
ar
X

iv
:1

30
8.

68
23

v1
 [

cs
.A

I]
 3

0
A

ug
 2

01
3

A Hypergraph-Partitioned Vertex Programming Approach
for Large-scale Consensus Optimization

Hui Miao∗, Xiangyang Liu†, Bert Huang∗, Lise Getoor∗
∗Dept. of Computer Science,†Dept. of Electrical & Computer Engineering

University of Maryland, College Park, USA
{hui, bert, getoor}@cs.umd.edu∗, xyliu@umd.edu†

Abstract—In modern data science problems, techniques for
extracting value from big data require performing large-scale
optimization over heterogenous, irregularly structured data.
Much of this data is best represented as multi-relational graphs,
making vertex programming abstractions such as those of
Pregel and GraphLab ideal fits for modern large-scale data
analysis. In this paper, we describe a vertex-programming
implementation of a popular consensus optimization technique
known as the alternating direction of multipliers (ADMM) [1].
ADMM consensus optimization allows elegant solution of com-
plex objectives such as inference in rich probabilistic models.
We also introduce a novel hypergraph partitioning technique
that improves over state-of-the-art partitioning techniques for
vertex programming and significantly reduces the communi-
cation cost by reducing the number of replicated nodes up
to an order of magnitude. We implemented our algorithm
in GraphLab and measure scaling performance on a variety
of realistic bipartite graph distributions and a large synthetic
voter-opinion analysis application. In our experiments, we are
able to achieve a 50% improvement in runtime over the current
state-of-the-art GraphLab partitioning scheme.

Keywords-consensus optimization; large-scale optimization;
partitioning methods; vertex programming;

I. I NTRODUCTION

Large-scale data often contains noise, statistical depen-
dencies, and complex structure. To extract value from such
data, we need both flexible, expressive models and scalable
algorithms to perform reasoning over these models. In this
paper, we show how a general class of distributed optimiza-
tion techniques can be implemented efficiently on graph-
parallel abstractions frameworks.

Consensus optimization usingalternating method of mul-
tipliers (ADMM), is a recently popularized general method
for distributed solution of large-scale complex optimization
problems. The optimization problem is decomposed into
simple subproblems to be solved in parallel. The com-
bination of decomposability of dual ascent and the fast
convergence of method of multipliers makes it suitable for
many problems including distributed signal processing [2],
inference in graphical models [3], [4], and popular machine
learning algorithms [5].

Vertex programmingis an efficient graph-parallel abstrac-
tion for distributed graph computation. Pregel [6], Giraph

[7] and GraphLab [8] are recently proposed frameworks
for parallelizing graph-intensive computation. These frame-
works adopt a vertex-centric model to define independent
programs on each vertex. Experiments show it outperforms
the MapReduce abstraction by one to two orders of magni-
tude in machine learning and data mining algorithms [9].

In this paper, we investigate the bipartite topology of
general ADMM-based consensus optimization and develop
its vertex-programming formulation. We also propose a
novel partitioning scheme that utilizes the characteristics
of computation graph based on a hypergraph interpretation
of the bipartite data graph. Our partitioning can reduce the
number of replicated vertices by an order of magnitude over
the current state-of-the-art partitioning scheme, reducing
communication cost accordingly.

Our contributions include the following:

• We develop a scalable, parallel algorithm for ADMM-
based consensus optimization using the vertex program-
ming abstraction. The underlying computation graph
takes on a bipartite structure.

• We propose a partitioning method that treats the bi-
partite graph as a hypergraph and performs a hyper-
graph cut to distribute the nodes across machines. This
strategy enables our replication factor to outperform
the state-of-the-art graph partitioning scheme [8]. The
running time of ADMM-based consensus optimization
using our partition strategy is approximately half of the
time compared to current state-of-the-art methods. Our
partitioning strategy is of independent interest, since
it can be used for any problem that decomposes into a
bipartite computation graph, such as factor-graph belief
propagation [10].

• We implement our algorithm in GraphLab and evaluate
our partitioning scheme on a social network analysis
problem, demonstrating that we can perform large-
scale probabilistic inference on a modest number of
machines, even when the graph has the heavy degree
skew often found in real networks.

http://arxiv.org/abs/1308.6823v1

II. M OTIVATION

Before describing our proposed algorithm (Section IV),
we begin with a simple illustrative example of the kind of
problems that can be solved using ADMM. We consider the
task of social network analysis on a network of individuals
connected by various social relationships. The goal of the
analysis is to predict the voting preferences of various
individuals in the social network, using the relationships
and some observed voting preferences of other individuals
in the network. The problem can be cast as a probabilistic
inference problem, and the approach that we take here is to
define the model usingprobabilistic soft logic(PSL) [11].
PSL is a general-purpose language for describing large-
scale probabilistic models over continuous-valued random
variables using weighted logical rules.

A PSL program consists of a set of logical rules with con-
junctive bodies and disjunctive heads (negations allowed).
Rules are labeled with non-negative weights. The following
program, based on an example from Bach et al. [4], encodes
a simple model to predict voter behavior using information
about a voter (voter registration) and their social network
described by two types of links indicating FRIEND and
SPOUSE relationships:

1.1: REGISTEREDAS(A, P)→ VOTES(A,P),

0.5: FRIEND(B, A)∧ VOTES(A,P)→ VOTES(B,P),

1.8: SPOUSE(B, A)∧ VOTES(A,P)→ VOTES(B,P).

Consider any constants for persons,a and b and partyp
instantiating logical termsA, B, and P respectively. The
first rule encodes the correlation between voter registration
and party preferences, which tend to be aligned but are not
always. The next rule states that ifa is a friend ofb and votes
for partyp, there is a chance thatb votes for partyp as well,
whereas the second makes the same statement for spouses.
The rule weights indicate that spouses are more likely to vote
for the same party than friends. The resulting probabilistic
model will combine all of these influences and include the
implied structured dependencies. We can also consider more
rules and relationship types, leading to a full program in
Figure 1. PSL can also include constraints on logical atoms,
such as mutual exclusivity of voting preferences VOTES.

The engine behind PSL compiles the logical program
into a continuous-variable representation known as ahinge-
loss Markov random field(HL-MRF) [4], [12]. Like many
probabilistic graphical models, inference in HL-MRFs can
be distributed and solved using consensus optimization.
In HL-MRFs, inference of the most-probable explanation
(MPE) is a convex optimization, since the logical rule are
converted into hinge-loss potentials and constraints such
as mutual exclusivity can be relaxed to linear equalities.
Since inference is a convex optimization, HL-MRFs are
particularly well-suited for consensus optimization. We defer

0.5: REGISTEREDAS(A, P) → VOTES(A,P),

0.3: VOTES(A, P)∧ KNOWSWELL(B, A) → VOTES(B,P),

0.1: VOTES(A, P)∧ KNOWS(B, A) → VOTES(B,P),

0.05: VOTES(A, P)∧ BOSS(B, A) → VOTES(B,P),

0.1: VOTES(A, P)∧ MENTOR(B, A) → VOTES(B,P),

0.7: VOTES(A, P)∧ OLDERRELATIVE(B, A)→ VOTES(B,P).

Figure 1. Political social network voting program written in probabilistic
soft logic. Additionally, the VOTES predicate is constrained to have total
truth value of 1.0, to preserve mutual exclusivity of votingpreference.

to previous papers for the mathematical formalisms of HL-
MRFs, and here mainly discuss the general implementation
of ADMM-based consensus optimization, which has many
applications beyond PSL.

III. PRELIMINARIES

A. ADMM-Based Consensus Optimization

Consensus optimization simplifies solution of a global
objective by decomposing a complex objective into simpler
subproblems over local copies of the variables and con-
straining each local copy to be equal to a globalconsensus
variable. The general form of the consensus optimization is:

min
x1,...,xN

N
∑

i=1

φi(xi)

subject to xi − ~Xi = 0, i = 1, 2, ..., N,

(1)

wherexi with dimensionni is the local variable vector on
which the ith subproblem depends andφi is the objective
function for theith subproblem. For ease of notation, let~Xi

denote the global consensus variable vector that the local
variablexi should equal.

To solve the consensus optimization, ADMM relaxes the
global equality constraints using an augmented Lagrangian
and solves the dual objective. The ADMM-based solution
procedure is [1]:

xk+1
i ← argmin

xi

(

φi(xi) + λk
i · xi +

ρ

2

∥

∥

∥
xi − ~Xi

k
∥

∥

∥

2

2

)

, ∀i

λk+1
i ← λk

i + ρ
(

xk+1
i − ~Xi

k
)

, ∀i

Xk+1
l ←

1

Nl

∑

M(i,j)=l

(xi)
k+1
j , ∀l (2)

where superscriptk represents the iteration,Nl is the number
of local copies of thelth entry of global consensus variable,
λi is the vector of Lagrange multipliers forith subproblem,
M(i, j) is the corresponding global consensus entry forjth
dimension of local variablexi, Xl denotes thelth entry of
global consensus variable, andρ is a step size parameter. The
update ofXk+1 can be viewed as averaging local copies in
subproblems.

.

.

.

.

.

.

.

.

.

.

.

.

S C

.

.

.

Figure 2. Bipartite graph abstraction for ADMM consensus optimization.

Equation 2 shows thatN subproblems can be solved
independently. This general form of consensus optimization
defines a bipartite graph structureG(S,C,E) where S
denotes the set of subproblems containing local variables
{xi|i = 1, 2, . . . , N}, C represents the set of consensus
variable entries, andE expresses the dependencies as shown
in Figure 2. Each subproblemφi(xi) is connected to its de-
pendent consensus variables, while each consensus variable
Xj is connected to subproblems containing its local copies.

As described above, the computation required for solving
a subproblem depends on only a subset of the consensus
variable nodes, while the computation needed for a con-
sensus variable requires information about only a subset
of the local variables. This dependency relationship makes
ADMM computation well-suited for vertex-processing par-
allelization.

B. Vertex Programming Frameworks

Recent development of vertex programming frameworks,
such as Pregel [6] and GraphLab [9], are aimed at improving
the scalability of graph processing. Vertex-centric models
in these systems execute user-defined functions on each
vertex independently and define the order of execution of
vertices. Pregel and GraphLab have superior computational
performance over MapReduce for many data mining and
machine learning algorithms, such as belief propagation,
Gibbs sampling, and PageRank [6], [9], [13].

In this paper, we implement our synchronous vertex
programs in GraphLab.

C. GAS Vertex Programming API

Gonzalez et al. [8] propose thegather-apply-scatter(GAS)
abstraction that describes common structures of various
vertex programming frameworks. In the vertex programming
setting, the user defines a data graph with data structures
representing vertices, edges, and messages. The user pro-
vides a vertex program associated with each vertex. The
GAS model abstracts the program into three conceptual
phases of execution on each vertex. In thegather phase,
each vertex is able to aggregate neighborhood information,
which could be pushed or pulled from adjacent nodes. The
aggregation during this phase is user-defined, but must be

commutative and associative. In theapplyphase, each vertex
can use its aggregated value to update its own associated
data. Finally in thescatter phase, each vertex either sends
messages to its neighbors or updates other vertices or edges
in its neighborhood via global state variables.

IV. D ISTRIBUTED ADMM- BASED CONSENSUS

OPTIMIZATION IMPLEMENTATION (ACO)

In order to implement a graph algorithm using vertex
programming, one needs to define the data graph structure
including the vertex, edge and message data types, as well
as a vertex program that defines the computation.

A. Data Graph and Data Types

Recall that in ADMM-based consensus optimization, the
computation graph is based on the dependencies between
subproblems and consensus variables described by the bi-
partite dependency graphG(S,C,E) (Fig. 2). In this graph,
any consensus variable has a degree of at least two, since
any local variables that only appear in one subproblem do
not need consensus nodes.

For each node in the bipartite graph, we construct a
vertex in the vertex program. We use different data types
for subproblem vertices and consensus-variable vertices,
denotedsub and con, respectively. For each subproblem
vertex vi ∈ S, we maintain the involved local variables in
xi and associated Lagrange multiplierλi, both of which are
ni dimension vectors. Eachvi ∈ S also stores a vector~Xi

of dimensionality|Evi | for holding the dependent consensus
variable values. For each consensus variable nodevj ∈ C,
we only store its current value.

B. ACO Vertex Program

We use the GAS abstraction introduced in Section III-C
to describe our ADMM-based consensus optimization im-
plementation,ACO, shown in Alg. 1. In each iteration,
we define a temporary consensus-variable key-value table
consensus_var, where the key is a consensus variable’s
global unique id, i.e.,consensus_var[id(~X)] → ~X.
We also define a program variablelocal_copy_sum to
aggregate the sum of each local copy of a consensus variable.

1 ACO Algorithm

2 // gather neighbor information

3 gather(vi, (vi, vj), vj):
4 if vi.type == sub

5 consensus_var[id(vj. ~Xj)] ← vj . ~Xj

k

6 else

7 local_copy_sum + = vj .x
k
j [id(vi. ~Xi)]

8 // update the vertex data of v_i

9 apply(vi, sum_result):

10 // get consensus_var new value, solve

objective, update multiplier

11 if vi.type == sub

12 vi. ~Xi ← consensus_var

13 vi.xi ← argminxi
(φi(xi)+vi.λi ·xi+

ρ

2

∥

∥

∥
xi − vi. ~Xi

∥

∥

∥

2

2
)

14 vi.λi ← vi.λi + ρ(vi.xi − vi. ~Xi)
15 // average the sum of each local copy

16 else

17 vi. ~Xi ←
local_copy_sum

degree(vi)

18 // update neighborhood

19 scatter(vi, (vi, vj), vj):
20 // notice consensus node the value change

21 if vi.type == sub

22 notify(vj)
23 else

24 if (convergence_check() == false)

25 notify(vj)

Algorithm 1. TheACO vertex program for ADMM-based Consensus
Optimization on vertexvi at iterationk + 1

As shown in Alg.1, in the gather, apply and scatter stages,
we alternate computation on the subproblem nodesS and
the consensus nodesC. We describe the computation and
communication for each node type below.

1) Subproblem Nodes:In the gather phase of the(k+1)th

iteration, each subproblem nodevi ∈ S reads the consen-
sus variables updated inkth iteration in its neighborhood.
We store each consensus variable in the key-value table
consensus_var. The commutative and associative aggre-
gation function here combines the key-value tables. After
getting the updated consensus-variable table, we use it to
solve the optimization subproblem in line 13, and thexi

vector is updated to the solution. Note that the subproblem
solver is application-specific and is defined by the user.
In the scatter phase, the subproblem notifies dependent
consensus nodes ifxi was updated.

2) Consensus Variable Node:The consensus variable
node vj ∈ C behaves differently in the vertex program.
It aggregates all local copies of it from subproblem nodes
using summation in gather phase, then update itself with the
average value in apply method. In the scatter phase, conver-
gence conditions are used to determine whether related sub
problems need to be scheduled to run again.

3) Termination Conditions:One possible criterion for
convergence is the global primal and dual residual of all
consensus variables and their local copies. At the superstep,
an aggregator can be used to aggregate residuals across all
consensus variables. If both primal and dual residuals are
small enough, then we have reached global convergence and
the program stops. If not, all subproblems will be scheduled
again in the next iteration. However, this global convergence
criterion has two disadvantages: first, the use of aggregator
will bring overhead as it needs to aggregate information from
all distributed machines; second, some consensus variables
and their corresponding local copies do not change much
and their subproblem counterparts are still scheduled to run,
wasting computation resources.

Instead, our proposed convergence criterion measures lo-
cal convergence. In this local criterion, we check the primal
residual and dual residual for local copies of a consensus
variable only. Each consensus vertex calculates both primal

residual and dual residual using its dependent local copies. If
both of them are small, subproblems connecting to this con-
sensus variable will not be notified in the following iteration.
The notifications to a particular subproblems come from all
consensus variables connecting to that particular subproblem
vertex. If none of the connected consensus variables notify
it, the subproblem skips the following iteration, thus saving
computation. A skipped subproblem node will be notified
again if its dependent consensus variable is updated and the
convergence criterion is not met.

V. HYPERGRAPH PARTITIONING

In this section, we present our new hypergraph-based
partitioning scheme (HYPER) that is better suited forACO

than current state-of-the-art approaches. The primary factors
for efficient implementation of distributed graph algorithms
are load balancing and communication cost. Vertex pro-
gramming frameworks ensure good load balancing using a
balancedp-way cut of the graph. Significant communication
costs result from vertices whose neighbors are assigned
to different machines. Pregel [6] uses edge cut, mirrors
vertices, and proposes message combiners to reduce com-
munication, while GraphLab uses vertex-cut. An edge-cut
has been proven to be convertible to a vertex-cut with less
communication overhead [8]. Therefore, we focus on vertex
partitioning in the rest of our discussion in this section.

A. Problem Definition and Notation

Let G(V,E) be a general graph,β be a parameter
determining the imbalance. For anyv ∈ V , let A(v) denote
the subset ofM machines that vertexv is assigned to. Then
the balancedp-way vertex cut problemfor M machines is
defined as

min
A

1

|V |

∑

v∈V

|A(v)|

subject to |{e ∈ E|A(e) = m}| ≤ β
|E|

M
, ∀m

(3)

wherem ∈ {1, . . . ,M}. The objective corresponds to the
replication factor, or how many copies of each node exist
across all machines, and the constraint corresponds to a limit
on the edges that can be assigned to any one machine.

B. Intuition and State-of-the-Art

The current state-of-the-art strategy used in GraphLab is
a sequential greedy heuristic algorithm [8], which we refer
to as GREEDY. Multiple machines process sets of edges
one by one and place each of them into a machine, where
the placementA(v) is maintained across multiple machines.
When a machine places an edge(u, v), the GREEDY strategy
follows heuristic rules: if bothA(u) andA(v) are ∅, edge
(u, v) is placed on the machine with the fewest assigned
edges; if only one ofA(u) andA(v) is not∅, sayA(u), then
(u, v) is put in one machine inA(u); if A(u) ∩A(v) 6= ∅,

then (u, v) is assigned to one of the machines in the
intersection; the last case is bothA(u) andA(v) are not∅,
but A(u) ∩ A(v) = ∅, then(u, v) is assigned to one of the
machines from the vertex with the most unassigned edges.

As we will show, the GREEDY strategy does not work
well with the ACO bipartite graphs. InACO and other
similar problem structures, subproblem nodes tend to have
much lower degree than consensus nodes. Because the last
heuristic in the greedy scheme is biased to large degree
nodes, GREEDY places a large number of subproblem nodes
onto different machines.

In practice, large-scaleACO involves millions of con-
sensus variables, so computing a high-quality partitioning
is more important than fast sequential partitioning. Once
partitioned, the same topology may be reused multiple times,
for example when performing parameter optimization. In the
rest of our discussion, we investigate properties of theACO

bipartite graph and propose a novel and efficient partitioning
scheme.

C. Specific Properties of Consensus Optimization

We assume the bipartite graphG(S,C,E) of the ACO

exhibits four characteristics:

1) The consensus variable nodes have a power-law de-
gree distributionP (d) ∝ d−α, whereα is a shape
parameter.

2) The subproblem degree distribution is centered around
some small number. We uses a Poisson distribution for
the simplicity of analysis, i.e.,P (d) ∝ λke−λ

d! .
3) For large-scale optimizations, the number of subprob-

lems is larger than the number of consensus variables,
i.e., |S| > |C|.

4) The algorithm strictly follows the bipartite structure,
i.e., the computation ofS only depends onC and the
computation ofC only depends onS.

We briefly justify each of these characteristics. The first
characteristic above results from natural power-law degree
distributions found in real-data applications. Such degree
distributions are common in large-scaleACO problems when
the variables involved in subproblems correspond to objects
in the real world, especially for applications on social and
natural networks.

The second characteristic is a standard requirement for
the utility of the ADMM decomposition, where the original
optimization problem decomposes into small subproblems
that are each easy to solve. Thus the degree of each
subproblem node (the number of variables it involves) is
small. The Poisson distribution is commonly used to model
the number of events occurring during a fixed interval or
space. Therefore, it is suitable to describe the number of
variables that are involved in a subproblem. The parameter
λ describes the average number of variables in a subproblem
and should be small.

The third characteristic similarly corresponds to the utility
of consensus optimization. The rich models we aim to reason
over typically include overlapping interactions among vari-
ables. These overlapping interactions make the distribution
complex and thus make direct optimization cumbersome.
By decomposing the problem into many subproblems that
share a smaller set of variables, inference becomes easier.
In practice, the number of subproblems is roughly an order
of magnitude greater than the number of variables.

The fourth characteristic, that the computation of nodes
in S depends only on the values of a subset ofC and the
computation of nodes inC depends only on the values of
a subset ofS, exhibits itself in many factor-based represen-
tations of probabilistic models. This characteristic provides
us with extra information about the structure of computation
and, when combined with the third characteristic, motivates
partitioning only the consensus variablesC instead of parti-
tioning over the whole set of nodesS ∪C, which inevitably
introduces expensive redundancy.

D. Analysis ofACO

We first analyze RANDOM over all nodes inG and show
its inefficiency in bipartite graphs with the four characteris-
tics mentioned above, then we present our novel partitioning
strategy. If we use random vertex-cut without considering
the data dependency structure, the expected number of
replications of a random vertex-cut on the bipartite graph
is

1

|V |
E

[

∑

v∈V

|A(v)|

]

=
M

|V |

∑

v∈C

(

1− E

[

1−
1

M

]d1(v)
)

+
M

|V |

∑

v∈S

(

1− E

[

1−
1

M

]d2(v)
)

,

whereV = S∪C, A(v) is the set of machines on which vari-
ablev is located,M is the total number of machines,d1(v)
is a consensus variable’s degree (power-law-distributed),
and d2(v) is a subproblem’s degree (Poisson-distributed).
This analysis is direct extension of that in [8]. The factors
affecting the expected replication factor are the number of
machines, the parameter of power-law distributionα, and
the parameter of Poisson distributionλ. We evaluate how
these parameters affect the replication factor on synthetic
data in our experiments (Section VI).

If we further assume that each subproblem itself is not
very complex and involves just a constant numberc of
variables, the expected number of replications is:

1

|V |
E

[

∑

v∈V

|A(v)|

]

=
M

|V |

∑

v∈C

(

1− E

[

1−
1

M

]d1(v)
)

+
M

|V |
|S|

(

1− (1 −
1

M
)c
)

Thus the expected replication factor increases linearly with
the number of subproblems|S|.

E. Hypergraph-based Bipartite Graph Partitioning

Since the random strategy is agnostic to the graph struc-
ture, it should be possible to exploit the known bipartite
graph structure to improve efficiency. In particular, the
bipartite structure suggests that we should aim to partition
the consensus variables only. The objective function of the
vertex partition over a bipartite graph is defined as

min
A

1

|V |

∑

v∈V

|A(v)|

subject to |{e ∈ E|A(e) = m}| ≤ β
|E|

M
, ∀m

A(v) = ∅, ∀v ∈ L

(4)

When assigning a consensus variable node a machine, we
also assign the associated subproblems to that same machine.
Because we are cutting only the consensus variable nodes,
for each edge located on a machine, the workload added to
that machine is the load of the corresponding subproblems
plus the workload of consensus variable, which only involves
a simple averaging. Therefore, the edge balance in the equa-
tion above is equivalent to subproblem node balance, which
can be reduced to the following constrained optimization:

min
A

1

|V |

∑

v∈V

|A(v)|

subject to |{v ∈ S|B(v,A) = m}| ≤ β
|S|

M
, ∀m

A(v) = ∅, ∀v ∈ S

(5)

whereA is the assignment of consensus variables to ma-
chines,B is the mapping from subproblems to machines
when the assignmentA is given, andβ is the imbalance
factor.

We perform vertex cut only on consensus nodes by
treating it as a hyperedge partitioning in the hypergraph view
of the bipartite graph. The bipartite graph is converted into
a hypergraphH as follows: each nodev ∈ S is a also a
node inH ; each nodev ∈ C is a hyperedge connecting the
set of nodes inH corresponding tov’s neighbors inG. We
thus denote the hypergraph asH = (S,Eh) whereEh is the
hyperedge set. Immediately, one can see that the vertex cut
of only consensus nodes inG reduces to HYPER in H .

The hyperedge partitioning problem has been well-studied
and there are various packages that can perform hyperedge
partitioning efficiently. In our experiments, we usehMETIS
[14]. The objective function is to minimize the sum of
external degrees:

∑M

i=1 |E(Pi)|, where Pi is the set of
subproblems that are assigned to theith machine,|E(Pi)|
is the external degree of partitionPi, i.e., the number
of hyperedges that are incident but not fully insidePi.
Because consensus nodes inG have a one-to-one mapping
to hyperedges inH , minimizing the sum of external degrees
in H is equivalent to minimizing the replication factor inG.

VI. EXPERIMENTS

In this section, we first compare our hypergraph partition-
ing vertex-cut technique HYPER with the greedy vertex-cut
algorithm GREEDY and the hash-based random partitioning
RANDOM introduced in Section V. We then present the
evaluation of ourACO implementation using GraphLab on
the large-scale social network analysis problem introduced
in Section II. In all of our experiments, we usehMetis
[15] with unbalanced factorβ = 2 and use thesum of
external degreeobjective to perform the hyperedge cut.
Code and data for all experiments will be made available
at http://linqs.cs.umd.edu/admm.

A. Evaluation of Partitioning Strategies

1) Dataset Description:We begin by studying the effect
of different partitioning strategies on the replication factor
of the vertex program. To produce a dataset that embodies
the rich characteristics discussed in Section V, we generate
graphs with a power-law degree distribution for consensus
variable vertices with parameterα and a Poisson distribution
over the degree of subproblems with parameterλ. We use the
random bipartite generator in the python packageNetworkX
[16], which generates random bipartite graphs from two
given degree sequences.

We fix the number of consensus variable vertices to
100, 000 and generate two degree sequences with varying

α λ |S ∪C| |E| |S|
|C|

Replication factor
HYPER GREEDY RANDOM

2.0

1.5 1,254,452 1,811,449 11.54 1.10 1.44 2.24
2.0 1,015,092 1,661,788 9.15 1.14 1.64 2.61
2.5 799,850 1,389,912 7.00 1.17 1.74 3.00
3.0 662,938 1,247,468 5.63 1.25 1.88 3.41
3.5 578,983 1,142,410 4.79 1.28 1.97 3.78

2.2

1.5 647,396 1,051,772 5.47 1.18 1.62 2.44
2.0 514,906 902,526 4.15 1.25 1.75 2.79
2.5 409,645 792,021 3.10 1.37 1.93 3.16
3.0 363,194 756,398 2.63 1.45 2.08 3.48
3.5 319,539 708,340 2.20 1.57 2.22 3.80

2.4

1.5 450,976 704,064 3.51 1.24 1.56 2.53
2.0 356,921 614,450 2.57 1.34 1.72 2.84
2.5 303,164 559,470 2.03 1.45 1.85 3.13
3.0 271,035 541,912 1.71 1.55 2.00 3.40
3.5 249,170 522,232 1.49 1.63 2.10 3.65

2.6

1.5 375,734 580,372 2.76 1.25 1.54 2.53
2.0 308,738 515,364 2.09 1.34 1.67 2.79
2.5 265,934 474,523 1.66 1.44 1.78 3.04
3.0 237,711 451,492 1.38 1.53 1.90 3.27
3.5 218,271 437,161 1.18 1.62 2.00 3.49

2.8

1.5 335,411 507,033 2.35 1.24 1.51 2.50
2.0 278,068 450,796 1.78 1.33 1.62 2.73
2.5 242,126 420,322 1.42 1.42 1.74 2.96
3.0 218,350 400,794 1.18 1.50 1.84 3.14
3.5 200,716 385,167 1.01 1.58 1.92 3.33

Table I
SUMMARY OF SYNTHETIC BIPARTITE GRAPH WITH REPLICATION

FACTOR RESULTS(m = 32)

http://linqs.cs.umd.edu/admm

(a) Varyingm (α = 2, λ = 2) (b) Varying α (λ = 2, m = 32) (c) Varying λ (α = 2, m = 32) (d) Varying |C|
|S|

(m = 32)

Figure 3. Comparison between partitioning techniques: HYPER, GREEDY, and RAND

α andλ. Sinceα in natural graphs is roughly 2.2 [17] and
subproblems from real problems tend to be small, we varyα
from 2.0 to 2.8, and varyλ from 1.5 to 3.5. We use rejection
sampling to remove samples with any nodes of degree less
than 2. Because the sum of degrees for|S| and |C| should
be equal, their proportion (|S|/|C|) can be derived fromα,
λ, and |C|. We list the properties of generated datasets in
Table I, where|S ∪ C| is the number of vertices and|E|
shows number of edges.

2) Replication Factor Results with Synthetic Data:Given
the dataset listed in Table I, we vary the number of machines
(partitions)m ∈ {2, 4, 8, 16, 32} and measure the replication
factor RF = 1

|V |

∑N
i=1 |A(v)| of each scheme, denoted as

HYPER, GREEDY, and RANDOM accordingly in Table I. The
parameters’ default values are set to:α = 2, λ = 2, m =
32. We list the results in the last three columns of Table I
and in Fig. VI. In general, in all generated datasets, HYPER

always has a smaller replication factor than GREEDY and
RANDOM. In the worst case, GREEDYreplicates around17×
more vertices than HYPER (α = 2, λ = 2.5,m = 2), and
always replicates1.6× more (α = 2.8, λ = 3.5,m = 32).

In Fig. 3(a), we varym to show how replication factor
grows when the number of machines increases. The results
show that HYPER is less sensitive to the number of machines
than the other schemes and scales better in practice.

Next we fix m = 32, vary α and λ in Fig. 3(b) and
Fig. 3(c) to study the partitioning performance based on
different bipartite graph topologies. Recall that parameter
α determines the power-law shape. As shown in Fig. 3(b),
the largerα is, the smaller the maximum degree of the
consensus nodes become, and difference between|S| and
|C| is smaller, e.g., whenα = 2.8, λ = 2 in the plot,|S|/|C|
is only 1.78. In this case, cutting the consensus nodes in
HYPER provides less improvement over GREEDY. On the
other hand, whenλ increases, each subproblem has more
variables, and the number of subproblems decreases. HYPER

tends to cut more subproblem nodes, as shown in Fig. 3(c).
Finally, in Fig. 3(d), we plot the relationship between

replication factor and the proportion between|S| and |C|.
When the proportion is small (< 2), HYPER and GREEDY

scale similarly, but HYPER is still better. As the proportion
increases, the advantage of HYPER much more pronounced.

In summary, our proposed hypergraph-based vertex-cut
scheme outperforms the state-of-the-art GREEDYscheme
provided in GraphLab implementation [8], [18] for realistic
bipartite graph settings. Especially when the two types
of nodes in the bipartite graph are imbalanced, which is
typically the case in consensus optimization, HYPER can
generate much higher quality partitions.

B. Performance ofACO for PSL Voter Model

Next we compare the performance of our proposedACO

vertex-programming algorithm empirically on an MPI 2
cluster using Open-MPI 1.4.3 consisting of eight Intel Core2
Quad CPU 2.66GHz machines with 4GB RAM running
Ubuntu 12.04 Linux. We implement our algorithm using
GraphLab 2 (v2.1.4245) [18]. For each machine in the
cluster, we start only one process with 4 threads (ncpus).
We use the synchronous engine provided by GraphLab 2,
which is explained in detail in [8]. Our proposed approach
can be applied to other vertex programming frameworks
easily since it does not use any special features of GraphLab
beyond the synchronous GAS framework.

1) Voter Network Dataset Description:We generate
social voter networks using the synthetic generator of
Broecheler et al. [4], [19] and create a probabilistic model
using the PSL program in Section II. The details of the
datasets are listed in Table II. The smallest oneSN1M has
6 million edges and 4.4 million vertices and fits in 4GB
memory on a single machine when loaded in GraphLab;
the rest of the datasets do not fit on a single machine.
The fifth column in Table II shows that the proportion
|S|/|C| between two sets in our data graph is around 3.
In the voter PSL model, the variables corresponding to the
truth of the VOTES(person,party) predicate are consensus
variables, and each initialized rule maps to a subproblem.

Name |S| |C| |E| |S|/|C|

SN1M 3,307,971 1,102,498 6,011,257 3.00
SN2M 6,656,775 2,101,072 12,107,131 3.17
SN3M 9,962,627 3,149,103 18,113,119 3.16
SN4M 13,349,751 4,203,703 24,288,223 3.18

Table II
SUMMARY OF SOCIAL NETWORK DATA SET FORVOTER MODEL

(a) SN1M (fits on one machine) (b) SN2M (c) Weak scaling with increasing size

Figure 4. Execution time and weak scaling under full convergence

Each VOTES(person, party) appears in at most eight rules. In
practice, PSL programs can be far more complex and many
more subproblems can be grounded, thus the proportion may
be even larger. In such cases,ACO-HYPER partitioning will
even further reduce communication cost.

2) Performance Results with PSL Inference:To evaluate
the performance of our algorithm, we use a GraphLab vertex
program that implements ourACO algorithm described in
Section IV and vary the partitioning technique. We use the
method described in [4] to solve the quadratic subproblems
defined by voter PSL program. We consider performance
of ACO under two settings: full convergence and early
stopping when one considers computation time budgets. It
is important to consider the early-stopped setting sinceACO

is known to have very fast initial convergence and then slow
convergence toward the final optimum [1]. In practice, one
can stop early when the majority of variables have converged
and quickly obtain a high-quality approximate solution. As
shown in Fig. 5, inference in the PSL voter model quickly
converges on 99% of the consensus variables, taking 1,000
iterations on all four datasets.

Figure 5. Convergence Rate in PSL Voter Model

Full convergence:As shown in Fig. 4(a) and 4(b), we first
varym to show the running time and speedup under the full
convergence setting. BecauseSN1M is able to fit into mem-
ory on one machine, communication cost overwhelms extra
computation resources, and prevents distributed computation
from performing better than single machine. In Fig. 4(a),
ACO-GREEDY and ACO-RAND perform (2× to 4×) worse
than the single machine setting.ACO-HYPER has similar
running times to those of a single machine and is2× better
than ACO-GREEDY.

On larger data sets that cannot fit on a single machine,
our approach is approximately twice as fast asACO-GREEDY

(Fig. 4(b) and 4(c)). However, the speedup for the full con-
vergence setting is not as significant because some consensus
variables take many iterations to converge. Fewer than 1% of
the consensus variables are still active after 1,000 iterations,
but as long as any one variable has not converged, increasing
the number of machines will not produce speedup in terms of
computation time. In Fig. 4(c), we evaluate weak scaling by
increasing machine and dataset together. Both HYPER and
GREEDY scale well on large datasets that cannot fit into one
machine.

Performance under early stopping:As shown in Fig. 5,
the majority of nodes converge quickly. Since modern
computing models often include a pay-as-you-go cost, one
may not benefit from waiting for the last few variables to
converge. For instance, the last 1% of vertices inSN2M

take2/3 of the total time for full convergence. Motivated by
this reasoning, in the following experiments, we measure the
running time to complete 1,000 iterations ofACO-HYPER

and ACO-GREEDY, regardless of the convergence status at
the end of the last iteration.

In Fig. 6(a), we show the accumulated running time of
each iteration. Note because we use synchronous setting,
both algorithms have the same state at the end of each itera-
tion. In Fig. 6(a), we show thatACO-HYPER performs2× to
4× better than theACO-GREEDY because of the reduction
in communication cost. In Fig. 6(b), we vary the number of
machines for the same datasetSN2M to show the speed up.
There are diminishing returns on increasing the number of
machines, due to the communication overhead incurred by
adding machines, but our hypergraph partitioning produces
overall faster computation.

(a) Run time of iterations (SN4M) (b) Execution Time (SN2M)

Figure 6. Performance of the first 1000 iterations.

VII. R ELATED WORK

The ADMM algorithm, recently popularized by Boyd
et al. [1], has been used for many applications such as
distributed signal processing [2] and inference in graphical
models [3]. In particular, many large-scale distributed op-
timization problems can be cast as consensus optimization
and use ADMM to solve them [4], [5], [12].

Tziratas et al. [3] proposed a general messaging-passing
scheme for MRF optimization based on dual decomposition.
Their solution has a master-slave MRF structure that is
analogous to our bipartite topology. Building on this work,
dual decomposition has similarly been proposed to perform
distributed inference in Markov Logic Networks (MLNs)
[20]. This work showed that combining MRF-level partition-
ing and program-level partitioning produces superior perfor-
mance compared with just MRF-level partitioning. MRF-
level partitioning treats the grounded MLN as a collection
of trees, which is different from our partitioning objective.

There are several contributions which discuss implemen-
tations of ADMM-related distributed algorithms. Boyd et al.
[1] discusses the implementation of ADMM in MapReduce
with global consensus variables, which is a special case of
our setup. GraphLab [21] contains implementations of the
MRF dual decomposition from [3]. Also related, a large-
scale implementation of the “accuracy of the top” algorithm
[22] proposes methods for speeding up convergence of the
top quartile, including tuning the communication topology,
for an ADMM consensus optimization algorithm written in
Pregel.

VIII. C ONCLUSION

In this paper, we introduce a vertex programming al-
gorithm for distributed ADMM-based consensus optimiza-
tion. To mitigate the communication overhead of distributed
computation, we provide a novel partitioning strategy that
converts the bipartite computation graph into a hypergraph
and uses a well-studied hypergraph cut algorithm to as-
sign nodes to machines. This combination of the ADMM
vertex program and hypergraph partitioning enables dis-
tributed optimization over large-scale data. Our experiments
on probabilistic inference over large-scale, synthetic so-
cial networks demonstrate that our contributions lead to
a significant improvement in scalability. Additionally, the
partitioning scheme is of independent interest to researchers
and practitioners, since many other graph algorithms also
have a bipartite computation structure and will similarly
benefit from the reduced communication overhead induced
by hypergraph partitioning.

REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the al-
ternating direction method of multipliers,”Foundations and
Trends in Machine Learning, vol. 3, no. 1, 2011.

[2] E. Esser, “Applications of Lagrangian-based alternating di-
rection methods and connections to split Bregman,” inUCLA
Technical report, 2009.

[3] N. Komodakis, N. Paragios, and G. Tziritas, “MRF optimiza-
tion via dual decomposition: Message-passing revisited,”in
IEEE International Conference on Computer Vision, 2007.

[4] S. Bach, M. Broecheler, L. Getoor, and D. O’Leary, “Scaling
MPE inference for constrained continuous markov random
fields with consensus optimization,” inAdvances in Neural
Information Processing Systems (NIPS), 2012.

[5] P. Ferero and A. Cano, “Consensus-based distributed support
vector machines,”Machine Learning Research, vol. 11, pp.
1663–1707, 2010.

[6] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-
scale graph processing,” inACM SIGMOD International
Conference on Management of Data, 2010.

[7] “Apache Giraph,” http://giraph.apache.org/, 2013.
[8] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,

“PowerGraph: Distributed graph-parallel computation on nat-
ural graphs,” inUSENIX Conference on Operating Systems
Design and Implementation, 2012.

[9] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. Hellerstein, “Distributed GraphLab: A framework for
machine learning and data mining in the cloud,”VLDB
Endowment, vol. 5, no. 8, pp. 716–727, 2012.

[10] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and
the sum-product algorithm,”IEEE Transactions on Informa-
tion Theory, vol. 47, no. 2, 2001.

[11] A. Kimmig, S. Bach, M. Broecheler, B. Huang, and L. Getoor,
“A short introduction to probabilistic soft logic,” inNIPS
Workshop on Probabilistic Programming, 2012.

[12] S. Bach, B. Huang, B. London, and L. Getoor, “Hinge-
loss Markov random fields: Convex inference for structured
prediction,” in Uncertainty in Artificial Intell., 2013.

[13] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. Hellerstein, “GraphLab: A new framework for parallel
machine learning,” inUncertainty in Artificial Intell., 2010.

[14] G. Karypis and V. Kumar, “Multilevel k-way hypergraph
partitioning,” in ACM/IEEE Design Automation Conf., 1999.

[15] “hMetis v2.0pre1,” http://glaros.dtc.umn.edu/gkhome/fetch/sw/hmetis/hmetis-2.0pre1.tar.gz,
May 2007.

[16] “Python NetworkX package 1.7,” http://networkx.github.io/.
[17] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law

relationships of the internet topology,” inACM SIGCOMM
Comp. Comm. Rev., vol. 29, no. 4. ACM, 1999.

[18] “GraphLab 2 v2.1.14245,”
https://graphlabapi.googlecode.com/files/graphlabapiv2.1.4245.tar.gz,
August 2012.

[19] M. Broecheler, P. Shakarian, and V. Subrahmanian, “A scal-
able framework for modeling competitive diffusion in social
networks,” in IEEE Int. Conf. on Social Comp., 2010.

[20] F. Niu, C. Zhang, C. Re, and J. Shavlik, “Scaling inference for
Markov logic via dual decomposition,” inIEEE International
Conference on Data Mining (ICDM), 2012.

[21] D. Batra, “Dual decomposition implementation in GraphLab,”
http://code.google.com/p/graphlabapi/source/browse/toolkits/graphicalmodels/ddmain.hpp,
2012.

[22] S. Boyd, C. Cortes, C. Jiang, M. Mohri, A. Radovanovi, and
J. Skaf, “Large-scale distributed optimization for improving
accuracy at the top,” inNIPS Workshop on Optimization for
Machine Learning, 2012.

http://giraph.apache.org/
http://glaros.dtc.umn.edu/gkhome/fetch/sw/hmetis/hmetis-2.0pre1.tar.gz
http://networkx.github.io/
https://graphlabapi.googlecode.com/files/graphlabapi_v2.1.4245.tar.gz
http://code.google.com/p/graphlabapi/source/browse/toolkits/graphical_models/dd_main.hpp

	I Introduction
	II Motivation
	III Preliminaries
	III-A ADMM-Based Consensus Optimization
	III-B Vertex Programming Frameworks
	III-C GAS Vertex Programming API

	IV Distributed ADMM-based consensus optimization implementation (aco)
	IV-A Data Graph and Data Types
	IV-B aco Vertex Program
	IV-B1 Subproblem Nodes
	IV-B2 Consensus Variable Node
	IV-B3 Termination Conditions

	V Hypergraph partitioning
	V-A Problem Definition and Notation
	V-B Intuition and State-of-the-Art
	V-C Specific Properties of Consensus Optimization
	V-D Analysis of aco
	V-E Hypergraph-based Bipartite Graph Partitioning

	VI Experiments
	VI-A Evaluation of Partitioning Strategies
	VI-A1 Dataset Description
	VI-A2 Replication Factor Results with Synthetic Data

	VI-B Performance of aco for PSL Voter Model
	VI-B1 Voter Network Dataset Description
	VI-B2 Performance Results with PSL Inference

	VII Related Work
	VIII Conclusion
	References

