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Abstract

In the big data era, scalability has become a crucial requirement for any useful computational model.
Probabilistic graphical models are very useful for mining and discovering data insights, but they are not
scalable enough to be suitable for big data problems. Bayesian Networks particularly demonstrate this
limitation when their data is represented using few random variables while each random variable has a
massive set of values. With hierarchical data - data that is arranged in a treelike structure with several
levels - one would expect to see hundreds of thousands or millions of values distributed over even just
a small number of levels. When modeling this kind of hierarchical data across large data sets, Bayesian
networks become infeasible for representing the probability distributions for the following reasons: i) Each
level represents a single random variable with hundreds of thousands of values, ii) The number of levels is
usually small, so there are also few random variables, and iii) The structure of the network is predefined
since the dependency is modeled top-down from each parent to each of its child nodes, so the network
would contain a single linear path for the random variables from each parent to each child node. In
this paper we present a scalable probabilistic graphical model to overcome these limitations for massive
hierarchical data. We believe the proposed model will lead to an easily-scalable, more readable, and
expressive implementation for problems that require probabilistic-based solutions for massive amounts
of hierarchical data. We successfully applied this model to solve two different challenging probabilistic-
based problems on massive hierarchical data sets for different domains, namely, bioinformatics and latent
semantic discovery over search logs.

1 Introduction

Probabilistic graphical models (PGM) refer to a family of techniques that merge concepts from graph struc-
tures and probability models [35]. They represent the conditional dependencies among sets of random vari-
ables [19]. In the age of big data, PGMAaAZs can be very useful for mining and extracting insights from
large-scale and noisy data. The major challenges that PGMs face in this emerging field are the scalability
and the restriction that they can only be applied on a propositional domain [I8, [7]. Some extensions have al-
ready been proposed to address these challenges, such as hierarchical probabilistic graphical models (HPGM)
which aim to extend the PGM to work with non-propositional domains [I8], [14]. The focus of these models
is to make Bayesian networks applicable to non-propositional domains, but they do not solve the scalability
issues that arise when they are applied to massive data sets.

Massive data sets often exhibit hierarchical properties, where data can be divided into several levels ar-
ranged in tree-like structures. Data items in each level depend on or influenced by only the data items in
the immediate upper level. For this kind of data the most appropriate PGM to represent the probability
distribution would be a Bayesian network (BN), since the dependencies in this kind of data are not bidirec-
tional. A Bayesian network is considered to be feasible when it can provide a concise representation of a large
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probability distribution where the need cannot be efficiently handled using traditional techniques such as
tables and equations [10]. Such a scenario is not the case with massive hierarchical data, however, since each
level only represents one random variable, while the data items in that level are outcomes of that random
variable. For example, consider that the hierarchical data are organized as follows: The data items in the top
level (root level) represent US cities, while the data items in the second level represent diseases, where each
city is connected with the set of diseases that appears in that city. In this case assume we have 19000 cities
and 50000 diseases. If we would like to represent this data in a BN, we will consider all of the cities in the root
level to be outcomes of one random variable C'ity and all the data items in the second level to be outcomes
of another random variable Disease. Thus, the BN for this data will be composed of two nodes with single
path City — Disease while the conditional probability table (CPT) for the Disease will contain 950,000,000
(50000 x 19000) entries. For this kind of data, we propose a simple probabilistic graphical model (PGMHD)
that can represent massive hierarchical data in more efficient way. We successfully apply the PGMHD in two
different domains: bioinformatics (for multi-class classification) and search log analytics (for latent semantic
discovery).
The main contributions of this paper are as follows:

e We propose a simple, efficient and scalable probabilistic-based model for massive hierarchical data.

e We successfully apply this model to the Bioinformatics domain in which we automatically classify and
annotate high-throughput mass spectrometry data.

e We also apply this model for large-scale latent semantic discovery using 1.6 billion search log entries
provided by CareerBuilder.com, using the Hadoop Map/Reduce framework.

2 Background

Graphical models can be classified into two major categories: (1) directed graphical models, which are often
referred to as Bayesian networks, or belief networks, and (2) undirected graphical models which are often
referred to as Markov Random Fields, Markov networks, Boltzmann machines, or log-linear models [23].
Probabilistic graphical models (PGMs) consist of both graph structure and parameters. The graph structure
represents a set of conditionally independent relations for the probability model, while the parameters consist
of the joint probability distributions [35]. Probabilistic graphical models are often considered to be more
convenient than numerical representations for two main reasons [31]:

1. To encode a joint probability distribution for P(z1,...,x,) for n propositional variables with a numerical
representation, we need a table with 2™ entries.

2. Inadequacy in addressing the notion of independence: to test independence between x and y, one needs
to test whether the joint distribution of z and y is equal to the product of their marginal probability.

PGMs are used in many domains. For example, Hidden Markov Models (HMM) are considered a crucial
component for most of the speech recognition systems [24]. In bioinformatics, probabilistic graphical models
are used in RNA sequence analysis [12], protein homology detection and sequence alignment [36], and for
genome-wide identification [39]. In natural language processing (NLP), HMM and Bayesian models are used
for part of speech (POS) tagging [8, 25]. The problem with PGMs in general, and Bayesian networks in
particular, is that they are not suitable for representing massive data due to the time complexity of learning
the structure of the network and the space complexity of storing a network with thousands of random
variables. In general, finding a network that maximizes the Bayesian and Minimum Description Length
(MDL) scores is an NP-hard problem [I5].

2.1 Bayesian Networks

A Bayesian network is a concise representation of a large probability distribution to be handled using tradi-
tional techniques such as tables and equations [10]. The graph of a Bayesian network is a directed acyclic
graph (DAG) [19]. A Bayesian network consists of two components: a DAG representing the structure, and
a set of conditional probability tables (CPTs) as shown in Figure [l Each node in a Bayesian network must
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Figure 1: Bayesian Network [I0]

have a CPT which quantifies the relationship between the variable represented by that node and its parents
in the network. Completeness and consistency are guaranteed in a Bayesian network since there is only one
probability distribution that satisfies the Bayesian network constraints [I0]. The constraints that guarantee
a unique probability distribution are the numerical constraints represented by CPT and the independence
constraints represented by the structure itself. The independence constraint is shown in Figure Each
variable in the structure is independent of any other variables other than its parents, once its parents are
known. For example, once the information about A is known, the probability of L will not be affected by any
new information about F or T, so we call L independent of F and T once A is known. These independence
constraints are known as the Markovian assumptions.

Bayesian networks are widely used for modeling causality in a formal way, for decision-making under
uncertainty, and for many other applications [10].

2.2 Markov Random Fields (MRFs)

MRFs, which are known also as Markov networks, are the most well-known graphical models in which the
graph is undirected. In this graphical model, the random variables are represented as vertices while the edges
represent dependency. However, because there is no clear causal influence from one node to the other (i.e. the
link represents a direct dependency between two variables, but neither one of them is a cause for the other)
the edges are undirected. In an undirected graph any two nodes without a direct link are always conditionally
independent variables, whereas any two nodes with a direct link are always dependent [19, [31]. In MRFs the
joint probability distribution can be calculated by multiplying a normalization factor by potential functions
which assign positive value to a set of fully connected nodes called a clique. A clique is a fully connected
subset of nodes that is associated with a non-negative potential function ¢. Potential functions are derived
from the notion of conditional independence, so any potential function must refer only to the nodes that
are directly connected (i.e. form a maximal clique). According to cliques and potential functions, the joint
probability in an undirected graph shown in Figure [2]is calculated using the following equation:

1
p(a7 b7 c, d) = E¢a6d(a7 C, d)¢a,b(a7 b)

Where Z is a normalization factor that is calculated by summing or integrating the product of the potential

functions:
7 = Z Z Z Z ¢a,c,d(a7 c, d)¢a,b(a7 b)
a b c d

MRFs are common in many fields like spatial statistics, natural language processing, and communication
networks that have little causal structure to guide the construction of a directed graph.

2.3 Hidden Markov Models

A Hidden Markov Model (HMM) is a statistical time series model which is used to model dynamic systems
whose states are not observable, but whose outputs are. HMMs are widely used in speech recognition,



Figure 2: Markov Network

handwriting recognition and text-to-speech synthesis [40]. HMMs rely on three main assumptions. First, the
observation at time ¢ is generated by a process whose state S; is hidden from observation.

Second, the state of that hidden process satisfies the Markov assumption that once the state of the system
at t is known, its states and outputs at times after ¢ are no longer dependent on states before ¢. In other
words, the state at a specific time contains all needed information about the history of the process to predict
the future of the process. Upon those assumptions, the joint probability distribution of a sequence of states
and observations can be factored as follows |10} [40]:

P(Sv.7, Y1.1) = P(S1)P(Y1]51) HP(St|St—1)P(Yt|St)
=2

where S; refers to the hidden state, Y; refers to the observation at time ¢, and the notation 1 : T" means
(1,2,..,T).

The third assumption is that the hidden state variables are discrete (i.e. S; can take on K values). So, to
define the probability distribution over observation sequences, we need to specify a probability distribution
over the initial state P(S;), the K*K state transition matrix defining P(S¢|S:—1) and the output model
defining P(Y:|S:). HMMs are considered a subclass of Bayesian networks known as dynamic Bayesian
networks (DBN), which are Bayesian networks that model systems that evolve over time [16].

3 Related Work

This section describes the most related work to the proposed model from different perspectives. First,
we describe the related hierarchical probabilistic models, then we describe the current techniques used to
automate the annotation of Mass Spectrometry (MS) data for glycomics, which is one of the scenarios that
we use to test the proposed model. We close this section by describing how we applied the proposed model
to discover the latent semantic similarity between keywords extracted from search logs for the purposes of
building a semantic search system.

3.1 Probabilistic Graphical Models for Hierarchical Data

Probabilistic graphical models require propositional domains [I8]. To overcome this limitation some exten-
sions were proposed to extend those models to non-propositional domains. A Bayesian hierarchical model
has been used for natural scene categorization where it performs well on large sets of complex scenes [13].
This model has also been applied for event recognition of human actions and interactions [30]. Another
application of the hierarchical Bayesian network is for identifying changes in gene expression from microarray
experiments [4]

In [I8] the authors introduced a hierarchical Bayesian network which extends the expressiveness of a
regular Bayesian network by allowing a node to represent an aggregation of simpler types which enables the
modeling of complex hierarchical domains. The main idea is to use a small number of hidden variables as a
compressed representation for a set of observed variables with the following restrictions:

1. Any parent of a variable should be in the same or immediate upper layer.



Figure 3: Glycan structure in CFG format. The circles and squares represent the monosaccharides which are
the building blocks of a glycan while the lines are the linkages between them

2. At most one parent from the immediate upper layer is allowed for each variable.

So, the idea is mainly to compress the observed data. Although hierarchical Bayesian network models
extended the regular Bayesian network to represent non-propositional domains, they have not been able to
solve the issue of the scalability of Bayesian networks for massive amounts of hierarchical data.

3.2 Automated Annotation of Mass Spectrometry Data for Glycomics

One use case of the proposed model is the automated annotation of Mass Spectrometry (MS) data for
glycomics. Glycans (Figure |3) are the third major class of biological macro-molecules besides nucleic acids
and proteins [I]. Glycomics refers to the scientific attempts to characterize and study glycans, as defined
in [I] or an integrated systems approach to study structure-function relationships of glycans as defined in
[32]. The importance of this emerging field of study is clear from the accumulated evidence for the roles
of glycans in cell growth and metastasis, cell-cell communication, and microbial pathogenesis. Glycans are
more diverse in terms of chemical structure and information density than nucleic acids and proteins [32].
Glycan identification is much more difficult than protein identification, and it is a proven NP-hard problem
[34] since, unlike protein structures, glycan structures are trees rather than linear sequences. This leads to
a large diversity of glycan structures, which, along with the absence of a standard representation of glycans,
has resulted in many incomplete databases, each of which stores glycan structures and glycan-related data
in a different format. For example KEGG [2I] uses the KCF format, Glycosciences.de [27] uses the LINUCS
format, and CFG [33] uses the IUPAC format.

Although MS has become the major analytical technique for glycans, no general method has been devel-
oped for the automated identification of glycan structures using MS and tandem MS data. The relative ease
of peptide identification using tandem MS is mainly due to the linear structure of peptides and the avail-
ability of reliable peptide sequence databases. In proteomic analyses, a mostly complete series of fragment
ions with high abundance is often observed. In such tandem mass spectra, the mass of each amino acid
in the sequence corresponds to the mass difference between two high-abundance peaks, allowing the amino
acid sequence to be deduced. In glycomics MS data, ion series are disrupted by the branched nature of the
molecule, significantly complicating the extraction of sequence information. In addition, groups of isomeric
monosaccharides commonly share the same mass, making it impossible to distinguish them by MS alone.
Databases for glycans exist but are limited, minimally curated, and suffer badly from pollution from glycan
structures that are not produced in nature or are irrelevant to the organism of study. Several algorithms have
been developed in attempts to semi-automate the process of glycan identification by interpreting tandem MS
spectra, including CartoonistTwo [17], GLYCH [37], GlycoPep ID [22], GlycoMod [9], GlycoPeakFinder [2§],
GlycoWork-bench [6], and SimGlycan [2] (commercially available from Premier Biosoft). However, each of
these programs produces incorrect results when using polluted databases to annotate large MS™ datasets
containing hundreds or thousands of spectra. Inspection of the current literature indicates that machine
learning and data mining techniques have not been used to resolve this issue, although they have a great
potential to be successful in doing so. PGMHD attempts to employ machine learning techniques (mainly
probabilistic-based classification) to find a solution for the automated identification of glycans using MS data.



3.3 Semantic Similarity

Semantic similarity, which is a metric that is defined over documents or terms in which the distance between
them reflects the likeness of their meaning [20], is well defined in Natural Language Processing (NLP) and
Information Retrieval (IR) [29]. Generally there are two major techniques used to compute the semantic
similarity: one is computed using a semantic network (Knowledge-based approach) [5], and the other is
based on computing the relatedness of terms within a large corpus of text (corpus-based approach) [29]. The
major techniques classified under corpus-based approach are Pointwise Mutual Information (PMI) [3] and
Latent Semantic Analysis (LSA) [11], though PMI outperform LSA on mining the web for synonyms [38].
We applied the proposed PGMHD model to discover related search terms by measuring probabilistic-based
semantic similarity between those search terms.

4 Model Structure

Consider a (leveled) directed graph G = (V, A) where V and A C V x V denote the sets of nodes and arcs,
respectively, such that:

1. The nodes V are partitioned into m levels Li,..., L, and a root node vy such that V = U~ L;,
L7ULJ :QfOI'Z#] and Lo :{’Uo}.

2. The arcs in A only connect one level to the next, i.e., if a € A thena € L;_1 X L; for some i =1,...,m.

3. An arc a = (v;—1,v;) € Li—1 X L; represents the dependency of I; with its parent l;_1, i = 1,...,m.
Moreover, let pa: V — P(V) be a function that given a node v, pa(v) is the set of all its parents, i.e.,

pa(v) = {w: (w,v) € A}.

4. The nodes in each level L; represent all the possible outcomes of a finite discrete random variable,
namely X;, i =1,...,m.

We now make some remarks about the above assumptions. First, the node vy in the first level Ly can be
seen as the root node and the ones in L,, as leaves. Second, an observation x in our probabilistic model is
an outcome of a random variable, namely X € Ly X -+ X L,,, defined as

X = (XO = U07X1a"'7Xm)a

which represents a path from vy to the last level L,, such that (X;_1,X;) € A a.s. Third, if (v;_1,v;) € A for
some v;—1 € L;_1 and v; € L;, then P(X;_1 = v;—1, X; = v;) = 0. In other words, P(X = x) = 0 whenever
Ti—1 = Vi—1, Tj = U5 and ('Ui—h'Ui) ¢ A.

Also, assume that there are n observations of X, namely x!,...,z", and let f : X xV — N be a frequency
function defined as

fla) = Hac] :(z)_,,27) =a, for some i€ {1,...,m} and j € {1,...,n}}‘, YaeV x V.

Clearly, f(a) =0 if a ¢ A. These latter observations are the ones used to train our model.

It should be observed that the proposed model can be seen as a special case of a Bayesian network by
considering a network consisting of a single directed path with m nodes. However, we believe that a leveled
directed graph that explicitly defines one node per outcome of the random variables (as described above): i)
leads to an easily scalable (and distributable) implementation of the problems we consider; ii) improves the
readability and expressiveness of the implemented network; and iii) facilitates the training of the model.

4.1 Probabilistic-based Classification

Let X € Ly X --+ X Ly;, be defined as earlier in Section [d] Our model can predict the outcome at a parent
level ¢ — 1 given an observatiorﬂ at level ¢ with a classification score. Given an outcome at level ¢, namely

I Different from the observations used to train our model.



v; € L;, we define the classification score Cl;(v;—1|v;) of v; to the parent outcome v;_1 € L;_; by estimating
the conditional probability P(X;_1 = v;—1|X; = v;) as follows

Sizi,0) ) | (T(viz1)
Cli(vi-1|vi) = f(lj;a;)vl) B ( T(U:l())(%)() = )

n

P(X; = vl Xi—1 = i) - P(Xio1 = vi—1)

Q

= P(Xi_1 = vi—1|X; = vy),

where
T(w) = Z flv,w), Yw € W.

vepa(w)

4.2 Probabilistic-based Semantic Similarity scoring

Fix a level i € {1,....m}, and let X and Y be identically distributed random variables such that X €
Lo x -+ X Ly, is defined earlier in Section [l We define the probabilistic-based semantic similarity score
between two outcomes z;,y; € L; by approximating the conditional joint probability CO;(z;,y;) :== P(X; =
vy, Y = yi| Xi—1 € pa(w;),Yio1 € pa(y;)) as

COi(zyi)~ [ wilwom)- [ pilo,w), (1)
vepa(zi) vepa(y:)

where p;(v,w) = P(X;-1 = v,X; = w) for every (v,w) € L;—1 x L;. We can naturally estimate the
probabilities p; (v, w) with p(v,w) defined as

flow).

n

p(v,w) =

Hence, we can obtain the related outcomes of x; € L; (at level i) by finding all the w € L; with a large
estimated probabilistic-based semantic similarity score CO;(z;, w).

4.3 Progressive Learning

PGMHD is designed to allow progressive learning. Progressive learning is a learning technique that allows
a model to learn gradually over time. Training data does not need to be given at one time to the model,
instead the model can learn from any available data and integrate the new knowledge with the represented
one. This learning technique is very attractive in the big data age for the following reasons:

1. Any size of the training data can fit.

2. It can easily learn from new data without the need to re-include the previous training data in the
learning.

3. The training session can be distributed instead of doing it in one long-running session.

4. Recursive learning allows the results of the model to be used as new training data, provided they
are judged to be accurate by the user. The progressive learning approach for PGMHD is shown in
Algorithm 1.

5 Experimental Results

PGMHD can be used for different purposes once it is built and trained. PGMHD can be used to predict the
class from level [ for the observations of random variables at level [4+1. For example, in the annotation of the
MS data, PGMHD is used to predict the best Glycan at level MS! to annotate a spectrum by evaluating the
annotated peaks at level MS? with probability scores that represent how well the selected glycan correlates
to the manually curated annotations that were used to train the model.



Figure 4: PGMHD for tandem MS data. The root nodes are the glycans that annotate the peaks at MS!
level, while the level 2 nodes are the glycan fragments that annotate the peaks at MS? level and the edges
represent dependency between the glycans that generates the fragments.

Algorithm 1 Progressive Learning for PGMHD

Data: Hierarichal Data

Result: Probabilistic Graphical Model
currentInputLevel < 1
currentGraphLayer < 1

while currentInputLevel < maxInputLevel do foreach dataltem in currentInputLevel do
read dataltem
if dataltem exists in currentGraphLayer then
retreive the node where node.data = dataltem parentNode < node

node. frequency < node. frequency + 1
else
parent Node < newnode parent Node. frequency < 1
end
childrenLevel < currentLevel + 1
foreach child in dataltem.children do
if child exists in parentNode.children then
set childNode < node where node.data = child.data edge < edge(parentNode, child N ode)
edge. frequency < frequency + 1
else
if child exists in childrenLevel then
childN ode < node where node.data = child.data
edge + createNewEdge(parentNoden, childNode) edge. frequency < edge. frequecy + 1
else
childNode < newNode childNode.data < child childNode. frequency < 0
edge + createNewEdge(parentNode, childNode) edge. frequency <+ 1
end

end
end

end
currentInputLevel < currentLevel + 1 currentGraphLayer < currentGraphLayer + 1

end while
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Figure 5: MS1 annotation using GELATO. Scan# is the ID number of the scan in the MS file, peak charge
is the charge state of that peak in the MS file, peak intensity represents the abundance of an ion at that
peak, peak m/z is the mass over charge of the given peak, cartoon is the annotation of that peak (glycan) in
CFG format, feature m/z is the mass over charge for the glycan, and glycanID is the ID of the glycan in the
Glycan Ontology(GlycO).
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Figure 6: Fragments of Glycan GOG166 at the MS? level. Each ion observed in MS! is selected and
fragmented in MS? to generate smaller ions, which can be used to identify the glycan structure that most
appropriately annotates the MS! ion. Theoretical fragments of the glycan structure that had been used to
annotate the MS! spectrum are used to annotate the corresponding MS? spectrum.

5.1 PGMHD to automate the MS annotation

This model is well suited for representing MS data. We recently implemented the Glycan Elucidation and
Annotation Tool (GELATO), which is a semi-automated MS annotation tool for glycomics integrated within
our MS data processing framework called GRITS. Figures 4, 5, 6 and 7 show screen shots from GELATO
for annotated spectra. Figure |5 shows the MS profile level and Figures @ E and [8 show the annotated MS?2
peaks using fragments of the glycans that were chosen as candidate annotations to the MS profile data (i.e.
level 1).

To represent the data shown in these figures using the proposed model, a top-layer node is assigned to
each row in the MS profile table, which corresponds to the MS! data. Then, for each row in the MS? tables,
a unique node is created and connected with its parent node using a directed edge from the parent node (at
the MS profile layer) to the child node (at the MS? layer). Each top-layer node stores a value representing
how frequently that parent has been seen in the training data. However, each child node in the MS? layer
has more than one parent. The edge’s weight represents the co-occurrence frequency between a child and
a parent. The child node stores the total frequency of observing that child regardless of the identity of its
parents. The combined frequency data makes it possible to design a progressive learning algorithm that can
extract information from massive data sets. Figure [4] shows the PGMHD for the given MS data in these
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Figure 7: Fragments of Glycan GOG120 whose peaks were annotated at the MS? level. See Figure 5 for
annotation scheme.
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Figure 8: Fragments of Glycan GOG516 whose peaks were annotated at the MS? level. See Figure 5 for
annotation scheme.
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Table 1: Precision and Recall for PGMHD in the MS annotation experiment

Size of training set | Precision | Recall
5 0.891 0.621
6 0.870 0.609
7 0.865 0.619
8 0.868 0.632
9 0.867 0.618

 Precision

“ Recall

5 6 7 8 9
Size of Training Data (number of experiments)

Figure 9: Precision and Recall of PGMHD

figures. As shown in the model, two layers are created: one for the MS! level and a second one for the MS?
level. The nodes at the MS? level may have many parents as long as they have the same annotation. The
frequency values are not shown because of space constraints.

We ran our experiments using MS data which is collected from stem cell samples. The size of this data
set is 1,746,278 peaks distributed over 1713 MS scans from 10 MS experiments. Figure [I1]shows the learning
time using the progressive learning technique. In this test we introduced one new experiment at a time to the
model for training, and we recorded the total time required to train the model. These performance results
demonstrate how efficiently the progressive learning works with PGMHD.

To test the accuracy of PGMHD, we trained the model by randomly selecting one of 10 available exper-
iments, while the other 9 experiments were used to test the trained model by annotating the experiments’
peaks using PGMHD. The baseline in our evaluation was the annotations generated by the commercial tool
SimGlycan. The results of the accuracy test are shown in Table [T} Figure [I0] shows the average precision
and recall for PGMHD compared to the average precision and recall of GELATO using the same dataset of
1,746,278 peaks distributed over 10 MS experiments.

5.2 PGMHD for latent semantic discovery over Hadoop

We also implemented a version of PGMHD over Hadoop [26] to be used for latent semantic discovery between
users’ search terms extracted from search logs provided by CareerBuilder.com.

5.2.1 Problem Description

CareerBuilder operates the largest job board in the U.S. and has an extensive and growing global presence,
with millions of job postings, more than 60 million actively-searchable resumes, over one billion searchable
documents, and more than a million searches per hour. The search relevancy and recommendations team
wants to discover latent semantic relationships among the search terms entered by their users in order to build
a semantic search engine that understands a user’s query intent in order to provide more relevant results than
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Table 2: Input data to PGMHD over hadoop

UserID | Classification Search Terms
userl Java Developer | Java, Java Developer, C, Software Engineer
user2 Nurse RN, Rigistered Nurse, Health Care

users3 .NET Developer C#, ASP, VB, Software Engineer, SE
user4d Java Developer Java, JEE, Struts, Software Engineer, SE
userb Health Care Health Care Rep, HealthCare

a traditional keyword search engine. To tackle this problem, CareerBuilder cannot use a typical synonyms
dictionary since most of the keywords used in the employment search domain represent job titles, skills, and
companies that would not be found in a traditional English dictionary. Additionally, CareerBuilder’s search
engine supports over a dozen languages, so they were in search of a model that is language-independent.

5.2.2 PGMHD over Hadoop

Given the search logs for all the users and the users’ classifications as shown in Table[2] PGMHD can represent
this kind of data by placing the classes of the users as root nodes and placing the search terms for all the
users in the second level as children nodes. Then, an edge will be formed linking each search term back to
the class of the user who searched for it. The frequency of each search term (how many users search for it)
will be stored in the node of that term, while the frequency of a specific search term searched for by users
of a specific class (how many users belonging to that class searched for the given term) will be stored in the
edge between the class and the term. The frequency of the root node is the summation of the frequencies on
the edges that connect that root node with its children (Figure [13)).

Figure [12| shows how PGMHD was implemented over Hadoop using Map/Reduce jobs and Hive tables.
After we created PGMHD on Hadoop we calculated the probabilistic-based semantic similarity score between
each pair of two terms with shared parents. The size of the data set we analyzed in this experiment is 1.6
billion search records. To decrease the noise in the given data set we applied a pre-filtering technique by
removing any search term used by less than 10 distinct users. The final graph representing this data contains
1931 root nodes, 16414 child nodes, and 439435 edges.

5.2.3 Results of latent semantic discovery using PGMHD

The experiment performing latent semantic discovery among search terms using PGMHD was run on a
Hadoop cluster with 63 data nodes, each having a 2.6 GHZ AMD Opteron Processor with 12 to 32 cores
and 32 to 128 GB RAM. Table [3| shows sample results of 10 terms with their top 5 related terms discovered
by PGMHD. To evaluate the model’s accuracy, we sent the results to data analysts at CareerBuilder who
reviewed 1000 random pairs of discovered related search terms and returned the list with their feedback about
whether each pair of discovered related terms was “related" or “unrelated". We then calculated the accuracy
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Table 3: PGMHD results for latent semantic discovery
Term Related Terms

big data, hadoop developer, OBIEE,

Java, Python

rn registered nurse, rn, registered

registered nurse nurse manager, nurse, nursing, director

hadoop

of nursing
machine learning, data scientist,
data mining analytics, business intellegence,
statistical analyst
Solr lucene, hadoop, java

software developer, programmer, .net
developer, web developer, software
nosql, data science, machine learning,
hadoop, teradata

realtor assistant, real estate, real
estate sales, sales, real estate agent
machine learning, data analyst, data
mining, analytics, big data

plumber, plumbing apprentice,
Plumbing plumbing maintenance, plumbing
sales, maintenance

scrum, project manager, agile coach,
pmiacp, scrum master

Software Engineer

big data

Realtor

Data Scientist

Agile

(precision) of the model based upon the ratio of number of related results to total number of results. The
results show the accuracy of the discovered semantic relationships among search terms using the PGMHD
model to be 0.80.

6 Conclusion

Probabilistic graphical models are very important in many modern applications such as data mining and
data analytics. The major issue with existing probabilistic graphical models is their scalability to handle
large data sets, making this a very important area for research given the tremendous modern focus on big
data due to the number of data points produced by modern computers systems and sensors. PGMHD is a
probabilistic graphical model that attempts to solve the scalability problems in existing models in scenarios
where massive hierarchical data is present. PGMHD is designed to fit hierarchical data sets of any size,
regardless of the domain to which the data belongs. In this paper we present two experiments from different
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domains: one being the automated tagging of high-throughput mass spectrometry data in bioinformatics,
and the other being latent semantic discovery using search logs from the largest job board in the U.S. The
two use cases in which we tested PGMHD show that this model is robust and can scale from a few thousand
entries to at least billions of entries, and can also run on a single computer (for smaller data sets), as well as
in a parallelized fashion on a large cluster of servers (63 were used in our experiment).
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