
ALOJA: a Systematic Study of Hadoop Deployment
Variables to Enable Automated Characterization of

Cost-Effectiveness

Nicolas Poggi, David Carrera, Aaron Call,
Sergio Mendoza, Yolanda Becerra, Jordi Torres,

Eduard Ayguadé, Fabrizio Gagliardi and Jesús Labarta
Barcelona Supercomputing Center (BSC)

Universitat Poliècnica de Catlalunya (BarcelonaTech)
Barcelona, Spain

Rob Reinauer, Nikola Vujic1,
Daron Green and José Blakeley

Microsoft Corporation, Microsoft Research (MSR)
Redmond, USA

Microsoft Development Center Serbia (MDCS)1

Belgrade, Serbia

Abstract—This article presents the ALOJA project,
an initiative to produce mechanisms for an automated
characterization of cost-effectiveness of Hadoop deployments
and reports its initial results. ALOJA is the latest phase of a
long-term collaborative engagement between BSC and Microsoft
which, over the past 6 years has explored a range of different
aspects of computing systems, software technologies and
performance profiling. While during the last 5 years, Hadoop
has become the de-facto platform for Big Data deployments, still
little is understood of how the different layers of the software
and hardware deployment options affects its performance. Early
ALOJA results show that Hadoop’s runtime performance, and
therefore its price, are critically affected by relatively simple
software and hardware configuration choices e.g., number of
mappers, compression, or volume configuration. Project ALOJA
presents a vendor-neutral repository featuring over 5000 Hadoop
runs, a test bed, and tools to evaluate the cost-effectiveness of
different hardware, parameter tuning, and Cloud services for
Hadoop. As few organizations have the time or performance
profiling expertise, we expect our growing repository will benefit
Hadoop customers to meet their Big Data application needs.
ALOJA seeks to provide both knowledge and an online service to
with which users make better informed configuration choices for
their Hadoop compute infrastructure whether this be on-premise
or cloud-based.

The initial version of ALOJA’s Web application and sources are
available at http://hadoop.bsc.es

I. INTRODUCTION

During the last years, Hadoop has established itself as
the de facto framework for Big Data processing deployments
and continues to grow with over a 58% compound annual
growth rate [11]. However, despite this rapid growth, the
Hadoop architecture implements an extremely complex dis-
tributed execution environment. Different HW components
impact per node performance in a variety of ways which also
differ in their impact by workload type. Numerous software
parameters exposed by both Hadoop and the Java runtime
can have pronounced impacts and the different deployment
patterns of on premise servers vs cloud based deployments
add yet another layer of complexity. Therefore Hadoop often
requires manual, iterative and time consuming benchmarking
and fine tuning over a myriad of possible configuration and

Fig. 1. A cloud of points for Cost vs. Performance vs. Cloud or On-premise

deployment options. To illustrate this complexity Figure 1
presents the search space for evaluating the cost-effectiveness
of a particular setup.

This article presents the ALOJA project, its goals, platform,
tools and initial results while performing a systematic study
of Hadoop deployment variables by benchmarking and tuning
Hadoop in different architectures. ALOJA is an initiative of
the Barcelona Supercomputing Center (BSC) in which both
Microsoft Product groups and Microsoft Research (MSR) are
participating to explore upcoming hardware architectures and
building automated mechanism for deploying cost-effective
Hadoop clusters. ALOJA’s initial approach is to create the most
comprehensive (to date) open public Hadoop benchmarking
repository. Comparing not only software configuration param-
eters, but also current, to new available hardware including
SSDs, InfiniBand networks, and Cloud services. The ALOJA
project also determines the cost of each possible setup along
with the run time performance with a view to ultimately
offering an automated configuration recommendation for a
given workload. In this way, serving not only as a reference
guide for designing new Hadoop clusters. Exploring param-
eter relationship, but to ultimately take informed decisions



for reducing the TCO and improving new and existing data
processing infrastructures.

A. Motivation

Most of the industry’s efforts during past years have
focused initially into building scalable data processing frame-
works i.e., Hadoop and its derived services. Later, the efforts
have focused in the adoption of Hadoop by companies, and
the development of Map/Reduce applications. Lately, as more
Hadoop clusters are deployed and running, tuning their per-
formance and managing data is gaining importance in focus.
Some studies show that Hadoop’s execution performance can
be improved at least by 3x from the default configuration for
most deployments [7–9]. The large number of configuration
options and parallel data processing in Hadoop, creates a
complex runtime and a challenge to characterize the resource
consumption, performance, and costs.

Moreover, as it happened over the last decade with open-
source relational databases i.e., MySQL, the Hadoop ecosys-
tem is quite large and spread. It is currently dominated by
several vendors that offer their custom distributions of Hadoop,
who usually offer custom patches and configuration changes to
the default Apache Hadoop open-source distribution. Vendor
changes and optimizations rarely get pushed to the main
distribution, which by default runs at sub-optimal condition [7–
9]. There is also evidence that Hadoop performs poorly with
newer and scale-up hardware [1]. Scaling out in number of
servers can usually improve performance, but at increased cost,
power and space usage [1]. These situations and available
services make a case to reconsider scale-up hardware and
new Cloud services from both a research and an industry
perspective.

II. THE ALOJA PROJECT

Project ALOJA borns as an attempt to provide solutions
to an every time more important problem for the Hadoop
community, which is the lack of understanding of what param-
eters, either software or hardware, determine the performance
of Hadoop workloads, therefore its costs. Additionally, as
Hadoop deployments become more common, they can be
found in a diversity of operational environments, comprising
from low-end commodity clusters, to high-end data appliances
and including all types of Cloud-based solutions at scale. This
fact results in a growing need for the community to understand
how different operational parameters, such as the VM size used
in Cloud deployments, affect the cost-effectiveness of Hadoop
workloads.

The project is structured in different phases: an initial
phase, almost complete by the time of writing this paper, aims
to create a benchmarking platform for continuous execution
of Hadoop workloads across different software, hardware
and operational variables: the ALOJA platform. Besides the
benchmarking components, an online Web application (see
Section III-B2) is envisioned as the entry point for data
scientists to explore the results collected from the executions,
providing insights on the obtained results through continuously
evolving data views. The following phase of the project is the
development of performance models that derive from the col-
lected data, both following supervised learning strategies and

formal analytical performance modeling. Finally, the project
aims to leverage the developed models and the benchmarking
information to provide automatic means to characterize the
cost-effectiveness of a Hadoop workload across several config-
uration options. This information should guide users to device
what deployment options are the most adequate to maximize
the cost-effectiveness of their workloads.

Project ALOJA is an initiative of the Barcelona Supercom-
puting Center (BSC), a center of excellence with over 6 years
of Hadoop research experience [3]. The project is supported,
in part, by Microsoft Corporation and includes technical con-
tribution from product teams, financial support and awards
for resources as part of the Azure4Research programme. In
addition, this project serves as a base for experimentation in
several research lines for research within BSC, as well as to
other research and industry groups that might leverage the
repository and tools.

A. Methodology and Road-Map

The effort for ALOJA has been partitioned into 3 distinct
phases of execution:

1) Phase 1: In the initial phase of the project —which
has been underway for approximately 8 months—, we are
executing a systematic study of performance results across a
range of hardware components, software parameters values and
solution deployment patterns.

Hardware components under examination include:

• Number and type of Storage volumes: 7200 RPM hard
drives; enterprise SSDs; Cloud based storage volumes,
including both Remote volumes (over the network),
and locally attached for temporary and intermediate
data.

• Types of network connections: 1Gb, 4Gb (via bond-
ing), 10Gb Ethernet, 40Gb IP over InfiniBand (IPoIB).

• On-premise vs. Cloud servers: Physical vs. virtual
nodes, virtualization overhead, and multi-tenancy per-
formance.

Main initial Hadoop parameters under examination include:

• Ideal number of mappers and reducers per Job type
according to the underlying hardware.

• Data compression, both to speed-up execution time
and to reduce workload size.

• I/O buffer sizes, block sizes, and data replication
factor.

Some of the different deployment patterns include:

• On-premise scale-up physical servers including: multi-
cores/sockets, SSDs, InfiniBand, and large RAM
memory.

• On-premise commodity hardware including: low core
density, limited RAM, SATA array of disks.

• Varied number of Virtual Machines (VMs) in Cloud
(Microsoft Azure initially)



• Varied type of VMs available in Microsoft Azure e.g.,
small A2, medium A7, large A9 VMs.

The resulting performance execution metrics from the on-
going first phase are already accessible at the online applica-
tion [2]. Hadoop logs, job/task history counters, and abstracted
metrics can be accessed from it as described in Section III-B2.
In the next phase, the online application will allow requesting
executions, and uploading executions to it.

2) Phase 2: During the second phase of project ALOJA,
analytical models of Hadoop executions will be introduced.
The accumulated performance data in the ALOJA online
repository is a corpus of results; modeling then allows
price/performance predictions to be made given an input set of
workload execution characteristics, hardware components and
a solution deployment pattern. These models will allow pre-
dictions of likely performance and efficiency outcomes given
a set of workload execution characteristics, a set of specified
hardware components and a solution deployment pattern by
abstracting and characterizing Map/Reduce behavior.

During the second phase, we plan to expand the capabilities
of the online application described later in Section III-B2.
Part of the extension will include benchmarks from different
clusters both for on-premise as well as from different Cloud
providers, to continue enriching the online repository. In order
to compare benchmark executions from different deployments
and environments, a new set of abstracted metrics will be
provided during this phase of ALOJA. To reduce the number
of executions to run, sampling will be improved by doing an
statistical analysis of parameters. Also a new set of fabric
configuration and hardware parameters will be evaluated to
expand the study of cost-effectiveness:

• Different Hadoop versions e.g, 1.0, 1.3, 2.0, 2.1 ver-
sions and vendor distributions.

• Different versions of the Java Virtual Machine (JVM)
and its settings.

• Different operating system options, including Win-
dows versions and Linux distributions e.g., general
purpose vs. vendor optimized.

• Operating system configurations including JBOD vs.
mirroring or striped volumes, buffer caching, paging,
and file system types.

• Hadoop executions under the Windows operating sys-
tem both on-premise and in the cloud as IaaS and PaaS
(HDInsight).

• Add different type of benchmarks i.e., SWIM, TPC-
H, TPC-DS, or custom Hadoop jobs to the automated
execution platform.

In addition to the new set of fabric parameters, we plan to
add visualization tools have a detailed and deep understanding
during the execution of benchmarks. For instance, manually
looking data we found one case where map tasks related to
a concrete job started reading about 255 MB, and suddenly
it dropped to 100 MB for half of the job’s tasks. Therefore,
one of the new improvements expected in this phase will be
the addition of new visualization tools in the ALOJA Web
application. In order to rapidly —and visually— find such

variations to filter them out, or examine them in more detail
to find the underlying cause of the problem.

Also during this phase, we plan to offer an answer the
question of: what is the the best software and hardware config-
uration for my Hadoop jobs? Having into account not only job
characteristics, but also the budget or hardware limitations of
the user. To answer this question, we will develop automated
mechanisms into ALOJA to determine the cost-effectiveness
of each configuration and be able to filter it by the different
supported hardware configurations.

3) Phase 3: On the third planned phase of ALOJA, the
intention is to build automation around the analytical cost
vs. performance models generated in the previous phase so
that when provided with a set of workload characteristics, the
tools from ALOJA can calculate a prioritized list of hardware,
software and deployments pattern options which will be most
cost effective for that workload. It will also provide means
to predict possible Cloud deployment configurations that will
guarantee cost-effective scalability of the deployment. The
following section describes the components of the platform,
most of which can be used online.

III. THE ALOJA PLATFORM

The ALOJA platform is composed of a set of open-
source benchmarking and configuration management tools,
high-level system performance metric collection, and Web-
based data analytics tools. As an example, Figure 2 presents
the main screen of the online application. Where the list of
over 5000 benchmarks under different hardware and Hadoop
configuration parameters have been executed. From the main
page interface, the user can filter, select, and compare different
Hadoop executions according to their running time, execution
cost, and contrast system resource allocations. The following
subsections describe the implemented components and partial
roadmap. Their source-code and initial documentation can be
found in [2].

A. Benchmarking Components

1) Configuration Management: The configuration manage-
ment scripts are in charge of setting up first the servers, either
on-premise, in the Cloud IaaS, or Cloud PaaS. Second, the
OS, system metrics gathering tools, and JVM configuration.
Third, the Hadoop installation and configuration files according
to the parameter selector component described in the next
sub-section. Followed by the selected benchmark/s (see Sub-
section III-A3). Then, executing the benchmark. And finally,
saving execution logs and performance metrics, cleaning up,
and destroying the deployment if required. Optimizations can
be applied to reduce the execution time of setting up clusters
for situations where more than one test is going to be executed
in the same hardware. The same applies for different job types
under the same configuration.

2) Parameter Selection and Queuing: The parameter selec-
tor creates a list of individual tests to run from the defined clus-
ter and capabilities configurations in ALOJA. Each containing
the Hadoop job to execute, the Hadoop configuration, and the
system settings. Including hardware capabilities of the clusters
e.g., to use InfiniBand or Gigabit Ethernet. As well as software
options, including JVM version and settings, and Hadoop



Fig. 2. ALOJA main page: benchmarks execution list by configuration. http://hadoop.bsc.es/

configurations e.g., the number of mappers and reducers to
use, or the HDFS block size. For the defined clusters in
the configuration of ALOJA, the parameter selector iterates
through all the possible configuration options. Optionally,
sampling can be selected to reduce the number of tests to
execute. Sampling will be expanded in the second phase of
the project.

ALOJA features queuing services to schedule, prioritize
and execute defined jobs. After jobs are created, they are
submitted to the corresponding execution queues that control
the priorities and execution order. In the second phase of
ALOJA we plan to allow users of the application to request
executions in the available clusters using their selection of
Hadoop configuration options.

3) Benchmarking: Due to the large number of configura-
tion options that have an effect on Hadoop’s performance, it
is necessary to characterize Hadoop using extensive bench-
marking. Hadoop’s distribution includes jobs that can be used
to benchmark it’s performance, usually referred as micro
benchmarks, however these type of benchmarks usually have
limitation on their representativeness and variety. ALOJA
currently features the HiBench open-source benchmark from
Intel [10], which can be more realistic and comprehensive than
the supplied example jobs in Hadoop. HiBench features several
ready to use benchmarks from 4 categories: micro bench-
marks, Web search, Machine Learning, HDFS benchmarks.
The following list briefly describes the benchmarks currently
implemented, for a complete description please refer to [10].

• Terasort, sorts 1TB of data generated by the TeraGen
program distributed with Hadoop. Terasort is widely

used as reference in research papers as well as in Big
Data competitions. Terasort is I/O and CPU intensive.

• Wordcount, counts number of word occurrences in a
large text files. It is distributed with Hadoop and used
in many Map/Reduce learning books. It is CPU bound.

• Sort, uses the Map/Reduce framework to sort the input
directory into the output directory, being predomi-
nately I/O intensive.

• Pagerank, an implementation of Google’s Web page
ranking algorithm. It crawls Wikipedia sample pages.

• Bayes, Bayesian Machine Learning classification us-
ing the Mahout library. The input of this benchmark
is extracted from a subset of the Wikipedia dump.

• K-means, Mahout’s implementation of the k-means
algorithm for knowledge discovery and data mining.

• DFSIOE or EnhancedDFSIO, an I/O intensive bench-
mark to measure throughput in HDFS using map re-
duce. It features separate read and a write benchmarks.

A characterization of the performance details for the bench-
marks can be obtained in the Performance Charts section of
ALOJA’s online application [2]. During the second phase of
ALOJA, new benchmarks will be added (See Section II-A2).

4) Captured metrics: Benchmark execution captures sys-
tem and per process performance using a combination of
unix system tools i.e., the sysstat package, iostat, and bwm-
ng. Featuring: CPU (aggregated and per core), RAM memory
state detail usage, system paging, networking, and I/O metrics.



Support for Microsoft performance metrics and tools in will
be added in future releases. ALOJA also includes a Hadoop
job history log parser, to obtain Job counters and also to be
able to match Job and tasks execution states to the system
performance. All of the collected performance metrics and
Hadoop logs and counters can be downloaded from the online
application [2].

B. Data Analysis and Flow

After the execution of a benchmark in ALOJA, the resulting
data is compressed into a folder to be sent to the file repository.
In the master server, the data is uncompressed and performance
metrics are extracted from their respective formats, Hadoop
history logs and configurations are parsed and the data is
imported into a relational database.

1) Database: On import, each benchmark is first assigned
a unique identifier, the metrics are time stamped and dumped
into a relational database (DB). The DB structure correlates
and matches data coming from different source to be able to
relate e.g., the moment a particular running task was running
in a server host, to the IO wait time of the CPU, or the
effect of shuffling in Hadoop to the network. At the time
of writing the DB engine in use is MySQL, but as the data
grows there are plans to move it to a Hadoop based query
engine for scalability. The DB enables simple SQL querying
to the execution sources, and it is leveraged in the online data
analysis application described next.

2) Online Analytics and Sharing Tool: ALOJA features an
online Web application (ALOJA-WEB) publicly accessible [2]
and serves several purposes. First, it is used as the main plat-
form for diffusion of the data generated by the project, contain-
ing an indexed, searchable, repository of Hadoop benchmarks
executions. The main screen can be seen in Figure 2.

Second, it is the main means of sharing data and findings
with other researchers involved in the project. The source
files can be downloaded directly for the offline analysis with
other tools. For example, ALOJA-WEB also features export
functionality to Paraver trace format, part of the low-level
performance instrumentation employed in BSC for High Per-
formance Computing (HPC), detailed in Section III-C0a.

Third, ALOJA-WEB allows browsing performance metrics
of different executions and a comparison between different
runs. Including both system performance metrics and Hadoop
execution details for the different hosts, aggregations, and
visualizations. This feature allows a rapid comparison and
sharing of findings just by sharing the resulting URLs after
using any of the filters.

Fourth, ALOJA-WEB features a Configuration Speedup
evaluation section, where the user in a single view can filter the
over 5000 execution variations to quickly obtain insights from
the aggregated metrics (see Sections IV-A, , and IV-B1 for
examples). Also, the Cost Evaluation section presents a way to
quickly gain an insight on the cost-effectiveness for each of the
different hardware deployments and software configurations.
Examples of its outputs are described in Section IV-C.

C. Deep instrumentation

ALOJA Online provides a simple mechanism for direct
comparison of results from different Hadoop runs, however,

JobTracker*

NameNode*

Map*Task*

Reduce*Task*

DataNode*

Map*Task*

TaskTracker*

SNameNode*

Fig. 3. Packet level communication trace between Hadoop Daemons and
Tasks. X-axis represents time. Y-axis are the captured daemons. Vertical lines
represent communications between pairs of daemons and/or tasks.

in some cases it will be necessary to conduct more detailed
forensics on the runtime performance. To do this, different
software tools developed by BSC will be used to create
more fine-grained Hadoop performance traces that will be
afterwards analyzed to extract knowledge about the root causes
of performance degradation.

a) Paraver: Trace analysis and visualization: Par-
aver [4] is a flexible performance visualization and analysis
tool based on an easy-to-use Motif GUI. Paraver was de-
veloped to respond to the need to have a qualitative global
perception of the application behavior by visual inspection and
then to be able to focus on the detailed quantitative analysis of
the problems. Paraver provides a large amount of information
useful to improve the decisions on whether and where to
invest programming effort to optimize an application. While
the tool has been widely used in the past for the performance
analysis of HPC applications, it has also been leveraged for
Web Application analysis and now for Hadoop workloads. All
data logs available through the Web application are already
downloadable in Paraver trace format and can be analyzed and
visualized in detail using its analysis tools.

b) Hadoop Analysis Toolkit: Hadoop deep analysis will
leverage different previously developed [5] components. Java
instrumentation Suite (JIS), a tracing environment oriented to
the study of Java applications is being extended to collect
information about Hadoop execution in detail, as shown in
Figure 3. Four levels are considered by JIS when tracing
a system: operating system, JVM, middleware (HDFS and
MapReduce) and application. Information collected by all
levels is finally correlated and merged to produce an execution
trace file. The level of detail of the information produced
by each JIS level can be dynamically configured. To enable
JIS hooks in the code of Hadoop runtimes, a dynamic code
interposition tool is under development, leveraging Aspect
Oriented Programming concepts to avoid the need of code
recompilation.

c) Advanced Analysis tools: In previous work [6], it
was proven the suitability of DBSCAN [12] based on per-
formance counters to characterize the internal structure of
message-passing applications. The clustering technique is able
to correctly detect different algorithm phases as well as regions
of different subroutines with similar behavior. ALOJA plans
to take such work and migrate it to the Hadoop ecosystem,



Fig. 4. Speedup of different number of maximum maps for different
benchmarks

Fig. 5. Speedup of different compression options for different bench-
marks

to allow for automatic analysis of performance traces. The
analysis tools will be hooked to the portal backend so that deep
data processing can be integrated into the search capabilities
of the web application for better understanding of the collected
performance data.

D. Initial Testing Infrastructure

The ALOJA project aims to create a vendor-neutral work-
bench, and for this reason the execution environment of
the tests is not a closed specification. The ALOJA platform
is designed to support multiple execution environments and
configuration. However, the initial development and testing
conducted with the platform, used the following hardware
configuration.

1) High-End Cluster: The on-premise cluster is composed
of machines enabled with two 6-core sandy-bridge Intel pro-
cessors and 64GB of RAM. The I/O subsystem is composed
of 6 SATA2 SSD drives configured as a RAID-0 volume.
The measured performance of the SSD array is 1.6GB/s
for read operations, and almost 1GB/s for write operations.
The nodes are also equipped with a boot drive and a 3TB
SATA HDD. The network interfaces configured for each node
include four GbE ports, configured either as single ports or
as Link Aggregation group through the use of LACP. Each
node is also enabled with two FDR InfiniBand ports, each
of them providing a peak bandwidth of 56Gpbs. The nodes
are interconnected through FDR InfiniBand switching fabric
as well as non-blocking GbE fabric.

2) Cloud IaaS: The IaaS tests were conducted on Microsoft
Azure A7 instances, each of them containing 8 cores and
56 GB or RAM. Each Azure instance can mount up to 16
remotes volumes, each of them limited to a maximum of 500
IOPS. For the initial experiments, different configurations of
remote volumes and local storage were explored. In some cases
intermediate data were stored on the local disks while input
and output data were stored in remote volumes. In other cases
all data, including intermediate results, were stored in remote
volumes.

IV. EARLY FINDINGS

This section presents the impact of different Hadoop con-
figuration parameters, as well as hardware configurations to
both performance and costs. The following experiments can
be obtained in ALOJA’s online application [2].

Figures 4, 6, and 7 present the speedup of different software
and hardware parameters from the benchmark repositories. The
speedup is defined as the he relative performance improvement,
in this case, to the average execution time for the selected
benchmark. Where the average execution time is at 1 on the
X axis. Any value below 1 represents a speed-down and a value
above 1 represents a speed-up over the average. The figures
are presented next.

A. Impact of Software Configurations

Figure 4 shows the speedup according to the maximum
number of maps configured in Hadoop for pagerank, sort,
terasort, and wordcount benchmarks in the Azure cluster.
While the A7 virtual machines used in Microsoft Azure have 8
CPU cores available, and the maximum number of mappers are
directly related to the available cores, it can be seen that for the
different benchmarks, there is differentiated best performing
setting. While pagerank, sort, and wordcount achieve best
performance with 8 mappers (1 mapper per core), terasort
achieves a 1.7x speedup when set to 6 mappers, mainly due to
increased CPU I/O wait time caused by the concurrency while
reading data. It can also be seen that a setting of 4 and 10
mappers yield sub-optimal performance. The default Hadoop
configuration sets only 2 mappers.

Figure 5 shows the compression speed-up by selecting
different compression schemes for sort, terasort, and word-
count. The first group of bars shows the effect of having no
compression. It can be seen that for the sort benchmark using
no compression speeds-down the execution, while the rest
benchmarks are not affected in comparison to their averages.
The ZLIB algorithm speeds up both sort and wordcount, but
not terasort. BZIP2, a high compression algorithm, but at the
expense of more CPU time, speeds up both sort and terasort
but not wordcount. BZIP2 results in Figure 5 in this example



Fig. 6. Speedup of using SSDs and InfiniBand for different benchmarks

are very similar to the snappy compression algorithm that
features fast compression but a low compression ratio. For this
experiment, the recommendation for sort and terasort will be
to use BZIP2 compression, as it features better compression
ratio, making data smaller, while achieving comparable or
faster speedups to snappy.

B. Impact of Hardware Configurations

The effect of different hardware configuration options can
also be studied directly in ALOJA-WEB. Figure 6 presents the
speedup of using SSDs and InfiniBand networks over rotational
disks (SATA) and Gigabit Ethernet network from our on-
premise cluster (see Section III-D). Results are presented for
4 benchmarks: dfsioe read, dfsioe write, terasort, and word-
count. The first group of bars HDD-ETH represent the baseline
comparison. The second group SSD-ETH represent the im-
provement of using SSDs. It can be seen that both terasort and
dfsioe read improve their performance by at least 2x. While
wordcount and dfsioe write have a minimal speedup. The next
group of bars HDD-IB present the improvement of InfiniBand
alone. It can be seen that the improvement is minimal in
comparison with the baseline. The last group of bars SDD-IB
presents the added improvements of both SSDs and InfiniBand
networks. It can be seen that the dfsioe benchmarks improve
their performance up to 3x using InfiniBand networks. While
for terasort and wordcount the improvement is negligible.
Wordcount has a minimal improvement by using SSDs, since
wordcount is CPU bound rather that I/O intensive. These
early findings show that in order to benefit from InfiniBand
networks on the default Hadoop distribution, it requires a faster
I/O subsystem i.e., SSD drives. By using SSDs only, some
benchmarks can speed up their execution up to 2x, while if
combined with InfiniBand networks up to 3.5x.

1) Remote volumes in the Cloud: In cloud environments,
large price-competitive storage for Big Data usually comes in
the form of remote volumes —network attached storage—, as
VMs might be migrated to different hardware and contents
on local disk lost. Figure 7 compares the speedup obtained
by using different disk configurations in Azure. The fist bar,

Fig. 7. Speedup of different Cloud deployment options for disks

Local refers to the baseline measurement by having Hadoop
configured to use only local disk, both for the HDFS data and
temp directory. This configuration is the baseline, as would
rarely represent a real deployment, as data on the local disk
would be lost if migrating VMs. Local disks are also faster
than remotes, as we found that on A7 VMs the underlying
physical host is using SSD disks, at the expense of less storage
space —600GB for Local. The next 3 bars represent the speed-
down when setting up Hadoop to use remote storage to 1, 2,
and 3 remote volumes respectively. The last 3 bars represent a
configuration of 1, 2, and 3 remote volumes for HDFS, while
Hadoop’s temp folder is configured to use the local drive.
It can be seen that while using only 1 remote the speedup
is just below the baseline comparison of just local disk, it
performs almost 2x compared to setting the temp dir to the
remote. The next bar —2 remotes, temp local—, achieves the
best performance, and improves the baseline comparison. The
last bar shows the effect of adding a third remote, and that it
does speedup the execution; however, it adds extra capacity to
HDFS at the expense of some cost. The next section presents
a cost-performance comparison that also reports results for
distinct remote volumes configuration.

C. Performance vs. Cost Analysis

This subsection presents a performance vs. cost analysis
feature of the ALOJA online application [2]. It is used to
evaluate the impact in both running costs and total execution
time under different hardware and software configurations.
Figures 8 and 9 presents the normalized (standardized score)
cost vs. performance evaluation of terasort vs. wordcount
benchmarks respectively. Results for other benchmarks can be
obtained online. Both figures are divided into 4 quadrants to
represent the execution cost vs. performance result; point (0,0)
represents the best cost-effective execution. The quadrants
being: Fast-Economical, Fast-Expensive, Slow-Expensive, and
Slow-Economical.

Each point in Figures 8 and 9 represents a different
benchmark execution with a different hardware and software
configuration. It can be seen from both figures, that results tend
to cluster naturally according to their hardware characteristics.



Fig. 8. Cost vs. Performance for Terasort for different SW and HW Fig. 9. Cost vs. Performance for Wordcount for different SW and HW

In total we have 7 different hardware configurations. The 4
for our on-premise cluster of 2 distinct disks and network
configurations, can also be seen in Figure 6 from the previous
sub-section. As well as 3 for the Azure IaaS cluster, by using
different types of disk, representing up to 4 distinct disk
configurations. Each cluster is grouped for identification using
an oval and a number matching hardware configurations listed
below:

1) On-premise cluster: SSD disks + Gigabit Ethernet
network.

2) Azure IaaS: Using only the local disk, virtualized
SSD and Gigabit network Used ad baseline compari-
son, as it will rarely be a used on a real deployment.

3) On-premise cluster: SSD disks + InfiniBand over IP
network.

4) Azure IaaS: 1-3 remote volumes (Blob storage) and
Hadoop temp dir to local disk virtualized SSD and
Gigabit network.

5) On-premise cluster:1 SATA disk + Gigabit Ethernet.
6) Azure IaaS: 1-3 remote volumes (Blob storage).
7) On-premise cluster:1 SATA disk + InfiniBand over IP

network.

The costs for each hardware configuration can be found
under the Cost Performance evaluation section of ALOJA’s
online application [2]. Where prices can also be edited and
the chart recalculated to evalute different pricing.

From each cluster in Figures 8 and 9, it can be noted
that the different software configurations also vary the cost vs.
performance result, as they influence in the total running time.
There are several insights that can be obtained by evaluating
both figures. It can be seen that the clusters for each benchmark
are in different positions of each quadrant. Recall that the
charts are normalized to the standard score between 0 and
1 so that the results can be comparable. This means that for
different benchmarks, hardware and software configurations
have a different impact in their total execution time, and finally

in their running costs. The best cost vs. performance in both
figures are for cluster 1. The distance between the rest of the
clusters and their positions express their difference in cost
vs. performance. In both figures cluster 1 and 3 are in the
same X position, this means that they had a similar execution
time. However, since cluster 3 uses an InfiniBand network
which is more expensive and in both cases does not improves
performance, it is placed higher in the Y axis (costs).

Both the on-premise and the Microsoft Azure cluster have
similar underlying hardware in order to compare between the
two. However, there is a difference in number of cores —12 to
8 respectively—, and since wordcount is CPU intensive, this
difference in number of cores yields to better results in the
on-premise cluster. For terasort, which is more I/O intensive
Azure configuration score better. While cluster 2, that uses only
the local disks and does not represent a realistic deployment,
we can see that cluster 4 is very close behind for terasort.
For wordcount, we can see that both clusters 2 (baseline) and
4 achieves same performance, but cluster 4 executions are
marginally more expensive according to the number of external
drives employed.

Another insight from Figures 8 and 9 is the cost vs. per-
formance improvement of tuning Hadoop software parameters.
For each of the clusters, the lowest point to the left was the
best configuration for that cluster. Since the faster a bench-
mark executes, its running costs are reduced proportionally
to execution time. A remarkable feature that is shown in both
clusters 5 and 7 —that features SATA drives— on both figures,
is that software parameters can reduce the execution time by
half to the worst case scenario. This means that for SATA
drives, the evaluated software parameters have higher impact
in performance that on SSDs, seen on clusters 1 and 3.

This section has presented the current value of the
ALOJA project and online application for evaluating the cost-
effectiveness of different hardware and software configurations
for Hadoop.



V. CONCLUSIONS

This article presented the ALOJA project, a joint research
effort with the goal of providing automated optimization for
the performance of Hadoop infrastructure deployments. With
an undergoing initial focus to carry out a systematic study
of Hadoop execution performance across a broad range of
different hardware and software configurations. Deployed to
both on-premise physical servers as well as cloud based
infrastructures including both IaaS and PaaS. The performance
results from these tests, as well as the testing methodology
and test infrastructure is made available to the public through
an online Web application [2] featuring more than 5000 runs
already.

The early findings of the project show significant value in
understanding Hadoop’s runtime and the cost-effectiveness of
different configuration and deployment options. With the avail-
able online performance evaluations, ALOJA can currently
derive the expected speed up of hardware configurations i.e.,
SSD disks and InfiniBand networks. As an example, we have
shown that for InfiniBand networks to be cost-effective, they
need to be combined with SSDs or other fast disk options, if
not the improvement they provide is negligible. The scalability
and cost vs. performance evaluation of remote volumes in the
cloud was also evaluated and found that 2 remote volumes
with the temporary data on local disk is the most cost-effective
configuration. Also, best Hadoop configuration options such
as the number of mappers to run in parallel according to the
available CPU cores and job types, or the best cost effective
compression factor to use according to the different workloads
was presented. ALOJA already shows value to the Hadoop
community by producing more knowledge and understanding
of the underlying Hadoop runtime while it is executing.
Our intent is that researchers and organizations evaluating or
deploying the Hadoop solution stack will benefit from this
growing database of performance results and configuration
guidance.

ACKNOWLEDGEMENTS

This work is partially supported by the Ministry of Science
and Technology of Spain under contracts TIN2012-34557 and
2014SGR1051.

REFERENCES

[1] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson,
and A. Rowstron. Scale-up vs scale-out for hadoop:
Time to rethink? In Proceedings of the 4th Annual
Symposium on Cloud Computing, SOCC ’13, pages 20:1–
20:13, 2013.

[2] BSC. Aloja home page: http://aloja.bsc.es/, 2014.
[3] BSC. Autonomic systems and big data research group

page: http://www.bsc.es/computer-sciences/autonomic-
systems-and-e-business-platforms, 2014.

[4] BSC. Performance tools research group page:
http://www.bsc.es/computer-sciences/performance-tools,
2014.

[5] D. Carrera, D. Garcia, J. Torres, E. Ayguade, and
J. Labarta. Was control center: an autonomic
performance-triggered tracing environment for web-
sphere. In Parallel, Distributed and Network-Based

Processing, 2005. PDP 2005. 13th Euromicro Conference
on, pages 26–32, Feb 2005.

[6] J. Gonzalez, J. Gimenez, and J. Labarta. Automatic
detection of parallel applications computation phases.
In Parallel Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pages 1–11, May
2009.

[7] D. Heger. Hadoop Performance Tuning
https://hadoop-toolkit.googlecode.com/files/White paper-
HadoopPerformanceTuning.pdf. Impetus, 2009.

[8] D. Heger. Hadoop Performance Tuning - A Pragmatic &
Iterative Approach. DH Technologies, 2013.

[9] G. L. N. B. L. D. F. B. C. S. B. Herodotos Herodotou,
Harold Lim. Starfish: A self-tuning system for big data
analytics. In In CIDR, pages 261–272, 2011.

[10] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang.
The HiBench benchmark suite: Characterization of the
MapReduce-based data analysis. Data Engineering Work-
shops, 22nd International Conference on, 0:41–51, 2010.

[11] L. Person. Global Hadoop Market. Allied Market
Research, March, 2014.

[12] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-
based clustering in spatial databases: The algorithm gdb-
scan and its applications. Data Min. Knowl. Discov.,
2(2):169–194, June 1998.


