@uth value of 1.0, to preserve mutual exclusivity of votipgference.

inference problem, and the approach that we take here is to

define the model usingrobabilistic soft logic(PSL) [11].

PSL is a general-purpose language for describing larggo previous papers for the mathematical formalisms of HL-

scale probabilistic models over continuous-valued randonMRFs, and here mainly discuss the general implementation

variables using weighted logical rules. of ADMM-based consensus optimization, which has many
A PSL program consists of a set of logical rules with con-applications beyond PSL.

junctive bodies and disjunctive heads (negations allowed)

Rules are labeled with non-negative weights. The following S

program, based on an example from Bach e{al. [4], encoded- ADMM-Based Consensus Optimization

a simple model to predict voter behavior using information Consensus optimization simplifies solution of a global

about a voter (voter registration) and their social networkobjective by decomposing a complex objective into simpler

described by two types of links indicatingRFEND and subproblems over local copies of the variables and con-

Spouskerelationships: straining each local copy to be equal to a globahsensus

variable The general form of the consensus optimization is:

VOTEYA, P)\ OLDERRELATIVE(B, A) — VOTEYB,P).

IIl. PRELIMINARIES

1.1: REGISTEREDASA, P) — VOTEHA,P), N
0.5: FRIEND(B, A)A VOTEYA,P) — VOTEYB,P), min Z bi(x:)
1.8: SouskEB, A)A VOTEYA,P) = VoTEYB,P). TN i=1 1)

—

subjectto z; — X; =0,i=1,2,..., N,
Consider any constants for persomsand b and partyp))]))
instantiating logical termsd, B, and P respectively. The wh_erexi WIth dimensionn; is the local ve}rlable ve_ctor_ on
first rule encodes the correlation between voter regisimati Which theith subproblem depends arg is the objective
and party preferences, which tend to be aligned but are ndpnction for theith subproblem. For ease of notation, Jef
always. The next rule states thatifs a friend ofb and votes der}ote the global consensus variable vector that the local
for party p, there is a chance thawotes for partyp as well, ~ variablex; should equal. o
whereas the second makes the same statement for spouses'© SOIve the consensus optimization, ADMM relaxes the
The rule weights indicate that spouses are more likely te vot910bal équality constraints using an augmented Lagrangian
for the same party than friends. The resulting probahilisti @d Solves the dual objective. The ADMM-based solution
model will combine all of these influences and include theProcedure is{[1]:
implied structured dependencies. We can also consider more, i i 2 _
rules and relationship types, leading to a full program in i ~ < arsmn (¢i(xi) T @+) ‘ ‘2) , Vi
Figure[1. PSL can also include constraints on logical atoms, '

— k

i : P O A S
such as mutual exclusivity of voting preferencesn¢és. i i TP\T i |,V
The engine behind PSL compiles the logical program _, ., 1 kil
into a continuous-variable representation known &énge- X N, Z (xi)j Vi (@)
loss Markov random fieldHL-MRF) [4], [12]. Like many M(i5)=t

probabilistic graphical models, inference in HL-MRFs canwhere superscripgt represents the iteratiof; is the number
be distributed and solved using consensus optimizatiorof local copies of thdth entry of global consensus variable,
In HL-MRFs, inference of the most-probable explanation); is the vector of Lagrange multipliers féth subproblem,
(MPE) is a convex optimization, since the logical rule areM (i,) is the corresponding global consensus entry;tor
converted into hinge-loss potentials and constraints sucHimension of local variable;, X; denotes théth entry of
as mutual exclusivity can be relaxed to linear equalitiesglobal consensus variable, anis a step size parameter. The
Since inference is a convex optimization, HL-MRFs areupdate ofX*+! can be viewed as averaging local copies in
particularly well-suited for consensus optimization. Vééet subproblems.

commutative and associative. In thpplyphase, each vertex
can use its aggregated value to update its own associated
data. Finally in thescatterphase, each vertex either sends
messages to its neighbors or updates other vertices or edges
in its neighborhood via global state variables.

IV. DISTRIBUTED ADMM-BASED CONSENSUS
OPTIMIZATION IMPLEMENTATION (ACO)

In order to implement a graph algorithm using vertex
programming, one needs to define the data graph structure
including the vertex, edge and message data types, as well
Figure 2. Bipartite graph abstraction for ADMM consensugimjzation. as a vertex program that defines the computation.

Equation[2 shows thafV subproblems can be solved A. Data Graph and Data Types
independently. This general form of consensus optimipatio Recall that in ADMM-based consensus optimization, the
defines a bipartite graph structu@(S,C, E) where S compuytation graph is based on the dependencies between
denotes the set of subproblems containing local Variable§ubprob|ems and consensus variables described by the bi-
{xz|z = 1,2,_...,]\7}, C represents the set of_ consensusSpartite dependency graghi(S, C, E) (Fig.[2). In this graph,
variable entries, ané’ expresses the dependencies as ShOWIany consensus variable has a degree of at least two, since
in Figure[2. Each subproblem (z;) is connected to its de- any |ocal variables that only appear in one subproblem do
pendent consensus variables, while each consensus eariably: need consensus nodes.
X;is conn(_ected to subproblems con_taining i_ts local copi_es. For each node in the bipartite graph, we construct a
As described above, the computation required for solving,ertex in the vertex program. We use different data types
a subproblem depends on only a subset of the consensg supproblem vertices and consensus-variable vertices,
variable nodes, while the computation needed for & congenotedsub and con, respectively. For each subproblem
sensus variable requires information about only a SUbS%rtexm € S, we maintain the involved local variables in
of the local varia_bles. This _dependency relationsh_ip makegi and associated Lagrange multipligr, both of which are
ADMM computation well-suited for vertex-processing par- n; dimension vectors. Eachy € S also stores a vectofi
allelization. of dimensionality| £y, | for holding the dependent consensus
B. Vertex Programming Frameworks variable values. For each consensus variable ngde C,

. we only store its current value.
Recent development of vertex programming frameworks,

such as Pregel [6] and GraphLab [9], are aimed at improving. Aco Vertex Program

the scalability of graph processing. Vertex-centric medel We use the GAS abstraction introduced in Seclion 11-C

in these systems execute user-defined functions on ea Q describe our ADMM-based consensus optimization im-
vertex independently and define the order of execution o lementation,Aco, shown in Alg.[1. In each iteration

vertices. Pregel and GraphlLab have superior comp_utation Ie define a temporary consensus-variable key-value table
perfor_mance over MapReduce for many d_ata MINING ang, ,\ sensus_var, where the key is a consensus variable’s
machine learning algorithms, such as belief propagatlonglobal unique id, i.e..consensus var[id(X)] o X

Gibbs sampling, and PageRank [6]l [9]. [13]. We also define a program variable®cal_ copy_sum to

In_this paper, we implement our synchronous Vertexaggregate the sum of each local copy of a consensus variable.
programs in GraphLab.

. 1 ACO Algorithm
C. GAS Vertex Programming API 2 // gather neighbor information

Gonzalez et al[[8] propose tigather-apply-scattefGAS 3 9ather (v, (vi,v;), vj)
. . .4 if w;type == sub

abstraction that describes common structures of various) " ok
vertex programming frameworks. In the vertex programming> consensus_var[id(v;. X;)] + v;.X;
setting, the user defines a data graph with data structure etse ki >

. . local_copy_sum + = v;.x;[id(vi. X;)]
representing vertices, edges, and messages. The USEr P9 , ;. oq-tc the vertex dats of v i
vides a vertex program associated with each vertex. Th® apply (v;, sum_result):
GAS model abstracts the program into three conceptudDd // get consensus_var new value, solve
phases of execution on each vertex. In tigher phase, ~ objective, update multiplier
each vertex is able to aggregate neighborhood informatiof: ~f vilype == sub
which could be pushed or pulled from adjacent nodes. Th
aggregation during this phase is user-defined, but must 38 Vi 4= argming, (¢i($i)+vi~)\i'mi+§‘

v;.X; < consensus_var
2

)

—

XT; — Ui.Xi

14 Vi Ai Vi 4 pvias — v X;) residual and dual residual using its dependent local colfies

15 // average the sum of each local copy both of them are small, subproblems connecting to this con-
16 else Loent sensus variable will not be notified in the following itecati

. . ocal copy_sum . . B
17 vi-Xi 4 S egeeton) The notifications to a particular subproblems come from all

18 // update neighborhood consensus variables connecting to that particular sulgmmob
19 scatter (vi, (vi,v;5), v;):

20 // notice consensus node the value change vertex. If none of the connected consensus variables notify

21 if w.type == sub it, the subproblem skips the following iteration, thus sayi
22 notify (vj) computation. A skipped subproblem node will be notified
23 else again if its dependent consensus variable is updated and the
24 if (convergence_check() == false) convergence criterion is not met.
25 notify (v;)

Algorithm 1. TheAco vertex program for ADMM-based Consensus V. HYPERGRAPH PARTITIONING

Optimization on vertew; at iterationk + 1 . .
P ’ * In this section, we present our new hypergraph-based

As shown in Ald.1, in the gather, apply and scatter stagegpartitioning scheme (MPER) that is better suited forco
we alternate computation on the subproblem noflesnd than current state-of-the-art approaches. The primatpifac
the consensus nodes. We describe the computation and for efficient implementation of distributed graph algonits
communication for each node type below. are load balancing and communication cost. Vertex pro-

1) Subproblem Nodesn the gather phase of ti{é+1)*" gramming frameworks ensure good load balancing using a
iteration, each subproblem nodg € S reads the consen- balanced-way cut of the graph. Significant communication
sus variables updated /" iteration in its neighborhood. costs result from vertices whose neighbors are assigned
We store each consensus variable in the key-value tabke different machines. Pregell[6] uses edge cut, mirrors
consensus_var. The commutative and associative aggre-vertices, and proposes message combiners to reduce com-
gation function here combines the key-value tables. Aftemunication, while GraphLab uses vertex-cut. An edge-cut
getting the updated consensus-variable table, we use it foas been proven to be convertible to a vertex-cut with less
solve the optimization subproblem in line 13, and the communication overheadl[8]. Therefore, we focus on vertex
vector is updated to the solution. Note that the subproblenpartitioning in the rest of our discussion in this section.
solver is application-specific and is defined by the user.
In the scatter phase, the subproblem notifies dependehot
consensus nodes if; was updated. Let G(V,E) be a general graphg be a parameter

2) Consensus Variable NodeThe consensus variable determining the imbalance. For anyc V, let A(v) denote
nodewv; € C behaves differently in the vertex program. the subset ofi/ machines that vertex is assigned to. Then
It aggregates all local copies of it from subproblem nodeghe balancedp-way vertex cut problerfor A/ machines is
using summation in gather phase, then update itself with thefined as

Problem Definition and Notation

average value in apply method. In the scatter phase, conver- . 1
gence conditions are used to determine whether related sub ™" v Z |A(v)|
problems need to be scheduled to run again. veV 3)
3) Termination Conditions:One possible criterion for subject to |{e € E|A(e) =m}| < ﬁ@,Vm
convergence is the global primal and dual residual of all M
consensus variables and their local copies. At the sugerstewherem € {1,..., M}. The objective corresponds to the

an aggregator can be used to aggregate residuals across replication factor or how many copies of each node exist
consensus variables. If both primal and dual residuals aracross all machines, and the constraint corresponds tdta lim
small enough, then we have reached global convergence amth the edges that can be assigned to any one machine.
the program stops. If not, all subproblems will be scheduled »
again in the next iteration. However, this global convergen B- Intuition and State-of-the-Art
criterion has two disadvantages: first, the use of aggregato The current state-of-the-art strategy used in GraphLab is
will bring overhead as it needs to aggregate informatiomfro a sequential greedy heuristic algorithm [8], which we refer
all distributed machines; second, some consensus vasiablégo as GREEDY. Multiple machines process sets of edges
and their corresponding local copies do not change mucbne by one and place each of them into a machine, where
and their subproblem counterparts are still scheduledrip ru the placementi(v) is maintained across multiple machines.
wasting computation resources. When a machine places an edgev), the GREEDY strategy
Instead, our proposed convergence criterion measures Idellows heuristic rules: if bothA(u) and A(v) are (), edge
cal convergence. In this local criterion, we check the ptima (u,v) is placed on the machine with the fewest assigned
residual and dual residual for local copies of a consensusdges; if only one ofi(u) and A(v) is notf), say A(u), then
variable only. Each consensus vertex calculates both primdu, v) is put in one machine i (u); if A(u) N A(v) # 0,

then (u,v) is assigned to one of the machines in the The third characteristic similarly corresponds to theitytil
intersection; the last case is bat{u) and A(v) are not), of consensus optimization. The rich models we aim to reason
but A(u) N A(v) = 0, then(u,v) is assigned to one of the over typically include overlapping interactions amongivar
machines from the vertex with the most unassigned edgesables. These overlapping interactions make the distabuti

As we will show, the REEDY strategy does not work complex and thus make direct optimization cumbersome.
well with the Aco bipartite graphs. Inaco and other By decomposing the problem into many subproblems that
similar problem structures, subproblem nodes tend to havehare a smaller set of variables, inference becomes easier.
much lower degree than consensus nodes. Because the l&stpractice, the number of subproblems is roughly an order
heuristic in the greedy scheme is biased to large degreef magnitude greater than the number of variables.
nodes, REEDY places a large number of subproblem nodes The fourth characteristic, that the computation of nodes
onto different machines. in S depends only on the values of a subsetCbfind the

In practice, large-scaleco involves millions of con- computation of nodes i’ depends only on the values of
sensus variables, so computing a high-quality partitignin a subset ofS, exhibits itself in many factor-based represen-
is more important than fast sequential partitioning. Oncdations of probabilistic models. This characteristic pdes
partitioned, the same topology may be reused multiple timegus with extra information about the structure of computatio
for example when performing parameter optimization. In theand, when combined with the third characteristic, motisate
rest of our discussion, we investigate properties ofabe partitioning only the consensus variablésnstead of parti-
bipartite graph and propose a novel and efficient partitigni tioning over the whole set of node&sU C, which inevitably
scheme. introduces expensive redundancy.

D. Analysis ofaco

We first analyze RNDOM over all nodes inG and show
We assume the bipartite graghi(S, C, E) of the ACO its inefficiency in bipartite graphs with the four charadger
exhibits four characteristics: tics mentioned above, then we present our novel partitgpnin
1) The consensus variable nodes have a power-law detrategy. If we use random vertex-cut without considering
gree distributionP(d) « d~%, where« is a shape the data dependency structure, the expected number of
parameter. replications of a random vertex-cut on the bipartite graph
2) The subproblem degree distribution is centered arouni

C. Specific Properties of Consensus Optimization

some small number. We uses a Poisson distribution for M 1 1%
the simplicity of analysis, i.e.P(d) oc 26— WE ST IAW)| = G <1 -E {1 - M})

3) For large-scale optimizations, the number of subprob- veV vel
lems is larger than the number of consensus variables, M 1 1%®
ie.,|S| > |C]. +mz 1—E[1—M])

4) The algorithm strictly follows the bipartite structure, ves
i.e., the computation of only depends o and the ~WhereV' = SUC, A(v) is the set of machines on which vari-
computation ofC' only depends ors. ablew is located,M is the total number of machineg, (v)

is a consensus variable’s degree (power-law-distributed)
and dz(v) is a subproblem’s degree (Poisson-distributed).
This analysis is direct extension of that A [8]. The factors

distributions are common in large-scaleo problems when affecting the expected replication factor are the number of

the variables involved in subproblems correspond to objectmhaChmes' the p?rpameter (:J. po_\l;ver;iv://vdlstrlblutm,nahnd
in the real world, especially for applications on social andNe parameter of Poisson distri l_m Ve eva uate how _
natural networks. these parameters affect the replication factor on symtheti

The second characteristic is a standard requirement foqata in our experiments (SectipmlV1).

the utility of the ADMM decomposition, where the original If we further asstime that _each subproblem itself is not
L) very complex and involves just a constant numbeof
optimization problem decomposes into small subproblems ~ : L O
ariables, the expected number of replications is:

that are each easy to solve. Thus the degree of eacht

We briefly justify each of these characteristics. The first
characteristic above results from natural power-law degre
distributions found in real-data applications. Such degre

subproblem node (the number of variables it involves) is 1 M 1 4a®
small. The Poisson distribution is commonly used to model mE Z AWl = 4] 1-E [1 - M]

the number of events occurring during a fixed interval or vev ved

space. Therefore, it is suitable to describe the number of + %|g| (1 —(1- i)c)
variables that are involved in a subproblem. The parameter V] M

A describes the average number of variables in a subprobleifhus the expected replication factor increases linearti wi
and should be small. the number of subproblenis|.

E. Hypergraph-based Bipartite Graph Partitioning VI. EXPERIMENTS

Since the random strategy is agnostic to the graph struc- In this section, we first compare our hypergraph partition-
ture, it should be possible to exploit the known bipartiteing vertex-cut technique ¥PER with the greedy vertex-cut
graph structure to improve efficiency. In particular, thealgorithm GREEDY and the hash-based random partitioning
bipartite structure suggests that we should aim to pantitio RANDOM introduced in Sectioi V. We then present the
the consensus variables only. The objective function of thevaluation of ouraco implementation using GraphLab on

vertex partition over a bipartite graph is defined as the large-scale social network analysis problem introduce
1 in Section[. In all of our experiments, we useMetis
min — Z |A(v)] [15] with unbalanced facto@ = 2 and use thesum of

A V] veV external degreeobjective to perform the hyperedge cut.

. |E| (4) Code and data for all experiments will be made available
subject to |{e € E[A(e) = m}| < B ¥m at/http://lings.cs.umd.edu/adram.

Aw) =0 v el A. Evaluation of Partitioning Strategies

When assigning a consensus variable node a machine, we 1) Dataset Description’We begin by studying the effect
also assign the associated subproblems to that same machige gifferent partitioning strategies on the replicatiortts
Because we are cutting only the consensus variable nodeg; the vertex program. To produce a dataset that embodies
for each edge located on a machine, the workload added e rich characteristics discussed in Secfian V, we geeerat
that machine is the load of the corresponding subproblemg,anhs with a power-law degree distribution for consensus
plus the workload of consensus variable, which only invelve \ariaple vertices with parametarand a Poisson distribution

a simple averaging. Therefore, the edge balance in the equgyer the degree of subproblems with paramataie use the
tion above is equivalent to subproblem node balance, which;,qom bipartite generator in the python packiigsworkX

can be reduced to the following constrained optimization: [16], which generates random bipartite graphs from two

. 1 given degree sequences.
i V] Z [A(v)] We fix the number of consensus variable vertices to
vev 5) 100,000 and generate two degree sequences with varying
subject to |{v € S|B(v,A) =m}| < ﬂ%,Vm
A =hves o aISUCl B ppeneeleaton facor
where A is the assignment of consensus variables to ma- 15 1254452 1811449 1154 110 144 201
chines, B is the mapping from subproblems to machines 20 1,015092 1,661,788 9.15 1.14 164 2.61
when the assignmend is given, andj is the imbalance 20 25 799,850 1389912 7.00 117 174 3.00
factor. 3.0 662,938 1,247,468 5.63 125 1.88 3.41
35 578,983 1,142,410 479 128 197 3.78
We perform vertex cut only on consensus nodes by 15 647396 1051772 547 118 162 a4
treating it as a hyperedge partitioning in the hypergraghwvi 20 514906 902,526 415 125 175 279
of the bipartite graph. The bipartite graph is converted int 22 25 409,645 792,021 310 137 193 3.16
a hypergraphH as follows: each node € S is a also a gg g?g'ég‘g‘ ;gg'gig g-gg Te g'gg g'gg
node inH; each node € C is a hyperedge connecting the : : : : : - -
set of nodes i corresponding ta’'s neighbors inG. We %:g ggg'ggf ggi'ggg gg% iéj i:?g g:gi
thus denote the hypergraph Hs= (S, E,) whereE), isthe 24 25 303164 559470 203 145 185 3.13
hyperedge set. Inmediately, one can see that the vertex cut 30 271,035 541912 171 155 2.00 3.40
of only consensus nodes @ reduces to MPERIN H. 35 249170 522232 149 163 210 3.65
The hyperedge partitioning problem has been well-studied %g ggg'gg gfg’géi g-gg igi 1-2‘71 g?g
and there are various packages that can perform hyperedges 55 265934 474523 166 144 178 304
partitioning efficiently. In our experiments, we USMETIS 30 237,711 451,492 138 153 1.90 3.27
[14]. The objective function is to minimize the sum of 35 218271 437,161 118 1.62 2.00 3.49
external degreesy " |E(P,)|, where P; is the set of 15 335411 507,033 235 124 151 250
subproblems that are assigned (o Wemachine| E(F)| o 32 ZO0%C 019 1 i ier 2
is the external degree of partitio®;, i.e., the number 3.0 218,350 400,794 1.18 150 1.84 3.14
of hyperedges that are incident but not fully insid®. 35 200,716 385,167 101 158 1.92 3.33
Because consensus nodesdrhave a one-to-one mapping able |
aple

_to hyPeredges I, mln!rr}|2|_n_g the sum C_'f e)_(temal degrees SUMMARY OF SYNTHETIC BIPARTITE GRAPH WITH REPLICATION
in H is equivalent to minimizing the replication factor @a FACTOR RESULTS(m = 32)

http://linqs.cs.umd.edu/admm

28 T 3 T T T T 35 T ¥ 22 F T T T
H: Hyper —+—
26 L ¥ 281 Koy Greyep;yr T s ol Greedy
5 24 LK — 5 28 - * 7 5 3 [Random ---%-- .- 7 5
s o £ 24} Hyper —— 1 9 E
g 22 * Hyper —— 8 yper g * 8 18} R
£ Greedy £ ot Greedy E £ o5t L E b
.5 2 ¥ Random ---%-- _5 2 Random -~ '5 x g 168]
g 18 [1§ (8L 1l 8 Ll 1l B N
5 : g 5 = A B
s 16 4 g 16 - g g 14«
2 q4l* E o o i WA .
. 14 L] 15 E 1ok — X\w,, i
12 A 12F — B Iy +—
L 1 j 1 I I I I I 1 LT 1 1 I 1 I I I I I
024 8 16 30 2 22 24 26 28 15 2 25 3 2 4 6 8 10
Number of machines Varying o Varying A Subproblem and Consensus Proportion
. . . . C
(@) Varyingm (a =2, A = 2) (b) Varyinga (A =2, m =32) (c) Varying A (o = 2, m = 32) (d) Varying lel (m = 32)

[S]

Figure 3. Comparison between partitioning techniquespPieR, GREEDY, and RAND

«a and \. Sincew in natural graphs is roughly 2.2 [17] and In summary, our proposed hypergraph-based vertex-cut
subproblems from real problems tend to be small, we wvary scheme outperforms the state-of-the-arREGDYscheme
from 2.0 to 2.8, and vary from 1.5 to 3.5. We use rejection provided in GraphLab implementation [8],_[18] for realgsti
sampling to remove samples with any nodes of degree ledsipartite graph settings. Especially when the two types
than 2. Because the sum of degrees|frand |C| should of nodes in the bipartite graph are imbalanced, which is
be equal, their proportion.§|/|C|) can be derived frona, typically the case in consensus optimizationyH&R can
A, and|C|. We list the properties of generated datasets ingenerate much higher quality partitions.
Table[l, where|S U C| is the number of vertices and|
shows number of edges.

2) Replication Factor Results with Synthetic Dataiven Next we compare the performance of our proposed
the dataset listed in TaHlk |, we vary the number of machine¥ertex-programming algorithm empirically on an MPI 2
(partitionsym € {2,4,8,16,32} and measure the replication Cluster using Open-MPI 1.4.3 consisting of eight Intel Core
factor RF — ﬁ Zfil |A(v)| of each scheme, denoted as Quad CPU 2.6§GHZ mac_hlnes with 4GB RA.M running
HYPER, GREEDY, and RANDOM accordingly in Tabl@!. The Ubuntu 12.04 Linux. We implement our algonthm using
parameters’ default values are set 0= 2, A = 2, m = GraphLab 2 (v2.1.4245)_[18]. For each machine in the
32. We list the results in the last three columns of Tdble ICluster, we start only one process with 4 threads (ncpus).
and in Fig[Vl. In general, in all generated datasetspeir e use the synchronous engine provided by GraphLab 2,
always has a smaller replication factor thamekpy and ~ Which is explained in detail in_[8]. Our proposed approach
RANDOM. In the worst case, GEepvreplicates around7x ~ ¢@n be applied to other vertex programming frameworks
more vertices than ¥PER (o = 2,\ = 2.5,m = 2), and easily since it does not use any special features of GraphLab
always replicated.6x more (x = 2.8, A\ = 3.5, m = 32). beyond the synchronous GAS framework.

In Fig.[3(@), we varym to show how replication factor 1_) Voter Network Data_set DescriptionWe generate
grows when the number of machines increases. The resulf9cial voter networks using the synthetic generator of
show that HPERis less sensitive to the number of machinesBroecheler et al[J4][[19] and create a probabilistic model
than the other schemes and scales better in practice. using the PSL program in Secti¢n Il. The details of the

Next we fix m = 32, vary a and X in Fig. [3(b) and

datasets are listed in Tallé Il. The smallest &é,; has
Fig. to study the partitioning performance based on6 million edges.anld 4.4 nr:]lllon \r/]ertlclesdar(;d_fltsGln f']CLQBb_
different bipartite graph topologies. Recall that paramnet tmhemor); 0? t?1 S|ggte mtacdlne V\{ ?tn oaded ml rap h'a k
o determines the power-law shape. As shown in @3(b)=|-he r?fsth 0 | € a_lasTe Eleél nc; ' Otrrl1 ? tsr:ng N mai_ INe.
the largera is, the smaller the maximum degree of the € Miith column in 1a shows that the proportion

consensus nodes become, and difference bety&eand lSVr']C' betwsgrli twodsletshin our ;:ata graph is ;round f?
|C| is smaller, e.g., when — 2.8, A — 2 in the plot,|S|/|C] n the voter model, the variables corresponding to the

is only 1.78. In this case, cutting the consensus nodes intruth of the \bTEY(person,party) predicate are consensus

HYPER provides less improvement overRGEDY. On the variables, and each initialized rule maps to a subproblem.
other hand, when\ increases, each subproblem has more
variables, and the number of subproblems decreasese Rl

: SNiy 3,307,971 1,102,498 6,011,257 3.00
tends to cut more subproblem nodes, as shown in[Fig] 3(c). SN 8656775 2101072 12107131 347

B. Performance ofAco for PSL Voter Model

Name S| C] |E] IS1/1C]

Finally, in Fig.[3(d), we plot the relationship between SNapn 9,962,627 3,149,103 18,113,119 3.16
replication factor and the proportion betweg$] and |C/|. SNgpr 13,349,751 4,203,703 24,288,223 3.18
When the proportion is smalk{ 2), HYPER and GREEDY Table Ii
scale similarly, but HPER is still better. As the proportion SUMMARY OF SOCIAL NETWORK DATA SET FORVOTERMODEL

increases, the advantage o¥ k=R much more pronounced.

T T T
L Hyper —+— | L Hyper —+— | L Hyper —+— |
9000 Greedy 9000 Greedy 9000 Greedy
T 8000 [Random ---x-- o 3 8000 [4 T 8000 [4
8 e 3 8
5 7000 K R 4 S 7000 [g S 7000 4
£ / THee £ £
& 6000 [3 £ 6000 [4 £ 6000 [4
o ; o) _
£ 5000 [4 £ 5000k 4 £ 5000 [A
& 4000 [/ 1 & 4000 | TT— 3 4000 | // p
3000 [e 3000 e 3000 e
X |
2000 T—=— . 2000 L . 2000 L .
12 4 6 8 2 4 6 8 2 4 6 8
Number of machines Number of machines Number of machines
(&) SN1)s (fits on one machine) (b) SNops (c) Weak scaling with increasing size

Figure 4. Execution time and weak scaling under full conerag

Each \bTES(person, party) appears in at most eight rules. In(Fig.[4(b) and 4(d)). However, the speedup for the full con-
practice, PSL programs can be far more complex and manyergence setting is not as significant because some corssensu
more subproblems can be grounded, thus the proportion mayariables take many iterations to converge. Fewer than 1% of
be even larger. In such cases;0-HYPER partitioning will the consensus variables are still active after 1,000 itarst
even further reduce communication cost. but as long as any one variable has not converged, increasing
2) Performance Results with PSL Inferend@ evaluate the number of machines will not produce speedup in terms of
the performance of our algorithm, we use a GraphLab vertexomputation time. In Fid. 4(t), we evaluate weak scaling by
program that implements owco algorithm described in increasing machine and dataset together. Bo#te#Rr and
Section IV and vary the partitioning technique. We use theGREEDY scale well on large datasets that cannot fit into one
method described i [4] to solve the quadratic subproblemgachine.
defined by voter PSL program. We consider performance
of Aco under two settings: full convergence and early
stopping when one considers computation time budgets.
is important to consider the early-stopped setting sice
is known to have very fast initial convergence and then slo
convergence toward the final optimufd [1]. In practice, one’
can stop early when the majority of variables have converge
and quickly obtain a high-quality approximate solution. As
shown in Fig[h, inference in the PSL voter model quickly
converges on 99% of the consensus variables, taking 1, O
iterations on all four datasets.

Performance under early stopping:As shown in Fig[h,

e majority of nodes converge quickly. Since modern
computing models often include a pay-as-you-go cost, one

V\}nay not benefit from waiting for the last few variables to
onverge. For instance, the last 1% of verticesSiVs

ke2/3 of the total time for full convergence. Motivated by

this reasoning, in the following experiments, we measuee th

running time to complete 1,000 iterations afo-HYPER

d ACO-GREEDY, regardless of the convergence status at

e end of the last iteration.

= 1F T . : In Fig.[6(a), we show the accumulated running time of

o 01 F SN \ 3 each iteration. Note because we use synchronous setting,

g L 2M] . .

g 00F gmsm """" S E both algorithms have the same state at the end of each itera-

2 L 4] ~ 1 . .

g o001k \\ E tion. In Fig.[6(a), we show thatco-HYPER performs2x to

§ oo001 | N3 4x better than theaco-GREEDY because of the reduction

2 te05f = in communication cost. In Fif. 6(b), we vary the number of

§ 1e-06 | W machines for the same datas$gV,,, to show the speed up.

F fe07 Ll 0L There are diminishing returns on increasing the number of
1 10 100 1000 10000 100000

machines, due to the communication overhead incurred by

adding machines, but our hypergraph partitioning produces
Figure 5. Convergence Rate in PSL Voter Model overall faster computation.
Full convergence:As shown in Fig[4(&) and 4(b), we first
vary m to show the running time and speedup under the full 00— ssoo
convergence setting. BecauSé',,, is able to fit into mem- 4000 [- Hyper a0
ory on one machine, communication cost overwhelms extra8 4000
computation resources, and prevents distributed compnotat 2500 2000

2000 3000
from performing better than single machine. In Hig. 4(a),

Number of lterations

T
Hyper
Greedy

2500
1500 2000
1000

Running time (st
Running time (sec)

—

ACO-GREEDY and ACO-RAND perform @x to 4x) worse 500 ol T——
than the single machine settingco-HYPER has similar ® 20 a0 00 a0 1000 T s 6 e
running times to those of a single machine andisbetter Numoer oferations (SNaw) Numoer of achines (SNou)

than Aco-GREEDY. (a) Run time of iterations{Nuar) (b) Execution Time §Naar)

On larger data sets that cannot fit on a single machine,
our approach is approximately twice as fasha®-GREEDY Figure 6. Performance of the first 1000 iterations.

VII.

The ADMM algorithm, recently popularized by Boyd
et al. [1], has been used for many applications such as3)
distributed signal processingl[2] and inference in graghic
models [3]. In particular, many large-scale distributed op
timization problems can be cast as consensus optimizatior4]
and use ADMM to solve them [4][5]/.[12].

Tziratas et al.[[3] proposed a general messaging-passing
scheme for MRF optimization based on dual decomposition.[5]
Their solution has a master-slave MRF structure that is
analogous to our bipartite topology. Building on this work,
dual decomposition has similarly been proposed to performl[6]
distributed inference in Markov Logic Networks (MLNSs)
[20]. This work showed that combining MRF-level partition-
ing and program-level partitioning produces superior grerf [7]
mance compared with just MRF-level partitioning. MRF- [g]
level partitioning treats the grounded MLN as a collection
of trees, which is different from our partitioning objeciv

There are several contributions which discuss implemen-
tations of ADMM-related distributed algorithms. Boyd et al
[1] discusses the implementation of ADMM in MapReduce
with global consensus variables, which is a special case of
our setup. GraphLab [21] contains implementations of thg10]
MRF dual decomposition from_[3]. Also related, a large-
scale implementation of the “accuracy of the top” algorithm
[22] proposes methods for speeding up convergence of th%l]
top quatrtile, including tuning the communication topolpgy
for an ADMM consensus optimization algorithm written in [12]
Pregel.

RELATED WORK [2]

9]

VIIl. CONCLUSION [13]

In this paper, we introduce a vertex programming al-
gorithm for distributed ADMM-based consensus optimiza-{;4
tion. To mitigate the communication overhead of distribute
computation, we provide a novel partitioning strategy that15]
converts the bipartite computation graph into a hypergraph
and uses a well-studied hypergraph cut algorithm to ast6l
sign nodes to machines. This combination of the ADMM [17]
vertex program and hypergraph partitioning enables dis-
tributed optimization over large-scale data. Our expenise (18]
on probabilistic inference over large-scale, synthetie so
cial networks demonstrate that our contributions lead to
a significant improvement in scalability. Additionally,eth [19]
partitioning scheme is of independent interest to resessch
and practitioners, since many other graph algorithms als?ZO]
have a bipartite computation structure and will similarly
benefit from the reduced communication overhead induced
by hypergraph partitioning. [21]

REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,[zz]

“Distributed optimization and statistical learning vieetlal-
ternating direction method of multipliersFoundations and
Trends in Machine Learningvol. 3, no. 1, 2011.

E. Esser, “Applications of Lagrangian-based altemtii-
rection methods and connections to split BregmanJGLA
Technical report 2009.

N. Komodakis, N. Paragios, and G. Tziritas, “MRF opti@anz
tion via dual decomposition: Message-passing revisited,”
IEEE International Conference on Computer Visi@007.

S. Bach, M. Broecheler, L. Getoor, and D. O’Leary, “Sogli
MPE inference for constrained continuous markov random
fields with consensus optimization,” iAdvances in Neural
Information Processing Systems (NIP3012.

P. Ferero and A. Cano, “Consensus-based distributegostip
vector machines,Machine Learning Researctvol. 11, pp.
1663-1707, 2010.

G. Malewicz, M. Austern, A. Bik, J. Dehnert, |I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-
scale graph processing,” iIACM SIGMOD International
Conference on Management of Dag010.

“Apache Giraph,” http://giraph.apache.crg/, 2013.

J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: Distributed graph-parallel computation ai+n
ural graphs,” inUSENIX Conference on Operating Systems
Design and Implementatior2012.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. Hellerstein, “Distributed GraphLab: A framework for
machine learning and data mining in the cloud/LDB
Endowmentvol. 5, no. 8, pp. 716-727, 2012.

F. Kschischang, B. Frey, and H. Loeliger, “Factor grsaimd
the sum-product algorithmJEEE Transactions on Informa-
tion Theory vol. 47, no. 2, 2001.

A. Kimmig, S. Bach, M. Broecheler, B. Huang, and L. Gatoo
“A short introduction to probabilistic soft logic,” ilNIPS
Workshop on Probabilistic Programming@012.

S. Bach, B. Huang, B. London, and L. Getoor, “Hinge-
loss Markov random fields: Convex inference for structured
prediction,” in Uncertainty in Artificial Intell, 2013.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. Hellerstein, “GraphLab: A new framework for parallel
machine learning,” ilJncertainty in Artificial Intell, 2010.

] G. Karypis and V. Kumar, “Multilevel k-way hypergraph

partitioning,” in ACM/IEEE Design Automation Confl999.

“hMetis v2.0prel,’ http://glaros.dtc.umn.edu/gkhe/fetch/sw/hmetis/hme
May 2007.

“Python NetworkX package 1.7," http://networkx.gitfnio/.

M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On poéawer
relationships of the internet topology,” iIACM SIGCOMM

Comp. Comm. Rewol. 29, no. 4. ACM, 1999.

“GraphLab 2 v2.1.14245"
https://graphlabapi.googlecode.com/files/graphlabapil.4245.tar.¢gz,
August 2012.

M. Broecheler, P. Shakarian, and V. Subrahmanian, ‘&-sc

able framework for modeling competitive diffusion in sdcia
networks,” inlEEE Int. Conf. on Social Comp2010.

F. Niu, C. Zhang, C. Re, and J. Shavlik, “Scaling infereifor

Markov logic via dual decomposition,” itEEE International
Conference on Data Mining (ICDMR012.

D. Batra, “Dual decomposition implementation in Grapb,”
http://code.google.com/p/graphlabapi/source/braws#its/graphical mod
2012.

S. Boyd, C. Cortes, C. Jiang, M. Mohri, A. Radovanovidan

J. Skaf, “Large-scale distributed optimization for impray
accuracy at the top,” ilNIPS Workshop on Optimization for
Machine Learning 2012.

http://giraph.apache.org/
http://glaros.dtc.umn.edu/gkhome/fetch/sw/hmetis/hmetis-2.0pre1.tar.gz
http://networkx.github.io/
https://graphlabapi.googlecode.com/files/graphlabapi_v2.1.4245.tar.gz
http://code.google.com/p/graphlabapi/source/browse/toolkits/graphical_models/dd_main.hpp

	I Introduction
	II Motivation
	III Preliminaries
	III-A ADMM-Based Consensus Optimization
	III-B Vertex Programming Frameworks
	III-C GAS Vertex Programming API

	IV Distributed ADMM-based consensus optimization implementation (aco)
	IV-A Data Graph and Data Types
	IV-B aco Vertex Program
	IV-B1 Subproblem Nodes
	IV-B2 Consensus Variable Node
	IV-B3 Termination Conditions

	V Hypergraph partitioning
	V-A Problem Definition and Notation
	V-B Intuition and State-of-the-Art
	V-C Specific Properties of Consensus Optimization
	V-D Analysis of aco
	V-E Hypergraph-based Bipartite Graph Partitioning

	VI Experiments
	VI-A Evaluation of Partitioning Strategies
	VI-A1 Dataset Description
	VI-A2 Replication Factor Results with Synthetic Data

	VI-B Performance of aco for PSL Voter Model
	VI-B1 Voter Network Dataset Description
	VI-B2 Performance Results with PSL Inference

	VII Related Work
	VIII Conclusion
	References

