
ar
X

iv
:1

20
9.

61
52

v2
 [

cs
.IT

]
15

 M
ar

 2
01

3
1

Parity Declustering for Fault-Tolerant Storage
Systems viat-designs

Son Hoang Dau, Yan Jia, Chao Jin, Weiya Xi, Kheong Sann Chan

Abstract—Parity declustering allows faster reconstruc-
tion of a disk array when some disk fails. Moreover, it guar-
antees uniform reconstruction workload on all surviving
disks. It has been shown that parity declustering for one-
failure tolerant array codes can be obtained via Balanced
Incomplete Block Designs. We extend this technique for
array codes that can tolerate an arbitrary number of disk
failures via t-designs.

I. I NTRODUCTION

RAID (Redundant Array of Independent Disks) has
been widely used as a large-scaled and reliable storage
system since its introduction in 1988 [10]. However, the
key limitation of the first 6 levels of RAID (RAID-0 to
RAID-5) is that system recovery can be possible with
at most one disk failure. RAID-6 has been proposed as
a new RAID standard, which requires that any one or
two disk failures can be fixed. Several types of codes
that can correct two erasures have been proposed, such
as Reed-Solomon (RS) code [20], EVEN-ODD code [3],
B-code [25], X-code [26], and RDP code [9]. Codes that
allow the recovery from more than two failures have also
been investigated [11], [12], [14]. The main limitation of
RS codes is the high encoding and decoding complexity,
which involves computation over finite fields. The other
types of codes, called array codes, are preferred by stor-
age system designers due to the fact that their encoding
and decoding requires only XOR operations.

The majority of known array codes are MDS (Maxi-
mum Distance Separable) codes (see [17]). MDS array
codes have optimal redundancy (δ redundant disks are
used in aδ-failure tolerant array code). The main issue
with them is that whenδ disks fail, all data in every
surviving disk has to be read for reconstruction. This
results in slow reconstruction time when disk capacities
get larger and increases the possibility of another failure,

S. H. Dau is with the SUTD-MIT International Design Cen-
tre, Singapore University of Technology and Design (e-mail: son-
hoang dau@sutd.edu.sg). This work was done when he was with the
Division of Mathematical Sciences, School of Physical and Mathemat-
ical Sciences, Nanyang Technological University.

Y. Jia, C. Jin, W. Xi, and K. S. Chan are with the Data Stor-
age Institute (DSI), Agency For Science, Technology And Research
(A*STAR), North Connexis Tower, Fusionopolis, Singpore 138632
(e-mails: {jia yan, jin chao, xi weiya, chankheong sann}@dsi.a-
star.edu.sg).

which renders the reconstruction impossible. Moreover,
as all disks must be fully accessed for the recovery
purpose, the system operates in its degraded mode:
responses to user requests take longer time than usual.

Parity declustering (or clustered RAID) was proposed
by Muntz and Lui [18] as a data layout technique that
allows faster reconstruction and uniform reconstruction
workloads on surviving devices during reconstruction
of one disk failure. Here, the reconstruction workload
refers to the amount of data that needs to be accessed
on the surviving disks in order to reconstruct the data
on the failed disk. Faster reconstruction stems from the
feature of the declustered-parity data layout that requires
only a partial access instead of a full access to each
surviving disk. In other words, the special layout allows
reconstruction of data on a failed diskwithoutreading all
data in every surviving disk. Muntz and Lui suggested
that designing such a layout is a combinatorial block
design problem, but gave no further details. Holland
and Gibson [13], Ng and Mattson [19] investigated
the construction of parity-declustered data layouts from
Balanced Incomplete Block Designs (BIBD). The work
of Reddy and Banerjee [21] also followed the same
approach, even though they focused more on a special
type of BIBDs.

For codes that can tolerateδ ≥ 2 disk failures, it is
also desirable to have a declustered-parity data layout.
More specifically, we want to design a layout such that
when at mostδ disks fail, only a portion of the disk
content on each healthy disk needs to be accessed for the
recovery process. Moreover, the reconstruction workload
is distributed uniformly to all surviving disks. There
has been several work where parity declustering forδ-
failure tolerant codes (δ ≥ 2) are considered, such as [1]
and [2]. However, none of them guarantee the uniform
workloads during the reconstruction of more than one
disk. Corbett [8] proposed that two array codes of the
same size can be combined into a larger array that has
almost uniform reconstruction workloads when one or
two disks fail. However, Corbett’s method only achieves
uniform workloads among thedata disks, not over all
surviving disks (data disks and parity disks). Moreover,
his construction produces an array code of a prohibitively

http://arxiv.org/abs/1209.6152v2

2

large size, which is at least
(

n
n/2

)

× (n+ 4), wheren is
the number of data disks in the final array code.

We investigate the construction of declustered-parity
layouts for codes that toleratet − 1 disk failures via
t-designs (t ≥ 2). In fact, BIBDs, which are used to
decluster parities for one-failure tolerant codes, are2-
designs. The main idea is to start with an array code of
k columns that has uniform workloads for reconstruction
of everys ≤ t− 1 columns. Then, thek columns of this
code are spread out overn > k disks, using blocks of
a t-(n, k, λ) design (see Section II for all definitions).
As a result, we obtain an array code withn disks that
possesses the following properties. Firstly, in order to
recover anys ≤ t − 1 disks, only a portion of the disk
content, which is a designed parameter, must be read
for disk recovery. Secondly, the reconstruction workload
is uniformly distributed to every surviving disk. And
lastly, the parity units are distributed evenly over all
disks, which eliminates hot spots during data update. To
the best of our knowledge, this is the first work that
extends the well-known parity declustering technique
(originally proposed for one-failure tolerant codes) for
δ-failure tolerant codes, for anyδ ≥ 1.

The paper is organized as follows. Necessary defini-
tions and notations are provided in Section II. In this
section, we also review the parity declustering technique
for one-failure tolerant codes based on BIBDs. We extend
this technique for two-failure tolerant codes via3-designs
in Section III. In Section IV, we discuss the generaliza-
tion of this idea for codes that can tolerateδ ≥ 2 disk
failures. The paper is concluded in Section V.

II. PRELIMINARIES

Disk arrays spread data across several disks and access
them in parallel to increase data transfer rates and I/O
rates. Disk arrays are, however, highly vulnerable to disk
failures. An array withn disks isn times more likely to
fail than a single disk [10]. Adding redundancy to a disk
array is a natural solution to this problem.Units of data
on k disks are grouped together intoparity groups(or
parity stripes). Each parity group consists ofk − 1 data
units and one parity unit. The parity unit is calculated
by taking the XOR-sum of the data units in the same
group. The parity unit must be updated whenever a data
unit in its group is modified. Therefore, the parity units
should be distributed across the array rather than all being
located on a small subset of disks. Otherwise we would
have the situation where some disks are always busy
updating the parity units while the others are totally idle.
Ideally, we want to have the same number of parity units
on every disk. This requirement guarantees that the parity
update workload is uniformly distributed among all disks.
Additionally, it is required that no two units from the

same parity group are located on the same disk, so that
the disk array can always be recovered from one disk
failure.

D0 D0 D0 D0

Disk 0 Disk 1 Disk 2 Disk 3

D1 D1 D1 P1

D2 D2 P2 D2

D3 P3 D3 D3

Disk 4

P0

D1

D2

D3

P4 D4 D4 D4 D4

Fig. 1: An array code with no parity declustering

Let us consider the following example. Suppose there
are five disks in the disk array. Each disk is divided into
several units. They are either data units (D) or parity
units (P). Each parity group consists of four data units
and one parity unit (those that have the same index). The
parity unit is equal to the XOR-sum of the data units in
the same parity group. The array in Fig. 1 represents
the basicdata/parity layout in this disk array. The basic
layout is then repeated many times until every unit in
each disk is covered. This data/parity layout is called an
array codefor the disk array. Columni of the array code
corresponds to Diski in the disk array that employs the
array code. A data/parity entry in Columni represents
a data/parity unit in Diski. Without loss of generality,
we assume that the disk array consists of only one copy
of the data/parity layout from the array code. In other
words, we assume that the data/parity layout of the disk
array looks completely the same as the data/parity layout
of the array code. Then, throughout this work, we often
use disks and columns, units and entries, interchangeably.

The array code presented in Fig. 1 can recoverone
missing column. Hence, the disk array that employs this
array code can tolerateonedisk failure. The reconstruc-
tion process of the lost column (disk) requires access to
all entries (units) in every surviving column (disk).

The parity declustering technique for one-failure toler-
ant array codes based on BIBDs was originally suggested
by Muntz and Lui [18] and investigated in details by Hol-
land and Gibson [13], Ng and Mattson [19], and Reddy
and Banerjee [21]. Before describing this technique, we
need the definitions oft-designs and BIBDs.

Definition II.1. A t-(n, k, λ) design, a t-design in short,
is a pair(X ,B) whereX is a set ofn pointsandB is a
collection of k-subsets ofX (blocks) with the property

3

that everyt-subset ofX is contained in exactlyλ blocks.
A 2-(n, k, λ) design is also called abalanced incomplete
block design(BIBD).

D0 D0 D0 P0

Disk 0 Disk 1 Disk 2 Disk 3

D1 D1 D1 D2

D2 D2 D3 D3

D3 D4 D4 D4

Disk 4

P1

P2

P3

P4

Fig. 2: An array code with parity declustering

Given a 2-(n, k, λ) design, we associate disks with
points and parity groups with blocks. As an illustra-
tive example, consider a2-(5, 4, 3) design withX =
{0, 1, 2, 3, 4} andB consisting of five blocks:{0, 1, 2, 3},
{0, 1, 2, 4}, {0, 1, 3, 4}, {0, 2, 3, 4}, {1, 2, 3, 4}. Each
block corresponds to one parity group. For instance, the
block {1, 2, 3, 4} corresponds to a parity group with the
(three) data units being located in Disks 1, 2, 3 and the
parity unit located in Disk 4. The data layout of the array
code is presented in Fig. 2. Furthermore, we can balance
the number of parity units in every column by rotating
the array in this figure cyclically five times (see [13]).

Since every two elements in the set{0, 1, 2, 3, 4}
appears in preciselyλ = 3 different blocks, every two
disks share three pairs of units, where units in each
pair belong to the same parity group. Therefore, when
one disk fails, precisely three units in each surviving
disk need to be read for the recovery of units on the
failed disk. Thus, instead of reading100% units in each
surviving disk (as for the array code in Fig. 1), the
reconstruction process now reads75% units in each disk.
In other words, by increasing the overhead for the storage
of parity (from a 1/5 fraction of the space to a1/4
fraction), we can reduce the percentage of data that
needs to be read in each surviving disk for recovery.
However, we lose the MDS property of the code while
spreading out the workload over more disks. Now it
requires1.25 disks worth of parity (see Section III-C for
a formal definition) instead of just one parity disk as in
the previous example. Therefore, the parity declustering
technique can be considered as a way to sacrifice the
efficiency for faster reconstruction time.

The connection between the reconstruction of one-disk
failure and a2-design is elaborated further as follows.
If a parity groupG contains a unit from a disk then
that disk is said to becrossedby G. The reconstruction

of one unit requires access to all other units in the
same parity group. Therefore, in order to have uniform
workloads during the reconstruction for one disk failure,
every two disks must share the same number of pairs
of units that are from the same parity groups. In other
words, every two disks must be simultaneously crossed
by the same number of parity groups. If disks and parity
groups are associated to points and blocks, respectively,
then the aforementioned property of the data layout
becomes the familiar requirement for a2-design: every
two points must be simultaneously contained in the
same number of blocks. Thus, the parity declustering
technique for one-failure tolerant array codes can be
summarized as follows:

Algorithm 1 ([18], [13], [19], [21])

• Input: n is the number of physical disks in the array
andk is the parity group size.

• Step 1: Choose a parity groupG with k − 1 data
units and one parity unit.

• Step 2:Choose a2-(n, k, λ) designD = (X ,B) for
someλ.

• Step 3:For each blockBi = {bi,0, . . . , bi,k−1} ∈ B,
0 ≤ i < |B|, create a parity groupGi as follows.
Firstly, Gi must have the same data-parity pattern
asG. In other words,Gi hask − 1 data units and
one parity unit, and the parity unit is equal to the
XOR-sum of the data units. Secondly, thek − 1
data units ofGi are located on disks with labels
bi,0, . . . , bi,k−2. The parity unit ofGi is located on
disk with labelbi,k−1.

• Output: The n-disk array with |B| parity groups
and their layouts according to Step 3.

After employing Algorithm 1, as shown in [13], the
number of parity units in every column can be made
balanced by rotating the resulting array cyclicallyn
times.

In the next sections, we generalize this procedure to
construct declustered-parity layouts for array codes that
tolerate more than one disk failure.

III. PARITY DECLUSTERING FORTWO-FAILURE

TOLERANT CODES VIA 3-DESIGNS

To extend the parity declustering technique for two-
failure tolerant codes, we use balanced2-parity groups
instead of parity groups.

A. δ-Parity Groups

Definition III.1. A δ-parity group is an MDSδ-failure
tolerant array code. More formally, aδ-parity group is
anm× k array that satisfies the following conditions:

4

(C1) it contains(k − δ)m data entries andδm parity
entries;

(C2) entries in at mostδ columns can always be recon-
structed from the entries in other columns.

Moreover, if aδ-parity group also satisfies the two other
conditions

(C3) for the reconstruction of entries in at mostδ
columns, the number of entries in every other col-
umn that contribute to the calculation must always
be the same;

(C4) the number of parity entries in every column must
be the same,

then it is said to bebalanced. If a δ-parity group does
not satisfy either (C3) or (C4) then it is said to be
unbalanced. We refer tok as thesizeandm as thedepth,
respectively, of theδ-parity group.

Note that the condition (C3) depends on the par-
ticular reconstruction algorithm used for theδ-parity
group. Therefore, aδ-parity group can be balanced
or unbalanced when different reconstruction algorithms
are employed. In fact, all MDS two-failure tolerant
array codes, such as Reed-Solomon (RS) codes [20],
EVENODD [3], RDP [9], B-code [25], P-codes [15], X-
codes [26], are2-parity groups. However, they are not
yet balanced in their original form. Thevertical codes
(B-, P-, X-codes), which containboth data and parity
units in each column, equipped with their conventional
reconstruction algorithms for one failure, satisfy (C4)
but not (C3). Thehorizontal codes (RS, EVENODD,
RDP), which containeither dataor parity units in each
column, in their original form satisfy neither (C3) nor
(C4). The following example shows how to modify the
existing MDS horizontal codes to obtain balanced2-
parity groups.

Example III.2. We first consider RDP codes. Letp be
a prime. RDP code for a(p + 1)-disk array is defined
as a (p − 1) × (p + 1) array [9] (see Fig 3). Its first
p−1 columns (disks) store data entries (units) and its last
two columns (disks) store parity entries (units). The first
parity column (P -column) stores the row-parity entries;
each of such entries is equal to the XOR-sum of the data
entries on the same row. The second parity column (Q-
column) stores the diagonal-parity entries; each of such
entries is equal to the XOR-sum of the data and row-
parity entries along some diagonal of the array. Note that
one diagonal is not used (called themissingdiagonal in
[9]).

Below we show that the RDP array is not a balanced
2-parity group. The reconstruction rule for RDP ([9]) is
as follows. Suppose one column is lost. If it is a data
column (D), then each of its entries can be recovered

D0,0

D1,0

D2,0

D3,0

D0,1

D1,1

D2,1

D3,1

D0,2

D1,2

D2,2

D3,2

D0,3

D1,3

D2,3

D3,3

P0,4

P1,4

P2,4

P3,4

Q0,5

Q1,5

Q2,5

Q3,5

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

Data Columns Parity Columns

Col. 0 Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

Fig. 3: RDP array withp = 5 (reproduced from [24])

by taking the XOR-sum of the data entries in other
data columns (D) and the row parity entry on theP -
column that belong to the same row. In this way, the
Q-column plays no role in the reconstruction of one lost
data column. If theP -column or theQ-column is lost,
then its entries can be reconstructed by recalculating the
parities according to the encoding rule of RDP. Note
that the reconstruction of theP -column doesnot require
access to theQ-column, and vice versa. Hence, the RDP
array and its conventional reconstruction rule does not
qualify as a balanced2-parity group.

However, we can transform an RDP array into a
balanced2-parity group as follows. Let us first label the
data columns by ’D’ and the parity columns by ’P ’ and
’Q’, respectively. As an example, the RDP array (p = 5)
in its simplified layout is depicted in Fig. 4.

D D D D P Q

Col. 0 Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

Fig. 4: An RDP array withp = 5 (simplified layout)

We consider all possible ways to arrange theP -column
and theQ-column among allk columns (k = p + 1).
There arek(k − 1) such arrangements. Ifk = 6 then
there are30 = 6 × 5 possible such arrangements. For
each of such arrangements ofP - and Q-columns, we
obtain a new array,Ai, 0 ≤ i < k(k− 1). We juxtapose
all these arrays vertically to obtain a new arrayG, which
containsk(k−1) times more rows than the original RDP
array (see Fig. 5 for the case whenk = 6).

Our goal now is to show that the arrayG constructed
above, together with RDP’s reconstruction rule ([9]),
in general, is a balanced2-parity group. The arrayG
obviously satisfies (C1), (C2), and (C4). We only need
to verify Condition (C3) forG. To recover two missing

5

D D D D P Q

Col. 0 Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

DDDDPQ

DDDDQP

DDDPDQ

DDDQDP

DDPDDQ

DDQDDP

PQDDDD

QPDDDD

D D D D Q P

D D D DP Q

D D D D PQ

D D DDP Q

D D DD PQ

D DD DP Q

D DD DPQ

Fig. 5: The simplified layout of a balanced2-parity group
G obtained from an RDP array (p = 5)

columns in an RDP array, every other column has to
be read in full. Hence, the reconstruction workload
for two missing column is already uniform across the
columns ofG. To recover one missing column in an
RDP array, each of other columns either has to be read
in full or is not accessed at all. Therefore, it suffices
to regard each (RDP) columnD, P , or Q as a single
entry, or more precisely, acolumn-entry, in G, and use
the reconstruction rule for RDP as shown in Fig. 6.
Those column-entries ofG correspond tocolumn-units
on physical disks where each column-unit is a column
of data/parity units.

We refer to eachAi (1 ≤ i ≤ k(k−1)) as anextended-
row of G. ThenG hask(k− 1) extended-rows and each
extended row containsk column-entries. For instance, in
Fig. 5, G has30 extended-rows and each extended-row
contains6 column-entries.

For two distinct columnsi and j of G, we define the
following quantities:

• rDQ: the number of extended-rows that has aD at
Column i and has aQ at Columnj;

• rPQ: the number of extended-rows that has aP at
Column i and has aQ at Columnj;

• rQP : the number of extended-rows that has aQ at
Column i and has aP at Columnj.

Lost To be accessed Not to be accessed
D D, P Q
P D Q
Q D P

Fig. 6: Reconstruction rule for an RDP array

According to the reconstruction rule of RDP arrays
(Fig. 6), these extended-rows (that definerDQ, rPQ, and
rQP as above) arepreciselythe extended-rows ofG on
which the recovery of the column-entry in theith column
does not require access to the column-entry in thejth

column. Therefore, the number of column-entries to be
read in columnj during the reconstruction of columni
is precisely

k(k − 1)− rDQ − rPQ − rQP .

Hence, ifrDQ, rPQ, andrQP are all constants for every
pair (i, j) then the reconstruction workload is uniformly
distributed to all surviving columns. As the extended-
rows of G correspond to all possible arrangements of
P -, Q-, andD-columns in an RDP array of sizek, we
have

rDQ = k − 2, rPQ = 1, rQP = 1,

for every pair of columnsi and j of G. Therefore,G
satisfies (C3).

The same modification also turns an EVENODD array
code or an RS code into a balanced2-parity group. In
fact, this method works for every horizontal array code,
as long as they have separate parity columns (P - and
Q-columns) and have reconstruction rules that can be
clearly stated in tables similar to the one in Fig. 6.

Note that a simple cyclic rotation doesnot turn a
horizontal array code into a balanced2-parity group.
For instance, consider an array obtained by juxtaposing
vertically all cyclic rotations of an RDP array with
p = 5 as in Fig 7. Suppose the first column is lost. For
reconstruction, according to the rule illustrated in Fig. 6,
one needs to accessfive column-entries on the second
column and onlyfour column-entries on the last column.
Hence, the reconstruction workload is not distributed
uniformly among the surviving columns.

D D D D P Q

Col. 0 Col. 1 Col. 2 Col. 3 Col. 4 Col. 5

DDDDPQ

QDDDDP

PQDDDD

DPQDDD

DDPQDD

DDDPQD

DD D DQ P

D DD DP Q

D D D D

D D D D

D D D D

P Q

P Q

P Q

Fig. 7: Rotated RDP array does not form a balanced2-
parity group (p = 5)

Definition III.3. The balanced2-parity group obtained
from an RDP array code as in Example III.2 is called an
(balanced)RDP2-parity group. An EVENODD2-parity
group and anRS2-parity groupare defined in the same
way.

6

Lemma III.4. Suppose G is a balanced
RDP/EVENODD/RS2-parity group of sizek. Then
to reconstruct a missing column ofG, one needs to read
a portion k−2

k−1 of the total content of each other column.
In fact, this also holds for every horizontal code that
has the same reconstruction rule as the RDP code.

Proof: Appendix A.

B. Design of Declustered-Parity Layouts via3-Designs

Recall that the sizek of a 2-parity groupG is its
number of columns. Each column ofG corresponds to
a column-unit in a physical disk, which is a column of
data/parity units.

G

k columns ofG

data
data
parity

data

Fig. 8: Simplified layout of a2-parity group

The following algorithm extends Algorithm 1 to con-
struct declustered-parity layout for two-failure tolerant
codes. Compared to Algorithm 1, in the resulting array
that Algorithm 2 produces, the number of parity units in
every column is already balanced (see Theorem III.6).

Algorithm 2

• Input: n is the number of physical disks in the array
andk is the parity group size.

• Step 1:Choose a balanced2-parity groupG of size
k (G hask columns).

• Step 2:Choose a3-(n, k, λ) designD = (X ,B) for
someλ.

• Step 3: For each blockBi = {bi,0, . . . , bi,k−1} ∈
B, 0 ≤ i < |B|, create a balanced2-parity group
Gi as follows. Firstly,Gi must have the same data-
parity pattern and the same reconstruction rule asG.
Secondly, thek columns ofGi are located on disks
with labelsbi,0, . . . , bi,k−1.

• Output: The n-disk array with |B| parity groups
and their layouts according to Step 3.

Note that even thoughGi, 0 ≤ i < |B|, all have the
same data-parity pattern ofG, on the physical disks, they
store independent sets of data/parity units. The steps in
Algorithm 2 are illustrated in the following example.

Example III.5. SupposeG is a balanced2-parity group
of size four. For instance,G can be obtained from a
2 × 4 RDP array (p = 3) using the method described
in Example III.2. Then the simplified layout ofG is as
follows (Fig. 9). Each column ofG actually corresponds
to a column of24 = 2 × (4 × 3) parity/data units on a
physical disk.

G

Fig. 9: A balanced2-parity group of size four

Suppose we haven = 8 physical disks. Consider the
following 3-(8, 4, 1) designD = (X ,B) where

X = {0, 1, 2, 3, 4, 5, 6, 7},

and

B =
{

{0, 1, 2, 3}, {0, 1, 4, 5}, {0, 1, 6, 7}, {0, 2, 4, 6},

{0, 2, 5, 7}, {0, 3, 4, 7}, {0, 3, 5, 6}, {4, 5, 6, 7},

{2, 3, 6, 7}, {2, 3, 4, 5}, {1, 3, 5, 7}, {1, 3, 4, 6},

{1, 2, 5, 6}, {1, 2, 4, 7}
}

.

The resulting array codeC is depicted in Fig. 10. There
are14 2-parity groups inC, namelyGi, 0 ≤ i < 14. The
2-parity groupGi has its columns, labeled byi, spread
across the disks indexed by elements from the blockBi ∈
B, 0 ≤ i < 14. For example, asB13 = {1, 2, 4, 7}, the
columns ofG13, labeled by13, are located on Disk1,
Disk 2, Disk 4, and Disk7. As eachGi is a24×4 array,
C is actually a168× 8 array (168 = 7× 24).

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

0 0 0 0 1 1 2 2

1 1 3 5 3

6

3 4

2 2 4 6 5

7

6 5

3 8 8 7

9

7 7

4

10

9 9 9

10

8 8

5

11

12 10 11

12

11 10

6

12

13 11 13 12 13

4

13

Fig. 10: The resulting array codeC

7

Theorem III.6. Algorithm 2 produces an array code that
satisfies the following properties

(P1) it can tolerate at most two simultaneous disk fail-
ures;

(P2) when one or two disks fail, the reconstruction work-
load is evenly distributed to all surviving disks;

(P3) every column ofC has the same number of parity
units and data units.

Proof: Appendix B.

We now give a high level explanation of how3-designs
and balanced2-parity groups work well together to pro-
duce declustered-parity layouts for two-failure tolerant
codes.

First, let us examine again the application of2-designs
to one-failure tolerant codes. When one disk fails, it is
required that all other disks contribute the same amount
of data accesses during the reconstruction process. In
other words, we are examiningpairs of disks(one failed,
one survived) and want to make sure that all of these
pairs have the same number of related data/parity units
(Fig. 11). (Related units are units that belong to the same
parity group). On the other hand, in a2-design, a similar-
looking condition is applied topairs of points: every pair
of points must belong to the same number of blocks. That
is how the connection between one-failure tolerant codes
and2-designs could be established.

Lost DiskSurviving Disk

Number of related units between
2 disks must be a constant

Fig. 11: Requirement for any pair of disks

The problem of designing declustered-parity layouts
for two-failure tolerant codes also has a similar re-
quirement. It is required that when one or two disks
fail, all surviving disks contribute the same number of
data accesses during the reconstruction process. Suppose
two disks fail. We are in fact examininggroups of
three disks(two failed, one survived) and want to make
sure that all of these groups have the same number of
“related“ data/parity units (Fig. 12). (We use a different
meaning here for “related units”. See Appendix B for
more details.) If we consider a3-design, the key property
is that everygroup of three pointsmust be contained

Lost DiskSurviving Disk

Number of related units between
3 disks must be a constant

Lost Disk

Fig. 12: Requirement for any group of three disks

in the same number of blocks. At first sight, it is not
clear how to translate this condition on points/blocks
back to the aforementioned condition on disks/groups.
However, one can do so with the help from some results
in Design Theory. More details can be found in the
proof of Theorem III.6 in the Appendix B. Note also
that as a3-design is also a2-design (see Corollary B.3),
uniform workload for reconstruction of one failed disk
is automatically guaranteed.

The balance of the2-parity group used in Algorithm 2
is another key condition to guarantee the balanced re-
construction workload. In the following example, it is
demonstrated that Algorithm 2 applied to an unbalanced
2-parity group doesnot produce a code with this prop-
erty.

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6Disk 7

D0 D0 P0 Q0 P1 Q1 P2 Q2

D1 D1 D3 D5 P3

P6

Q3 Q4

D2 D2 D4 D6 P5

D7

Q6 Q5

D3 D8 D8 D7

Q9

P7 Q7

D4

D10

D9 D9 P9

P10

P8 Q8

D5

D11

D12 D10 P11

P12

Q11 Q10

D6

D12

D13 D11 P13 Q12 Q13

P4

D13

Fig. 13: Unbalanced input leads to unbalanced output

Example III.7. Suppose the3-designD in Example III.5
and G, an RDP2 × 4 array, are used in Algorithm 2.
Note thatG is an unbalanced2-parity group with the
reconstruction rule given in Fig. 6. The layout of the
resulting code is depicted in Fig. 13.

8

Suppose Disk0 and Disk1 fail. Let us examine the
number of column-units on Disk4 and 6, respectively,
that need to be accessed for reconstruction of Disk0
and Disk1. According to the reconstruction rule of each
group (Fig. 6),five column-units on Disk4 must be
accessed, whereas onlyonecolumn-unit on Disk6 must
be accessed (see Fig. 14). Therefore, the workload for
reconstruction of the first two disks is not uniformly
distributed to the surviving disks.

Disk 0 Disk 1 Disk 4 Disk 6
GroupG0 D D X X
GroupG1 D D P X
GroupG2 D D X P
GroupG3 D X P Q
GroupG4 D X X X
GroupG5 D X P X
GroupG6 D X X Q
GroupG7 X X D P
GroupG8 X X X P
GroupG9 X X P X
GroupG10 X D X X
GroupG11 X D P Q
GroupG12 X D X Q
GroupG13 X D P X

Fig. 14: Related column-units on Disks0, 1, 4, and 6.
The underlined entries are those which must be accessed
for reconstruction of Disks0 and 1. An ’X’ in a row
labeled by GroupGi and in a column labeled by Disk
j means that Diskj does not contain any column-unit
from Gi.

The reason why Algorithm 2 fails to produce a desired
array code in the above example can be explained
as follows. Even though the3-design spreads out the
columns of the2-parity groups evenly among the disks,
the columns within each group do not play the same role
in the reconstruction of a lost column. More specifically,
theP -column and the correspondingQ-column do have
different roles in the reconstruction of aD-column.
Indeed, according to the reconstruction rule for RDP
arrays stated in Fig. 6, the reconstruction of aD-column
requires the access to theP -column, but not to theQ-
column. For example, even though both Disk4 and Disk
6 contain column-units fromG3, the column-unitP3 on
Disk 4 must be read, while the column-unitQ3 on Disk
6 is not read (see Fig. 14). If a balanced2-parity group
is used instead, we will not have this problem, as every
column in a balanced2-parity group plays the same role
in the reconstruction of a missing column.

C. Storage Efficiency and Reconstruction Workload
Trade-Off

In this subsection we examine the trade-off (of the
declustered-parity layout produced by Algorithm 2) be-
tween storage efficiency and the workload on every disk
during the reconstruction of disk failures. If anM × n
array codeC containsx parity units andMn − x data
units then we say that the number ofdisks worth of parity
in C is x

M . The ration− x
M is called the number ofdisks

worth of dataof C. In other words,C uses x
M disks to

store parities andn− x
M disks to store data.

Another attribute of the array codeC produced by
Algorithm 2 that needs to be examined is the number
of rowsM , or depth, of C. The depth ofC counts how
many units are there in each of its columns. An array with
fewer rows results in a smaller-size table being stored
in the memory and faster (table) look-up. Furthermore,
a code with a smaller depth provides a better local
balance (see Schwabe and Sutherland [22]). The depth
of C depends onn, k, andλ, as shown in the following
theorem. Whenn andk are fixed, the bigger the index
λ is, the more rowsC has. Therefore,3-designs with
smallerλ are preferred.

Theorem III.8. The array codeC produced by Algo-
rithm 2 satisfies the following properties:
(P4) C has

M = m
λ(n− 1)(n− 2)

(k − 1)(k − 2)

rows, wherem is the number of rows in the2-
parity groupG;

(P5) C has (k−2)n
k disks worth of data and2nk disks

worth of parity.
Moreover, if an RDP/EVENODD/RS2-parity group is
used in Algorithm 2 thenC also satisfies the following
properties:
(P6) To reconstruct one failed disk, a portionk−2

n−1 of
the total content of each surviving disk needs to
be read;

(P7) To reconstruct two failed disks, a portion
(k−2)(2n−k−1)
(n−1)(n−2) of the total content of each surviv-

ing disk needs to be read.

Proof: Appendix C.

When k = n, that is, there is no parity declustering
involved, Theorem III.8 states the familiar facts about
an MDS two-failure tolerant array code:C hasn− 2 =
(n−2)n

n disks worth of data and2 = 2n
n disks worth of

parity; to reconstruct one failed disk, a portionn−2
n−1 of

the total content of each surviving disk needs to be read;
and to reconstruct two failed disks, each surviving disk
needs to be read in full (1 = (n−2)(2n−n−1)

(n−1)(n−2)). Note that

9

the second property does not hold for most of known
MDS array codes in their original formulations. In fact,
it only holds for these codes after some transformation,
such as the one in Example III.2, is applied.

Example III.9. In this example, we fix the number of
disks in the array to ben = 20. The parity group size
k varies from3 to 20. The availability of a particular3-
(n, k, λ) design can be found in [7, Part II, Table 4.37].
Note that at-design,t > 3, is also a3-design. In this
table we chooseλ to be the smallest possible.

k λ 1 failure 2 failures Parity depth/m
3 1 5.3% 10.5% 13.3 171
4 1 10.5% 20.5% 10.0 57
5 6 15.8% 29.8% 8.0 171
6 10 21.1% 38.6% 6.7 171
7 35 26.3% 46.8% 5.7 399
8 14 31.6% 54.4% 5.0 114
9 28 36.8% 61.4% 4.4 171
10 4 42.1% 67.8% 4.0 19
11 55 47.4% 73.7% 3.6 209
12 55 52.6% 78.9% 3.3 171
13 286 57.9% 83.6% 3.1 741
14 182 63.2% 87.7% 2.9 399
15 273 68.4% 91.2% 2.7 513
16 140 73.7% 94.2% 2.5 228
17 680 78.9% 96.5% 2.4 969
18 136 84.2% 98.2% 2.2 171
19 17 89.5% 99.4% 2.1 19
20 1 94.7% 100% 2.0 1

Fig. 15: Different parity group sizes lead to array codes
with different performances (n = 20)

The third and fourth columns show the percentage of
data/parity units that have to be read on each surviving
disk in order to reconstruct one and two failed disks,
respectively. The fifth column presents the number of
parity disks to be used when the corresponding parity
group sizek is used. The figures in the third, fourth,
and fifth columns only depend onn andk. As expected,
when k increases, the percentage of units that have to
be accessed for disk recovery increases, and the number
of parity disks used decreases. Thus, one has to trade
the storage efficiency for the reconstruction workload (on
each disk): increasing storage efficiency, which is good,
leads to increasing workload during disk recovery, which
is bad, and vice versa. One extreme is whenk = n,
where there is no parity declustering. The array code
becomes a normal MDS array code, with two disks worth
of parities and100% load on every surviving disk during
the reconstruction of two failed disks.

The figures in the last column are the depths of the

resulting array codes divided bym, the depths of the
balanced2-parity groupsG (see Algorithm 2). These
figures depend onn, k, andλ.

The ingredient balanced2-parity groupsG of size k
(3 ≤ k ≤ 20) can be constructed using the method
presented in Example III.2. This method can be applied
to an RS code of lengthk for an arbitraryk ≥ 3
to obtain a (k(k − 1)) × k balanced2-parity group
(m = k(k−1)). For an EVENODD code [3], this method
produces a(k(k − 1)(k − 3)) × k balanced2-parity
group (m = k(k − 1)(k − 3)), for every k = p + 2
wherep is a prime. For an RDP code [9], this method
produces a(k(k−1)(k−2))×k balanced2-parity group
(m = k(k − 1)(k − 2)), for everyk = p+ 1 wherep is
a prime.

Remark III.10. Corbett introduced in his patent [8] a
method to mixn/2 data disks from one array code with
n/2 data disks from another code to produce an array
code that hasn data disks. When one or two disks fail,
the reconstruction workload is distributed evenly to all
surviving data disks (but not to all data/parity disks). His
method actually uses thecomplete3-(n, n/2, λ) design
(X ,B) where all(n/2)-subsets ofX are blocks. In fact,
anyself-complementary3-designs would work well with
his construction (a design is self-complementary if it
satisfies thatB ∈ B if and only if X \ B ∈ B). The
Hadamard3-(n, n/2, n/4 − 1) design is such a design
(see [16]). Using a Hadamard design results in an array
code of onlym(n − 1) rows, wherem is the depth of
the original array codes. By contrast, the construction in
[8] produces an array code of an extremely large depth
m
(

n
n/2

)

.

IV. PARITY DECLUSTERING FOR(t− 1)-FAILURE

TOLERANT CODES VIA t-DESIGNS

The generalization of Algorithm 2 to Algorithm 3
below that works for(t−1)-failure tolerant codes (t ≥ 2)
is straightforward.

Algorithm 3

• Input: n is the number of physical disks in the array
andk is the parity group size.

• Step 1: Choose a balanced(t − 1)-parity groupG
of sizek.

• Step 2: Choose at-(n, k, λ) designD = (X ,B).
• Step 3:For each blockBi = {bi,0, . . . , bi,k−1} ∈ B,

0 ≤ i < |B|, create a balanced(t− 1)-parity group
Gi as follows. Firstly,Gi must have the same data-
parity pattern and the same reconstruction rule asG.
Secondly, thek columns ofGi are located on disks
with labelsbi,0, . . . , bi,k−1.

10

• Output: The n-disk array with |B| parity groups
and their layouts according to Step 3.

Relevantt-designs can be found in [7, Part II, Ta-
ble 4.37] and in the references therein. The ingredient
balanced(t − 1)-parity groupG in Algorithm 3 can be
constructed by applying the method in Example III.2 to
any MDS horizontal array code that toleratest− 1 disk
failures. More specifically, suppose that the original array
code hask − t + 1 data columns (D) and t − 1 parity
columns, namelyPi-columns,i = 1, . . . , t − 1. There
are(t− 1)!

(

k
t−1

)

ways to arrange the parity columns of
the original array. For each of such arrangements, we
obtain a new array. By juxtaposing vertically all of these
(t− 1)!

(

k
t−1

)

arrays, we obtain a balanced(t− 1)-parity
group. The proof that the above method works for general
t is almost the same as fort = 3. For example, fort = 4,
instead of considering justrDQ, rPQ, andrQP , we now
need to consider other quantities, such asrP1P2

, rDP1P2
,

or rP1P2P3
. They are, in fact, all constants. Therefore, the

arguments go the same way as in Example III.2. We will
not provide a detailed proof here.

Except from the well-known RS codes, some other
known MDS horizontal(t−1)-failure tolerant codes (t >
3) were studied by Blomeret al. [6], Blaum et al. [5],
[4], Huang and Xu [14].

V. CONCLUSION

We propose a way to extend the parity declustering
technique to multiple-failure tolerant array codes based
on balanced(t− 1)-parity groups andt-designs (t ≥ 2).
Balanced(t−1)-parity groups can be obtained from any
known horizontal array codes that tolerate up tot − 1
disk failures. Besides,t-design is a very well-studied
combinatorial object in the theory of Combinatorial De-
signs. Therefore, one of the advantages of our approach
is that we can exploit the rich literature from both Erasure
Codes theory and Combinatorial Designs theory.

The second advantage of the approach based ont-
designs is its flexibility. By simply using differentt-
designs in the array code construction, one can obtain a
variety of different trade-offs between storage efficiency
and the recovery time. Note thatD = (X ,B) whereB
consists of allk-subset ofX is a t-design (called the
trivial design) for any1 ≤ t ≤ k ≤ n. Therefore, for any
given number of disksn and any given parity group size
k ≤ n, there always exists at-(n, k, λ) design for some
λ.

One disadvantage of this approach is that sometimes,
the smallestt-design still has an unacceptably large index
λ, which leads to an impractically deep array code.
A natural question to ask is whether the depth of the
array code, in those cases, can be reduced if we relax

some requirements on the array code. A similar question,
which is aimed to one-failure tolerant array codes, has
already been discussed by Schwabe and Sutherland [22].
Another open question is on the issue of constructing a
balanced(t−1)-parity group. In this work, we show that
horizontalarray codes can be employed to produce such
parity groups. However, the question of whethervertical
array codes can also be useful is still open.

VI. A CKNOWLEDGMENT

The first author thanks Xing Chaoping for helpful
discussions.

REFERENCES

[1] G. A. Alvarez, W. A. Burkhard, and F. Cristian. Tolerating
multiple failures in RAID architectures with optimal storage
and uniform declustering. InProceedings of the 24th annual
international symposium on Computer architecture (ISCA), pages
62–72, 1997.

[2] G. A. Alvarez, W. A. Burkhard, L. J. Stockmeyer, and F. Cris-
tian. Declustered disk array architectures with optimal and
near-optimal parallelism. InProceedings of the 25th annual
international symposium on Computer architecture (ISCA), pages
109–120, 1998.

[3] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD:
An optimal scheme for tolerating double disk failure in RAID
architectures.IEEE Transactions on Computers, 44(2):192–202,
1995.

[4] M. Blaum, J. Brady, J. Bruck, J. Menon, and A. Vardy. The
EVENODD code and its generalization. InHigh Performance
Mass Storage and Parallel I/O, pages 187–208. John Wiley &
Sons, INC., 2008.

[5] M. Blaum, J. Bruck, and A. Vardy. MDS array codes with
independent parity symbols.IEEE Transactions on Information
Theory, 42(2):529–542, 1996.

[6] J. Blömer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and
D. Zuckerman. An XOR-based erasure-resilient coding scheme.
Technical Report TR-95-048, ICSI, Berkeley, California, Aug.
1995.

[7] C. J. Colbourn and J. H. Dinitz.Handbook of Combinatorial
Designs, Second Edition (Discrete Mathematics and Its Applica-
tions). Chapman & Hall/CRC, 2006.

[8] P. Corbett. Parity assignment technique for parity declustering in
a parity array of a storage system, 2008. US Patent.

[9] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,
and S. Sankar. Row-diagonal parity for double disk failure
correction. InProceedings of the 3rd USENIX Conference on
File and Storage Technologies (FAST), 2004.

[10] D. Patterson D., G. Gibson, and R. Katz. A case for redundant
arrays of inexpensive disks (RAID). InProceedings of the ACM
SIGMOD International Conference on Management of Data,
pages 109–116, 1988.

[11] G. Feng, R. Deng, F. Bao, and J. Shen. New efficient MDS array
codes for RAID Part I: Reed-Solomon-like codes for tolerating
three disk failures.IEEE Transactions on Computers, 54(9):1071–
1080, 2005.

[12] G. Feng, R. Deng, F. Bao, and J. Shen. New efficient MDS array
codes for RAID Part II: Rabin-like codes for tolerating multiple
disk failures. IEEE Transactions on Computers, 54(12):1473–
1483, 2005.

[13] M. Holland and G. Gibson. Parity declustering for continuous
operation in redundant disk arrays. InProceedings of the 5th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 23–35,
1992.

11

[14] C. Huang and L. Xu. STAR: An efficient coding scheme for
correcting triple storage node failures.IEEE Transactions on
Computers, 57(7):889–901, 2008.

[15] C. Jin, H. Jiang, D. Feng, and L. Tian. P-Code: a new RAID-
6 code with optimal properties. InProceedings of the 23rd
International Conference on Supercomputing (ICS), pages 360–
369, New York, NY, USA, 2009.

[16] E. F. Assmus Jr. and J. D. Key. Hadamard matrices and
their designs: A coding-theoretic approach.Transactions of the
American Mathematical Society, 330(1), 1992.

[17] F. J. MacWilliams and N. J. A. Sloane.The Theory of Error-
Correcting Codes. Amsterdam: North-Holland, 1977.

[18] R. Muntz and J. Lui. Performance analysis of disk arraysunder
failure. In Proceedings of the 16th Conference on Very Large
Databases (VLDB), pages 162–173, 1990.

[19] S. Ng and D. Mattson. Maintaining good performance in disk
arrays during failure via uniform parity group distribution. In
Proceedings of the 1st International Symposium on High Perfor-
mance Distributed Computing (HPDC), pages 260–269, 1992.

[20] J. Plank. A tutorial on Reed-Solomon coding for fault-tolerance
in RAID-like systems. Software Practice and Experience,
27(9):995–1012, 1997.

[21] A. Reddy and P. Bannerjee. Gracefully degradable disk arrays.
In Proceedings of the 21st International Symposium on Fault-
Tolerant Computing (FTCS), pages 401–408, 1991.

[22] E. J. Schwabe and I. M. Sutherland. Improved parity-declustered
layouts for disk arrays.Journal of Computer and System Sciences,
53(3):328–343, 1996.

[23] D. R. Stinson.Combinatorial Designs: Construction and Analy-
sis. Springer, 2003.

[24] L. Xiang, Y. Xu, J. C. S. Lui, Q. Chang, Y. Pan, and R. Li.
A hybrid approach to failed disk recovery using RAID-6 codes:
algorithms and performance evaluation.ACM Transactions on
Storage, 7(3), 2011.

[25] L. Xu, V. Bohossian, J. Bruck, and D. G. Wagner. Low density
MDS codes and factors of complete graphs.IEEE Transactions
on Information Theory, 45(6):1817–1826, 1998.

[26] L. Xu and J. Bruck. X-Code: MDS array codes with optimal
encoding.IEEE Transactions on Information Theory, 45(1):272–
276, 1999.

APPENDIX A
PROOF OFLEMMA III.4

From Example III.2, for the recovery of one lost
column ofG, one needs to read

k(k − 1)− rDQ − rPQ − rQP

= k(k − 1)− (k − 2)− 1− 1

= k(k − 2)

column-entries in each of the other columns. As each
column containsk(k− 1) column-entries, the portion of
content of each column that has to be accessed is

k(k − 2)

k(k − 1)
=

k − 2

k − 1
.

APPENDIX B
PROOF OFTHEOREM III.6

A. Known Results from Design Theory

The following results from Design Theory are useful
in our discussion.

Theorem B.1. ([23, Theorem 9.7]) Suppose that(X ,B)
is a t-(n, k, λ) design. Suppose thatY, Z ⊆ X , where
Y ∩Z = ∅, |Y | = i, |Z| = j, and i+ j ≤ t. Then there
are exactly

λ
(j)
i =

λ
(

n−i−j
k−i

)

(

n−t
k−t

)

blocks inB that contain all the points inY and none of
the points inZ. In particular,

|B| = λ
(0)
0 =

λn(n− 1) · · · (n− t+ 1)

k(k − 1) · · · (k − t+ 1)
.

Corollary B.2. Suppose that(X ,B) is a 3-(n, k, λ)
design. Then any pointx of X is contained in precisely

λ1 =
λ(n− 1)(n− 2)

(k − 1)(k − 2)
(1)

blocks.

Proof: Let t = 3, Y = {x} andZ = ∅ and apply
Theorem B.1.

Corollary B.3. Suppose that(X ,B) is a 3-(n, k, λ)
design. Then any two distinct pointsx and y in X are
contained in precisely

λ2 =
λ(n− 2)

k − 2
(2)

blocks.

Proof: Let t = 3, Y = {x, y} andZ = ∅ and apply
Theorem B.1.

Corollary B.4. Suppose that(X ,B) is a 3-(n, k, λ)
design. Suppose thatx, y, andz are three distinct points
in X . Then the number of blocks inB that contain both
x and y but notz is

λ
(1)
2 =

λ(n− k)

k − 2
. (3)

Proof: Let t = 3, Y = {x, y}, Z = {z}, and apply
Theorem B.1.

Now we are ready to prove Theorem III.6. LetC be
the array code produced by Algorithm 2. Suppose that in
G (and hence in everyGi), to recover one (two) missing
column, preciselyτ1 (τ2) entries have to be read from
every other column.

B. Proof ofC satisfying (P3)

First note that due to Corollary B.2, each column of
C contains preciselyλ1 = λ(n−1)(n−2)

(k−1)(k−2) column-units.
Therefore, each column ofC contains the same number
of units. Also, as each column ofGi (that is, each
column-unit ofC) contains the same number ofparity
units for all 0 ≤ i < |B|, each column ofC contains the
same number ofparity units. ThusC satisfies (P3).

12

C. Proof ofC satisfying (P1)

According to Definition III.1, each2-parity group can
recover up to two missing columns. Moreover, according
to Algorithm 2, no two columns of the same group
are located (as column-units) in the same column ofC.
Therefore,C can tolerate up to two disk failures. ThusC
satisfies (P1).

D. Proof ofC satisfying (P2)

Suppose Disky of C fails. Let x be an arbitrary
surviving disk of C. According to Corollary B.3, in

Disk yDisk x

uy

ux

Gi

Fig. 16: One disk fails

points/blocks language, there areλ2 blocks inB that con-
tain both pointsx andy of X . Translated to disks/groups
language, there areλ2 pairs of column-units(ux, uy),
whereux is in Disk x, uy is in Disk y andux anduy

are from the same2-parity group. For such a pair of
column-units(ux, uy), in order to recoveruy, precisely
τ1 units have to be read fromux. Therefore,λ2τ1 units
have to be read from Diskx for the recovery of Disky.
This number of units is a constant for every pair of Disk
x andy. Hence, when one disk fails, the reconstruction
workload is uniformly distributed to all surviving disks.

Now suppose that Disky and Diskz of C fail. Let x
be an arbitrary surviving disk ofC. A column-unitux in
Disk x is involved in the reconstruction of the two failed
disks if and only if one of the following three cases holds.

• Case 1:There exist column-unitsuy in Disk y and
uz in Disk z so thatux, uy, anduz all belong to
some2-parity groupGi. In this case, asGi loses
two columns, namelyuy anduz, τ2 units have to be
read fromux for the recovery of the lost columns.
According to the definition of a3-design, there are
preciselyλ such triples(ux, uy, uz).

Disk x Disk z

ux

uz

Gi

Disk y

uy

Fig. 17: Case 1

• Case 2: There exists a column-unituy in Disk y
such that thatux and uy belong to some2-parity
group Gi and moreover, none of the columns of
Gi are located in Diskz. In this case, asGi loses
only one column, namelyuy, τ1 units have to be
read fromux for the recovery of this lost column.
According to Corollary B.4, there are preciselyλ(1)

2

such pairs(ux, uy).

Disk yDisk x

uy

ux

Gi

Disk z

Fig. 18: Case 2

• Case 3: There exists a column-unituz in Disk z
such that thatux and uz belong to some2-parity
group Gi and moreover, none of the columns of
Gi are located in Disky. In this case, asGi loses
only one column, namelyuz, τ1 units have to be
read fromux for the recovery of the lost column.
According to Corollary B.4, there are preciselyλ(1)

2

13

such pairs(ux, uz).

Disk yDisk x

ux

Gi

Disk z

uz

Fig. 19: Case 3

Therefore, in summary, when Disky and Disk z fail,
the number of units to be read from Diskx for the
reconstruction is precisely

λτ2 + 2λ
(1)
2 τ1.

As this number is a constant for every three distinct disks
x, y, andz, we conclude that when two disks fail, the
reconstruction workload is evenly distributed across all
surviving disks.

APPENDIX C
PROOF OFTHEOREM III.8

Suppose the2-parity groupG employed in Algorithm 2
hasm rows. Recall thatτi, i = 1, 2, denotes the number
of entries to be read from every other column wheni
columns ofG are lost. IfG is an RDP/EVENODD/RS
2-parity group thenτ1 andτ2 can be explicitly computed.
Indeed, according to Lemma III.4, we have

τ1 = m
k − 2

k − 1
. (4)

When two columns ofG are lost, allk−2 other columns
have to be read in full for the recovery of the lost
columns. Therefore

τ2 = m. (5)

A. Proof ofC satisfying (P4)

According to Corollary B.2, each column ofC contains
precisely λ1 column-entries. Moreover, each of these
column-entries consists ofm entries. Therefore, each
column ofC consists of

M = mλ1 = m
λ(n− 1)(n− 2)

(k − 1)(k − 2)

entries.

B. Proof ofC satisfying (P5)

We need to show thatC has (k−2)n
k disks worth of

data and2n
k disks worth of parity.

There are |B| 2-parity balanced groups and each
group consists of2m parity units (see Definition III.1).
Therefore, the total number of parity units inC is 2m|B|.
Therefore,C contains

2m|B|

M
=

2|B|

λ1
=

2λn(n−1)(n−2)
k(k−1)(k−2)

λ(n−1)(n−2)
(k−1)(k−2)

=
2n

k

disks worth of parity. We deduce thatC contains

n−
2n

k
=

(k − 2)n

k
.

disks worth of data.

C. Proof ofC satisfying (P6)

We need to prove that ifG is an RDP/EVENODD/RS
2-parity group then in order to reconstruct one failed
disk, a portionk−2

n−1 of the total content of each surviving
disk needs to be read.

Suppose one column ofC is lost. According to Ap-
pendix B, λ2τ1 entries must be read from each other
column for the reconstruction of the missing column.
Since each column ofC consists ofM entries, a portion

λ2τ1
M

=

λ(n−2)
k−2 mk−2

k−1

λ(n−1)(n−2)
(k−1)(k−2) m

=
k − 2

n− 1

of the total content of each surviving disk must be read.

D. Proof ofC satisfying (P7)

We need to show that ifG is an RDP/EVENODD/RS
2-parity group then in order to reconstruct two failed
disks, a portion(k−2)(2n−k−1)

(n−1)(n−2) of the total content of
each surviving disk needs to be read.

Suppose two columns ofC are lost. According to
Appendix B, λτ2 + 2λ

(1)
2 τ1 entries must be read from

each other column for the reconstruction of the two
missing columns. Thus, a portion

λτ2 + 2λ
(1)
2 τ1

M
(6)

of the total content of each surviving column needs to be
read for the recovery of two columns ofC. Substituting
(4), (5), (1), and (3) into (6), the ratio in this equation
can be simplified to

(k − 2)(2n− k − 1)

(n− 1)(n− 2)
.

	I Introduction
	II Preliminaries
	III Parity Declustering for Two-Failure Tolerant Codes via 3-Designs
	III-A -Parity Groups
	III-B Design of Declustered-Parity Layouts via 3-Designs
	III-C Storage Efficiency and Reconstruction Workload Trade-Off

	IV Parity Declustering for (t-1)-Failure Tolerant Codes via t-designs
	V Conclusion
	VI Acknowledgment
	References
	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Theorem ??
	B-A Known Results from Design Theory
	B-B Proof of C satisfying (P3)
	B-C Proof of C satisfying (P1)
	B-D Proof of C satisfying (P2)

	Appendix C: Proof of Theorem ??
	C-A Proof of C satisfying (P4)
	C-B Proof of C satisfying (P5)
	C-C Proof of C satisfying (P6)
	C-D Proof of C satisfying (P7)

