
Online Temporal-Spatial Analysis for Detection of
Critical Events in Cyber-Physical Systems

Zhang Fu, Magnus Almgren, Olaf Landsiedel, Marina Papatriantafilou
Chalmers University of Technology. Email:{zhafu,magnus.almgren,olafl,ptrianta}@chalmers.se

Abstract—Cyber-Physical Systems (CPS) employ sensors to
observe the physical environment and to detect events of interest.
Equipped with sensing, computing, and communication capa-
bilities, Cyber-Physical Systems aim to make physical-systems
smart(er). For example, smart electricity meters nowadays mea-
sure and report power consumption as well as critical events
such as power outages. However, each day, such sensors report a
variety of warnings and errors: many merely indicate transient
faults or short instabilities of the physical system (environment).
Thus, given the big volumes of data, the time-efficient processing
of these events, especially in large-scale scenarios with hundreds
of thousands of sensors, is a key challenge in CPSs.

Motivated by the fact that critical events of CPSs often have
temporal-spatial properties, we focus on identifying critical events
by an online temporal-spatial analysis on the data stream of
messages. We explicitly model the online detection problem as a
single-linkage clustering on a data stream over a sliding-window,
where the inherent computational complexity of the detection
problem is derived. Based on this model, we propose a grid-
based single-linkage clustering algorithm over a sliding-window,
which is an online time-space efficient method satisfying the
quick processing demand of big data streams. We analyze the
performance of the proposed approach by both a series of
propositions and a large, real-world data-set of deployed CPS,
composing 300,000 sensors, over one year. We show that the
proposed method identifies above 95% of the critical events in
the data-set and save the time-space requirement by 4 orders of
magnitude compared with the conventional clustering method.

I. INTRODUCTION

In Cyber-Physical systems, sensors report a variety of
warnings and errors. However, many indicate transient faults
or short instabilities of the physical system (environment).
This prohibits operators from reacting to each individual
event. Similarly, manually filtering these is a cumbersome
process. Thus, given the big volumes of data, the time-efficient
processing of these events, especially in large-scale scenarios
with hundreds of thousands of sensors, is a key challenge.

There is a need for automatic methods to timely detect and
distinguish transient faults and short-term instabilities from
critical events, such as power outages or dangerous voltage
fluctuations in the electrical grid. In such events, alarms from
the affected meters share key properties in terms of spatial and
temporal relation. For example, when a power outage occurs
and affects a neighborhood, meters residing within that area
detect it at a similar time (if not simultaneously).

Motivated by the above example, we focus on online
analysis of data in CPSs: We correlate individual messages
from sensors according to their temporal-spatial properties
and show that our results efficiently identify and locate critical

events in the raw message stream. Aiming at effective online
processing both in terms of high accuracy and low processing
complexity, we face the following two key challenges:
Implicit temporal-spatial relation: Usually, the temporal-
spatial relation of the messages is implicitly defined, since it
reflects the nature of the physical system. Although many clus-
tering algorithms exist for correlating similar data points [8],
there is still a need for a model to map the problem of
temporal-spatial analysis of data in CPSs to a corresponding
clustering problem at the algorithmic level.
Big data volume and time-critical processing: Online pro-
cessing of messages which are continuously generated from
a large sensor population inevitably encounters the challenge
of heavy computational complexity, especially when the data
analysis is time-critical. Many approaches provide efficient
data streams clustering [13]. However, we find that none of
them are suitable for capturing the temporal-spatial proper-
ties identified by this paper based on the data from a real
deployed CPS (see the related work in Section V). It is
still challenging to develop an appropriate time-space efficient
clustering method for an explicit temporal-spatial analysis on
data streams.

Addressing the above challenges, we make two contribu-
tions in this paper:

1) Based on traces from an AMI of 300,000 electrical me-
ters, we analyze the temporal-spatial patterns of critical
events, such as power outages. We model the temporal-
spatial analysis for detecting critical events through the
problem of single-linkage clustering of a data stream over
a sliding-window.

2) We provide G-SLC, a grid-based single linkage clus-
tering algorithm, for the efficient clustering data points
from a real-time large data stream. We analyze the
performance of G-SLC and evaluate it with a real-world
data-set. We show that G-SLC reduces the time-space
complexity by almost 4 orders of magnitude compared
to the conventional clustering method. G-SLC can help
identifying critical events at high accuracy (around 95%).

The remainder of this paper is organized as follows: Sec-
tion II gives the problem statement and models the problem
as single-linkage clustering a data stream over a sliding-
window. In Section III, we propose G-SLC with detailed
explanations; we also analyze its performance by showing a
series of propositions. In Section IV, we evaluate it through
experiments using a real-world data-set. Section V discusses
related work and we conclude in Section VI.

2

Fig. 1: Example of locations of meters affected in the same power
outage event. All the red circles are affected meters which are
connected to the same power substation through power lines. The
unaffected meters in the surrounding area are also shown as blue
points. We can see that the affected area (shaped out by the dash
line) almost follows along the roads and its shape can be arbitrary.

II. PROBLEM STATEMENT AND ANALYSIS

A. Problem Statement

Messages indicating the events of interest are reported by
the sensors over time, forming a data steam S = s1, s2, · · · ,
where si is a data record, i.e., a message. We use ti to denote
the time-stamp of si, which is the message-generation time.
For a pair of data records si and sj , we use d (si, sj) to denote
the geographical distance between the corresponding sensors.

Take the electricity grid into consideration. Basically the
power-distribution network follows the roads in the residential
area. If a part of the electricity network goes down, the affected
area commonly stretches out along the roads. All affected
meters suffer the power failures almost at the same time and
the alarm messages are sent within a short time interval (e.g. a
couple of seconds). Figure 1 shows an example derived from
a real power outage. The figure depicts the spatial relations
among the affected meters. To detect such a power outage,
we need to identify a temporal-spatial related set of records
from a continuous data stream of alarm messages.

Definition 1. (Temporal-Spatial Related Set) Let S∗ be a set
of records from the data stream, where |S∗| ≥ 2. We say S∗
is a temporal-spatial related set if it satisfies two conditions:
(1) ∀si, sj ∈ S∗ : |ti − tj | ≤ εt; (2) For each pair of records
(s, s′) in S∗, there exists a set of records in S∗, which can form
a sequence {s1, · · · , sk}, k ≥ 2, where s1 = s and sk = s′,
such that ∀i < k : d (si, si+1) ≤ εd; εt and εd are called the
time and distance thresholds, respectively.

B. Clustering Over Sliding Window

To detect temporal-spatial related sets, we – according to
definition 1 – perform a spatial clustering on a data stream
over time-based sliding-windows. The sliding-windows filter
time irrelevant records, whereas spatial clustering identifies
spatial relevant records.

We first give a formal model of data clustering over time-
based sliding-windows: We use Wτ to denote the window that
starts at time τ . The size of the window is denoted by ω. Thus
all data records arriving during time interval [τ, τ +ω) belong

to window Wτ . We perform data clustering on the records
of each time window. For example, when at time τ + ω the
clustering is conducted based on data records in Wτ . Then, the
sliding-window will move forward by ωa time units (which is
called the window advance) and the new window is Wτ+ωa .
All old data records outside the new window will be deleted
and not be considered for future computation.

By choosing an appropriate window size, we can show
that all the data records that belong to the same temporal-
spatial sets can be processed in at least one time-window. In
particular, we give the following proposition1:

Proposition 1. Let si and sj be two records, |ti − tj | ≤ εt.
By choosing the size of the sliding-window ω ≥ εt + ωa, we
can process si and sj in at least one time-window.

Considering the data records in a window, the problem of
partitioning them into disjoint sets according to condition 2
in Definition 1 is equivalent to single-linkage clustering with
stop condition of εd [10], we use SLC to denote it.

Proposition 2. Let si and sj be two records in the same
window. They belong to the same spatial related set iff they
belong to the same cluster in SLC.

Given Propositions 1 and 2, finding temporal-spatial related
sets reduces to SLC on a data stream S over a sliding-
window. A straightforward method for conducting SLC over
a sliding-window is to keep all records for the current window.
When the window shifts, we compute the clusters based on
the current records in the window; then all the records that
are outside the new window will be deleted. Suppose there
are n records in the current window, SLC can be achieved
as follows: First compute the proximity matrix for all pairs of
records; the values in the matrix are the distances of all pairs
of clusters. In each step, the pair of clusters which has the
minimum value is merged into a new cluster and the distances
bewteen the latter and the remaining clusters are updated. This
repeats until all the values in the proximity matrix are greater
than εd or all the records are in one cluster. The method is
derived from the SLINK algorithm [12]. It is shown that both
the time and space complexity of the algorithm are O(n2),
which is known to be the best achievable complexity for
single-linkage clustering [5]. This complexity is acceptable
for small numbers of records. However, CPSs commonly
continuously generate a large volume of records. Often for
these the computing time is not acceptable, especially for
critical events that need quick reactions.

III. TIME-SPACE EFFICIENT METHOD

In the classic SLC method, we observe the following: when
a set of records is close to each other, then these can be
represented as a group and the clustering can be done at
the group level. Based on that, we propose our grid-based
method, denoted as G-SLC. The monitored geographical area
is modeled as a 2-D space and is partitioned into a grid.

1Due to the space constraint, proofs of all the propositions are omitted.

3

We use ci,j to denote the cell of the ith interval and jth

interval of x and y dimension (which are the longitude and
latitude), respectively. Each cell is a square with edge length
εd, corresponding to the SLC method2. Since each data record
has a location attribute, it can quickly be mapped into the cell
which covers its location. The grid in Figure 1 is an example.
Before detailing G-SLC, we give two definitions:

Definition 2. (Neighbor cells) Let ci,j and cl,k be two cells in
the grid. They are neighbor cells if |i− l| ≤ 1 and |j − k| ≤ 1.
We use N c to denote the set of neighbor cells of cell c.

Definition 3. (Active cell) Cell ci,j is called an active cell, if
there is at least one record mapped to it in the current window.

A. Design details

Next, we give a detailed description of G-SLC, our pro-
posed grid-based method for efficient single-linkage clustering
of records in a data stream over a sliding-window. We first
explain how to maintain the state of the cells. Then we discuss
our procedure of adding each newly received record. After that
we explain how the clustering is conducted when the time
window shifts and how the cell states are updated.

1) Maintain cell weights for sliding-window: The state of
each active cell maintained in the memory is its weight which
is defined as the number of records mapped to the cell in the
current window. Since only active cells need to be considered
in the clustering procedure, only their weights are maintained.

According to the model of sliding-window, when the win-
dow shifts some old records may reside outside the new
window, then the weights of the corresponding cells have to
be updated. Suppose the window shifts from Wτ to Wτ+ωa ,
then the records whose timestamps are within the time interval
[τ, τ + ωa) have to be deleted. Given this fact, we maintain
the weight of each cell with a number of buckets (each of
them is just an integer variable). Here we assume that ω is
divisible by ωa, thus the number of buckets for each cell
is ω

ωa
and they are kept in an array. In window Wτ , for

an active cell ci,j , bucket ci,j .b[k] maintains the number of
records which are mapped to ci,j and have timestamps within
[τ + kωa, τ +(k + 1)ωa), where k ∈

{
0, 1, · · · , ω

ωa
− 1

}
. So

we have ci,j .weight =
∑

k ci,j .b[k].
2) Upon receiving a new record: When a new record, say

s, arrives during time window Wτ , the index of the cell which
covers the location of s is calculated. If the cell is not active
(active cells are maintained in active cell list), then the state
of the cell is initiated and added to active cell list. The value
of the correct bucket of the cell will be increased by one.
Algorithm 1 shows the pseudo-code.

3) Clustering active cells: For each time window, G-SLC
conducts the clustering on all active cells. G-SLC uses an
auxiliary data structure neighbor list for doing that. The
procedure of the clustering is the following:
(i) A cluster is created for the first unprocessed active cell in
active cell list, this cell is marked as ready and is put into

2In the paper, we use the edge length of a cell to denote its size.

Algorithm 1: Upon receiving new record s

// Suppose current window is Wτ

if s.timestamp ∈Wτ then
(i, j)← find cell index for s;
k ←

⌊
s.timestamp−τ

ωa

⌋
;

if ci,j /∈ active cell list then
initiate ci,j and put ci,j into active cell list;

ci,j .b[k] + +;
else

drop s;

neighbor list. (ii) For each cell in neighbor list, add it to
the current cluster, mark it as processed and remove it from
neighbor list. Then insert all its active neighbor cells that are
unprocessed and unready in neighbor list, then mark them as
ready. This step is repeated until neighbor list is empty. (iii)
If there exist unprocessed cells in active cell list, then step
1 and 2 are repeated. The procedure terminates when there is
no unprocessed cells in active cell list. The pseudo-code is
shown in Algorithm 2.

Algorithm 2: Clustering active cells in the current window

while not reach the end of active cell list do
c← next cell in active cell list;
if c is unprocessed then

Create a new cluster Cluster∗;
Put c into neighbor list and mark it as ready;
while neighbor list ! = ∅ do

c← next cell in neighbor list;
Add c into Cluster∗ and mark c as processed;
Remove c from neighbor list;
forall c∗ ∈ N c do

if c∗ is active & c∗ is unprocessed & c∗ is
unready then

Put c∗ into neighbor list and mark it as
ready;

4) Upon sliding-window shifting: When the sliding-
window shifts, the clusters have to be generated. Thus Algo-
rithm 2 is done over the cells in active cell list. After that
the weights of all active cells will be updated as well as their
buckets. If the weight of a cell becomes zero, then it becomes
inactive and is deleted from the memory. The pseudo-code is
shown in Algorithm 3.

Algorithm 3: Upon time window shifting
B ← ω

ωa
;

if active cell list ! = ∅ then
run Algorithm 2 on active cell list;
Output clustering results;
forall c ∈ active cell list do

if c.weight− c.b[0] > 0 then
for k ← 1 to B − 1 do

c.b[k − 1]← c.b[k];
c.b[B]← 0;

else
delete c from active cell list;

4

B. Performance analysis
In this section, we provide basic performance analysis on

the proposed G-SLC method. First we give two propositions
showing the computational complexity of the method.

Proposition 3. The time complexity of processing a newly
arrived record is O(1).

Proposition 4. The time complexity of Algorithm 2 is O(N),
where N is the number of active cells.

Propositions 3 and 4 show that the computational com-
plexity of G-SLC is much smaller than the classical single-
linkage clustering method whose complexity is O(n2). The
space complexity of G-SLC is also much smaller than O(n2),
since only the active cells are kept in the memory. The space
requirement for active cell list and neighbor list is O(N).
Hence we have the following proposition:

Proposition 5. The space complexity of G-SLC is O(N),
where N is the number of active cells.

To analyze the clustering performance, we use the classical
SLC as the baseline. We first show that G-SLC will not miss
clusters compared with SLC with the following proposition:

Proposition 6. Let si and sj be two records in the same time
window. If si and sj belong to the same cluster in SLC, then
they belong to the same cluster in G-SLC.

Proposition 6 implies that G-SLC will not generate more
clusters than SLC for the same set of records. However,
G-SLC may be more likely to include noise records into the
existing clusters than SLC, due to cell-level aggregation. It is
complicated to measure accurately the probability that a noise
record is assigned into an existing cluster in G-SLC, however,
we try to give a non-trivial upper bound on that probability,
which is shown in the following proposition:

Proposition 7. Let C be a cluster in G-SLC which contains
N ≥ 2 active cells. Suppose a noise record s has equal
probability to be assigned to any cell, that is 1

G , where G
is the total number of cells in the grid. The probability that s
joins C is at most 5N+4

G .

Let us take an example based on the studied AMI in this
paper which covers a city with roughly about 450km2 in size.
Suppose we choose εd = 200m, then the total number of cells
for covering 450km2 is around 11,000. From our study of the
power outages, usually the size of an affected area is less than
1km2 covering around 25 cells. According to proposition 7,
the probability that a noise record belongs to the cluster of
that power outage is less than 0.012.

IV. EXPERIMENTAL EVALUATION

In this section we evaluate the performance of G-SLC.
We begin by briefly introducing our real-world data-set. Next,
we show the computational performance and clustering per-
formance in Section IV-B and connect the results to our
analytical results in Section III-B. Section IV-C discusses the
performance of G-SLC in detecting critical events.

A. Data-Set Description

The evaluation utilizes a data-set from an Advanced Me-
tering Infrastructure (AMI) of an European city with roughly
600,000 inhabitants and about 450 km2 in size. The AMI
contains around 300,000 smart meters. In this paper, we focus
on power outages and our data-set includes all power failure
messages received in the year 2012. A record contains a meter
ID, GPS coordinates of the meter, and a timestamp indicating
when the power failure was detected by the meter.

In addition, we utilize power outage reports from customers
to the call center of the electricity company. The location and
the affected meters are known for each such reference power
outage. We use these to calibrate the parameters of our G-SLC
method and to evaluate its detection performance.

B. Performance Evaluation

We implemented G-SLC in JDK 1.7 on an Intel Xeon
E5645 2.4GHz machine with 48GB memory. The operating
system is Ubuntu 12.04 with Linux kernel version 3.2.0-53.
We also implemented the SLC method whose performance
acts as the baseline in the evaluation. Table I shows the values
of all the parameters of G-SLC used in the current evaluation.
Space requirement The performance of G-SLC heavily
depends on the number of active cells in the sliding-window.
Therefore, we use G-SLC to process the whole data-set to
compare the number of active cells with the number of records
in each time window. To show that, we measure the ratio
between the number of records and the active cells in the
same window. We call it aggregation ratio. Figure 2 shows
the box plot of aggregation ratios for different cell sizes. We
can see that the aggregation ratio increases when the cell size
is enlarged. For some windows, the aggregation ratio are above
100, some of them are even more than 200 when εd is greater
than 400m. This means that the space requirement of G-SLC
can be less than the one of SLC by 2 orders of magnitude
when used in the real setting.
Computation time To study the computational time, we use
SLC and G-SLC to process the whole data-set, respectively;
the computation times are shown in Figure 3. We can see that
G-SLC is approximately 2500 times faster than SLC. Since
the time complexity of SLC is O(n2) and the time complexity
of G-SLC is O(N) (where n is the number of records and
N is the number of active cells), if n is greater than N by 2
orders of magnitude, then the computational time of SLC can
be greater than G-SLC by 4 orders of magnitude.
Clustering performance To evaluate the clustering perfor-
mance of G-SLC, we use SLC as baseline. For each time
window, we measure the cluster approximation ratio which is
defined as the ratio between the number of clusters generated
by G-SLC with that generated by SLC. For different values
of εd, we make SLC and G-SLC process the whole data-set
and measure the average cluster approximation-ratio over all
time windows. Figure 4 shows the results. From the figure we
can see that the average ratio is very close to 1, meaning that
most of the time the clustering results of G-SLC and SLC
are very similar.

5

Parameter Notation Value
window
size

ω 5
minutes

window
advance

ωa 1 minute

cell size εd 200m,
400m,
800m,
1600m

TABLE I: Parameter settings of
G-SLC used in the evaluation.

200m 400m 800m 1600m

Cell size, which is ǫd

10
0

10
1

10
2

10
3

A
g
g
re

g
a
ti

o
n

ra
ti

o
(l

o
g

sc
a
le

)

Fig. 2: Box plot of aggregation ratios for different
cell sizes. The length of the whiskers is 1.5 IQR.

50500

51000

51500

52000

52500

53000

53500

54000

T
im

e
in

s
e
c
o
n

d

SLC

200m 400m 800m 1600m
ǫd

1.6

1.7

1.8

1.9

2.0

2.1

T
im

e
in

s
e
c
o
n

d

G-SLC

Fig. 3: Computational time of SLC and G-SLC
for processing the whole data-set.

C. Detection Evaluation

Detection ratio We design G-SLC to help detecting critical
events from the raw message stream. To evaluate its detection
accuracy, we compare the detected power outages with the
reference power outages given by the information from the
call center. Note, that the reference events only contain parts
of the power outages in 2012: Not all power outages resulted
in customers calling to notify the electricity provider. For
example, short outages at night can go unnoticed. Thus, we
cannot utilize it to measure the false positive/negative of
G-SLC. Instead, we use the detection ratio to measure the
proportion of reference events that are detected by G-SLC
when processing the records in the data-set. Here we say a
reference event is successfully detected by G-SLC if: (1) the
difference between the time of the reference event and its time
detected by G-SLC is not greater than ω time units; (2) the
location of the reference event is covered by the cells of the
most significant cluster in G-SLC. We define the significance
of a cluster as:

significance(Clusteri) =
of records in Clusteri

of records in the window

To facilitate detecting critical events, the clustering method
only reports the clusters with significance greater than θs
(which is called the significance threshold) Figure 5 shows
the detection ratio of G-SLC with different settings of the
significance threshold and the cell size.

We can see that the detection ratio decreases when θs
increases. This is because higher significance thresholds make
the detection method more sensitive to the noise records
(e.g., some meters have some transit power failures which
accidentally happen in the same time window of a critical
power outage). If the scale of the power outage is small (e.g.
less than 50), then a small number of noise records (e.g. 5)
can make the significance of the largest cluster less than θs
(e.g 0.9), which causes the event to be undetected.

Another observation is that increasing cell size leads to
better detection ratio. Since larger cells may aggregate more
records, the largest cluster may contain more records and have
higher significance. However, as we will see shortly, increasing
cell size harms the detection precision.
Detection precision The locations of the detected events by
G-SLC are represented by the cells of the corresponding
clusters. Thus, the cell sizes influence the precision of local-
izing the critical events. To this end, we define the detection

precision of a critical event as the ratio between the affected
diameter and the cell size, where the affected diameter is the
maximum distance between any pair of the records belonging
to the event. The higher the value of the detection precision
is, the better the critical event can be localized. To evaluate
the detection precision of G-SLC, we compute the detection
precision values of all the reference power outages over
different cell sizes. The results are shown in Figure 6.

From Figure 6, we can see that there are events having high
detection precision (i.e. greater than 1) for all the settings of
the cell size. These events are the power outages that affect
large residential areas. However, on average the detection
precision decreases when the cell size becomes larger. In
particular, we can see that the median value of the detection
precision is around 0.1 when the cell size is 1600m. This
implies that the affected area can be 100 times smaller than
a cell. Thus, in such situations, the location of the critical
events given by G-SLC may be very coarse, whereas smaller
cell sizes can offer fine-grained localization performance. We
can see that when the cell sizes are smaller than 400m, the
median value of the detection precision is above 1.

V. RELATED WORK

We first focus on the related work of processing data of
CPSs. Welbourne et al. propose Cascadia [17] which provides
a system for processing RFID readings and detecting user-
defined (using a declarative query language) events. Gyllstrom
et al. propose SASE [7] which is also a system for processing
real-time streams of RFID data. It focuses on a complex event
language and new query processing methods to implement the
language. However, how to conduct temporal-spatial clustering
using the queries implemented in Cascadia and SASE is not
addressed. Tang et al. propose a clustering method for process-
ing Cyber-Physical data. Their method is similar to the single-
linkage clustering. However, unlike our paper which provides
a time-space efficient method for processing a real-time data
stream, the authors in [14] mainly focused on processing
data in a database and the computational complexity of their
method is O(n2). We refer the reader to a survey [9] for
further work on processing data in CPSs.

Regarding the algorithmic aspect, our work is related to
the field of clustering data streams. There are many algo-
rithms for clustering data streams based-on k-means, such
as BIRCH [18], CluStream [3] and StreamKM++ [2]. How-
ever, k-means clustering can not identify clusters with ar-

6

200m 400m 800m 1600m

Cell size, which is ǫd

0.0

0.2

0.4

0.6

0.8

1.0
C

lu
st

e
r

a
p

p
ro

x
im

a
ti

o
n

ra
ti

o

Fig. 4: Average cluster approximation ratio
of G-SLC with different cell sizes. The error
bars represent the 10th and 90th percentiles.

0.3 0.5 0.7 0.9

Significance threshold θs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
e
te

ct
io

n
ra

ti
o

ǫd = 200m

ǫd = 400m

ǫd = 800m

ǫd = 1600m

Fig. 5: Detection ratio of G-SLC with dif-
ferent settings of cell size and significance
threshold. Increasing θs influences the detec-
tion ratio, especially for small scale of outages.

200m 400m 800m 1600m

Cell size, which is ǫd

10
−4

10
−3

10
−2

10
−1

10
0

10
1

P
re

ci
si

o
n

(l
o
g

sc
a
le

)

Fig. 6: Box plot of detection precision of all
the detected reference events by G-SLC with
different settings of the cell size. The length of
the whiskers is 1.5 IQR.

bitrary shapes, so it is not suitable for the problem setting
of this paper. Due to the limitation of k-means clustering,
researchers proposed efficient density-based clustering algo-
rithms to processing data streams and identify clusters of
arbitrary shapes [16], [4], [1]. However, all of these works
use a damped window model which decays the weights of
records over time rather than deleting old records. The damped
window model is not quite suitable for capturing the temporal
features of the temporal-spatial related set. Furthermore, to use
density-based clustering methods, such as DBSCAN [6], one
needs to define the density threshold in order to filter out noisy
data points. However, the deployment density of sensors in a
CPS can vary significantly, which makes it difficult to choose
such a density threshold. We refer the reader to a survey [13]
for further work on data stream clustering.

There are quite few works dealing with grouping objects
from a stream of trajectories, such as [15], [19], [11], where the
input of the problem is a series of snapshots of moving objects.
In these works, tailored clustering methods are used to find
companions in each snapshot. However, the clustering methods
are not suitable for sliding window and the computational
complexity of them are not linear as in this paper.

VI. CONCLUSIONS

In this paper, we model the online temporal-spatial data
analysis for event detection as the problem of single-linkage
clustering on a data stream over a sliding-window. Based on
the model, we show the inherent computational complexity of
the problem of identifying critical events. To meet demands
for time-space efficient processing, we propose G-SLC, a
grid-based single-linkage clustering algorithm over a sliding
window, which is suitable for quick processing data streams.
We analyze the performance of G-SLC through a series of
propositions and evaluate it using a data-set of messages from
a large-scale deployed CPS. Our results show that G-SLC can
conduct the temporal-spatial processing on the data-set 2500
times faster than the classical clustering method and with lower
space complexity. Furthermore, G-SLC can help identifying
critical events in the data-set with high accuracy.

ACKNOWLEDGMENT

This work has been partially supported by the European Commission
Seventh Framework Programme (FP7/2007-2013) through the SysSec Project,

under grant agreement 257007, through the FP7-SEC-285477-CRISALIS,
through the collaboration framework of Chalmers Energy Area of Advance,
and with support from the Swedish Energy Agency under the program Energy,
IT and Design.

REFERENCES

[1] E. Achtert, C. Bohm, H.-P. Kriegel, and P. Kroger. Online hierarchical
clustering in a data warehouse environment. In Data Mining, Fifth IEEE
International Conference on, pages 10–17, Nov 2005.

[2] Marcel R. Ackermann, Marcus Märtens, and Christoph Raupach et
al. Streamkm++: A clustering algorithm for data streams. J. Exp.
Algorithmics, 17:2.4:2.1–2.4:2.30, May 2012.

[3] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. A
framework for clustering evolving data streams. In VLDB’03 Volume
29, pages 81–92, 2003.

[4] Yixin Chen and Li Tu. Density-based clustering for real-time stream
data. In Proceedings of KDD’07, pages 133–142, 2007.

[5] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Hierarchical clustering. Introduction to Information Retrieval, Chapter
16, 2008.

[6] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Kdd, volume 96, pages 226–231, 1996.

[7] Daniel Gyllstrom, Eugene Wu, and Hee-Jin Chae et al. Sase: Complex
event processing over streams (demo). In CIDR, pages 407–411, 2007.

[8] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review.
ACM Comput. Surv., 31(3):264–323, September 1999.

[9] Fangfang Li, Jia Xu, and Ge Yu. A survey on event processing for cps.
In Ruchuan Wang and Fu Xiao, editors, Advances in Wireless Sensor
Networks, volume 334 of Communications in Computer and Information
Science, pages 157–166. 2013.

[10] Dana Avram Lupsa. Unsupervised single link hierarchical clustering.
Studia Univ. Babes-Bolyai, Informatica, 50(2):11–22, 2005.

[11] Mirco Nanni and Dino Pedreschi. Time-focused clustering of trajec-
tories of moving objects. Journal of Intelligent Information Systems,
27(3):267–289, 2006.

[12] Robin Sibson. Slink: an optimally efficient algorithm for the single-link
cluster method. The Computer Journal, 16(1):30–34, 1973.

[13] Jonathan A. Silva and Elaine R. et al Faria. Data stream clustering: A
survey. ACM Comput. Surv., 46(1):13:1–13:31, July 2013.

[14] Lu-An Tang, Xiao Yu, and Sangkyum Kim et al. Multidimensional
analysis of atypical events in cyber-physical data. In Proceedings of
ICDE ’12, pages 1025–1036, 2012.

[15] Lu-An Tang, Yu Zheng, and Jing Yuan et al. On discovery of traveling
companions from streaming trajectories. In ICDE, pages 186–197, 2012.

[16] Li Wan, Wee Keong Ng, Xuan Hong Dang, Philip S. Yu, and Kuan
Zhang. Density-based clustering of data streams at multiple resolutions.
ACM Trans. Knowl. Discov. Data, 3(3):14:1–14:28, July 2009.

[17] Evan Welbourne, Nodira Khoussainova, and Julie Letchner et al. Cas-
cadia: A system for specifying, detecting, and managing rfid events. In
Proceedings of MobiSys ’08, pages 281–294, 2008.

[18] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: An efficient
data clustering method for very large databases. In Proceedings of
SIGMOD ’96, pages 103–114, 1996.

[19] Kai Zheng and Yu Zheng et al. On discovery of gathering patterns from
trajectories. In ICDE, pages 242–253, 2013.

