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Abstract—Parity declustering allows faster reconstruc- which renders the reconstruction impossible. Moreover,
tion of a disk array when some disk fails. Moreover, it guar- as all disks must be fully accessed for the recovery
antees uniform reconstruction workload on all surviving purpose, the system operates in its degraded mode:

disks. It has been shown that parity declustering for one- ¢ ts take | ti th |
failure tolerant array codes can be obtained via Balanced responses 1o user requests taxe longer ime than usual.

Incomplete Block Designs. We extend this technique for
array codes that can tolerate an arbitrary number of disk
failures via t-designs.

Parity declustering (or clustered RAID) was proposed
by Muntz and Lui [18] as a data layout technique that
allows faster reconstruction and uniform reconstruction
workloads on surviving devices during reconstruction

I. INTRODUCTION of one disk failure. Here, the reconstruction workload

RAID (Redundant Array of Independent Disks) hagefers to the amount of data that needs to be accessed
been widely used as a large-scaled and reliable storadjethe surviving disks in order to reconstruct the data
system since its introduction in 1988 [10]. However, then the failed disk. Faster reconstruction stems from the
key limitation of the first 6 levels of RAID (RAID-0 to feature of the declustered-parity data layout that reguire
RAID-5) is that system recovery can be possible witRnly a partial access instead of a full access to each
at most one disk failure. RAID-6 has been proposed &drviving disk. In other words, the special layout allows
a new RAID standard, which requires that any one dgconstruction of data on a failed diskthoutreading all
two disk failures can be fixed. Several types of coddtata in every surviving disk. Muntz and Lui suggested
that can correct two erasures have been proposed, stft# designing such a layout is a combinatorial block
as Reed-Solomon (RS) code [20], EVEN-ODD cdde [3fiesign problem, but gave no further details. Holland
B-code [25], X-code[[26], and RDP codg [9]. Codes thand Gibson [[13], Ng and Mattson_[19] investigated
allow the recovery from more than two failures have alséie construction of parity-declustered data layouts from
been investigated [11], [12], [14]. The main limitation ofBalanced Incomplete Block Designs (BIBD). The work
RS codes is the high encoding and decoding complexiff, Reddy and Banerjee_[21] also followed the same
which involves computation over finite fields. The othefpproach, even though they focused more on a special
types of codes, called array codes, are preferred by stbfe of BIBDs.

age system designers due to the fact that their encoding-; ~odes that can tolerate> 2 disk failures. it is

and decoding requires only XOR operations. _also desirable to have a declustered-parity data layout.
The majority of known array codes are MDS (Maxiyqre specifically, we want to design a layout such that
mum Distance Separable) codes (se€ [17]). MDS argy,en at mosts disks fail, onlya portion of the disk
codes have optimal redundanay edundant disks are ;onent on each healthy disk needs to be accessed for the
used in aj-failure tolerant array code). The main issUgecoyery process. Moreover, the reconstruction workload
with them is that whery disks fail, all data in every s gistributed uniformly to all surviving disks. There
surviving disk has to be read for reconstruction. Th'ﬁas been several work where parity declusteringsor

results in slow_reconstruction tim_e y\_/hen disk capaqitiqa”ure tolerant codess(> 2) are considered, such &g [1]
get larger and increases the possibility of another fajlurg,, 4 [2]. However, none of them guarantee the uniform
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large size, which is at Ieazﬁgl"Q) x (n+4), wheren is same parity group are located on the same disk, so that

the number of data disks in the final array code. the disk array can always be recovered from one disk
We investigate the construction of declustered-parifgilure.

layouts for codes that tolerate— 1 disk failures via

t-designs { > 2). In fact, BIBDs, which are used to Disk olDisk 1| Disk 2 Disk 3Disk 4
decluster parities for one-failure tolerant codes, are

designs. The main idea is to start with an array code of Do | Do | Do | Dy | P,
k columns that has uniform workloads for reconstruction

of everys < t—1 columns. Then, thé columns of this D, D, | D P, D,
code are spread out over > k disks, using blocks of

a t-(n,k,\) design (see Sectidn] Il for all definitions). Dy | Dy | P, Dy | Dy
As a result, we obtain an array code withdisks that

possesses the following properties. Firstly, in order to D3 | Ps | D3 | D3 | Ds
recover anys < ¢t — 1 disks, only a portion of the disk

content, which is a designed parameter, must be read Py Dy | Dy | Dy | Dy

for disk recovery. Secondly, the reconstruction workload ) _ )
is uniformly distributed to every surviving disk. And  Fig. 1: An array code with no parity declustering
lastly, the parity units are distributed evenly over all

disks, which eliminates hot spots during data update. To| et us consider the following example. Suppose there
the best of our knowledge, this is the first work thajre five disks in the disk array. Each disk is divided into
extends the well-known parity declustering techniqugeveral units. They are either data unif3) (or parity
(originally proposed for one-failure tolerant codes) fognits (P). Each parity group consists of four data units
d-failure tolerant codes, for any > 1. and one parity unit (those that have the same index). The
The paper is organized as follows. Necessary defitiarity unit is equal to the XOR-sum of the data units in
tions and notations are provided in Sectfoh II. In thighe same parity group. The array in Fd. 1 represents
section, we also review the parity declustering techniqyge pasic data/parity layout in this disk array. The basic
for one-failure tolerant codes based on BIBDs. We exterpgyout is then repeated many times until every unit in
this technique for two-failure tolerant codes Bialesigns  each disk is covered. This data/parity layout is called an
in Section(Tll. In Sectiof IV, we discuss the generalizarray codefor the disk array. Column of the array code
tion of this idea for codes that can tolerate> 2 disk corresponds to Disk in the disk array that employs the

failures. The paper is concluded in Sectioh V. array code. A data/parity entry in Columnrepresents
a data/parity unit in Diski. Without loss of generality,
Il. PRELIMINARIES we assume that the disk array consists of only one copy

Disk arrays spread data across several disks and acagfsthe data/parity layout from the array code. In other
them in parallel to increase data transfer rates and Ii@rds, we assume that the data/parity layout of the disk
rates. Disk arrays are, however, highly vulnerable to disicray looks completely the same as the data/parity layout
failures. An array withn disks isn times more likely to of the array code. Then, throughout this work, we often
fail than a single disk [10]. Adding redundancy to a diskise disks and columns, units and entries, interchangeably.
array is a natural solution to this probleinits of data ~ The array code presented in Fid. 1 can recovee
on k disks are grouped together inp@rity groups(or missing column. Hence, the disk array that employs this
parity stripes). Each parity group consistskof- 1 data array code can toleratnedisk failure. The reconstruc-
units and one parity unit. The parity unit is calculatedion process of the lost column (disk) requires access to
by taking the XOR-sum of the data units in the samall entries (units) in every surviving column (disk).
group. The parity unit must be updated whenever a dataThe parity declustering technique for one-failure toler-
unit in its group is modified. Therefore, the parity unit@int array codes based on BIBDs was originally suggested
should be distributed across the array rather than all beipg Muntz and Lui[[18] and investigated in details by Hol-
located on a small subset of disks. Otherwise we woulghd and Gibson [13], Ng and Mattsdn [19], and Reddy
have the situation where some disks are always busiid Banerjee [21]. Before describing this technique, we

updating the parity units while the others are totally idleneed the definitions of-designs and BIBDs.
Ideally, we want to have the same number of parity units

on every disk. This requirement guarantees that the paridefinition Il.1. A ¢-(n, k, \) design at-design in short,
update workload is uniformly distributed among all diskds a pair(X, B) whereX is a set ofn pointsandB is a
Additionally, it is required that no two units from thecollection of k-subsets ofY’ (block9 with the property



that everyt-subset ofYt’ is contained in exactly blocks. of one unit requires access to all other units in the
A 2-(n, k, \) design is also called lmalanced incomplete same parity group. Therefore, in order to have uniform
block designBIBD). workloads during the reconstruction for one disk failure,
every two disks must share the same number of pairs
of units that are from the same parity groups. In other

Disk Q Disk 1| Disk 2 Disk pDisk 4 words, every two disks must be simultaneously crossed
by the same number of parity groups. If disks and parity
Do | Do | Dy | Py Py groups are associated to points and blocks, respectively,
then the aforementioned property of the data layout
Dy | Dy | Dy | D; | B becomes the familiar requirement for2adesign: every
two points must be simultaneously contained in the
Dy | Dy | D3 | D3 | P same number of blocks. Thus, the parity declustering
technique for one-failure tolerant array codes can be
D3 | Dy | Do | Da | Py summarized as follows:

Fig. 2: An array code with parity declustering  algorithm 1 ([18], [L3], [1€], [21])

« Input: n is the number of physical disks in the array
Given a2-(n,k,\) design, we associate disks with andk is the parity group size.

points and parity groups with blocks. As an illustra- , Step 1: Choose a parity groups with k£ — 1 data

tive example, consider &-(5,4,3) design withX = units and one parity unit.

{0,1,2,3,4} andB consisting of five blocks{0, 1, 2, 3}, « Step 2:Choose &-(n, k, \) designD = (X, B) for
{07 1a 27 4}' {Oa 17 3a 4}’ {Oa 27 3a 4}’ {13 27 3a 4} Each some.

block corresponds to one parity group. For instance, the, Step 3:For each blockB; = {bi0,-- - bir—1} €B,

block {1,2,3,4} corresponds to a parity group with the ¢ < ; < |B|, create a parity grougs’; as follows.
(three) data units being located in Disks 1, 2, 3 and the Firstly, ;; must have the same data-parity pattern
parity unit located in Disk 4. The data layout of the array  as@. In other wordsG; hask — 1 data units and
code is presented in Figl 2. Furthermore, we can balance one parity unit, and the parity unit is equal to the

the number of parity units in every column by rotating ~ XOR-sum of the data units. Secondly, tite— 1

the array in this figure cyclically five times (see [13]). data units ofG; are located on disks with labels
Since every two elements in the s¢0,1,2,3,4} bi.0,--.,bik—2. The parity unit ofG; is located on
appears in preciselyx = 3 different blocks, every two disk with labelb; j_1.

disks share three pairs of units, where units in each. Output: The n-disk array with|B| parity groups
pair belong to the same parity group. Therefore, when and their layouts according to Step 3.

one disk fails, precisely three units in each surviving aser employing Algorithm 1, as shown i [13], the

disk need to be read for the recovery of units on the,mper of parity units in every column can be made
failed disk. Thus, instead of readin®0% units in each balanced by rotating the resulting array cyclicaty
surviving disk (as for the array code in Figl 1), theimes.

reconstruction process now read units in each disk. |, yhe next sections, we generalize this procedure to
In other words, by increasing the overhead for the storagg et declustered-parity layouts for array codes that

of parity (from a1/5 fraction of the space to a/4 jierate more than one disk failure.
fraction), we can reduce the percentage of data that

needs to be read in each surviving disk for recovery.
However, we lose the MDS property of the code while !!l- PARITY DECLUSTERING FORTWO-FAILURE
spreading out the workload over more disks. Now it TOLERANT CODES VIA 3-DESIGNS
requiresl.25 disks worth of parity (see SectignIIl-C for  To extend the parity declustering technique for two-
a formal definition) instead of just one parity disk as ifailure tolerant codes, we use balancegarity groups
the previous example. Therefore, the parity declusterifgstead of parity groups.
technique can be considered as a way to sacrifice the
efficiency for faster reconstruction time. .

The connection between the reconstruction of one-diék 9-Parity Groups
failure and a2-design is elaborated further as followsDefinition 11l.1. A §-parity groupis an MDS j-failure
If a parity groupG contains a unit from a disk thentolerant array code. More formally, &parity groupis
that disk is said to berossedby G. The reconstruction anm x k array that satisfies the following conditions:



(C1) it contains(k — §)m data entries andm parity Data Golumns Parity Columns

/—M
entries; ;IOCIICI’CT Col. 5
(C2) entries in at mosdé columns can always be recon- o o.%0l 4 ~ol culg o
structe_d from t_he entries in oth(_er .columns. Doo | Doy 9&2 Dos Ly Ps Qos
Moreover, if ad-parity group also satisfies the two other
conditions Dy Bu/ Dy | D13 [P~ B Q15
(C3) for the reconstruction of entries in at moét cd /

L D D D D BD—| Pos] 5
columns, the number of entries in every other col ” i /n// ’ @,
umn that contribute to the calculation must always Da6 | D3y | Dss | Doz E@—] P Qs.5
be the same; : : /

(C4) the number of parity entries in every column must| | S

be the same, |
then it is said to béalanced If a §-parity group does

unbalancedWe refer tok as thesizeandm as thedepth

respectively, of thej-parity group.

by taking the XOR-sum of the data entries in other

Note that the condition (C3) depends on the padata columns ) and the row parity entry on thé-
ticular reconstruction algorithm used for theparity column that belong to the same row. In this way, the
group. Therefore, aj-parity group can be balanced@-column plays no role in the reconstruction of one lost
or unbalanced when different reconstruction algorithnggata column. If theP-column or theQ-column is lost,
are employed. In fact, all MDS two-failure tolerantthen its entries can be reconstructed by recalculating the
array codes, such as Reed-Solomon (RS) codes [20&rities according to the encoding rule of RDP. Note
EVENODD [3], RDP [9], B-codel[25], P-codes [15], X-that the reconstruction of the-column doesot require
codes [[26], are2-parity groups. However, they are notaccess to th€)-column, and vice versa. Hence, the RDP
yet balanced in their original form. Theertical codes array and its conventional reconstruction rule does not
(B-, P-, X-codes), which contaiboth data and parity qualify as a balance@-parity group.
units in each column, equipped with their conventional However, we can transform an RDP array into a
reconstruction algorithms for one failure, satisfy (C4palanced-parity group as follows. Let us first label the
but not (C3). Thehorizontal codes (RS, EVENODD, data columns by’ and the parity columns byP’ and
RDP), which contaireither dataor parity units in each ’(Q’, respectively. As an example, the RDP array= 5)
column, in their original form satisfy neither (C3) norin its simplified layout is depicted in Fig] 4.
(C4). The following example shows how to modify the
existing MDS horizontal codes to obtain balanckd [Col. O[Col. 1] Col. 4 Col. B Col. ]t Col]5
parity groups.

_ _ [pID D [DfP[Q]

Example 111.2. We first consider RDP codes. Lgtbe ) ] -
a prime. RDP code for & + 1)-disk array is defined Fi9- 4: An RDP array wittp = 5 (simplified layout)
as a(p—1) x (p+ 1) array [9] (see FidI3). lts first
p—1 columns (disks) store data entries (units) and its last We consider all possible ways to arrange fheolumn
two columns (disks) store parity entries (units). The firstnd the@-column among allk columns ¢ = p + 1).
parity column P-column) stores the row-parity entries;There arek(k — 1) such arrangements. ¥ = 6 then
each of such entries is equal to the XOR-sum of the dafzere are30 = 6 x 5 possible such arrangements. For
entries on the same row. The second parity coluf@n ( each of such arrangements 6+ and -columns, we
column) stores the diagonal-parity entries; each of sudibtain a new arrayd;, 0 <14 < k(k — 1). We juxtapose
entries is equal to the XOR-sum of the data and rovall these arrays vertically to obtain a new argywhich
parity entries along some diagonal of the array. Note theentainsk(k— 1) times more rows than the original RDP
one diagonal is not used (called thessingdiagonal in array (see Fid.15 for the case whén= 6).
Q. Our goal now is to show that the arrgyconstructed

Below we show that the RDP array is not a balanceabove, together with RDP’s reconstruction rulel ([9]),
2-parity group. The reconstruction rule for RDRI([9]) in general, is a balance#-parity group. The arrayy
as follows. Suppose one column is lost. If it is a databviously satisfies (C1), (C2), and (C4). We only need
column (D), then each of its entries can be recovere verify Condition (C3) forG. To recover two missing



[Col. 0]Coal. 2 Col. 4 Col. 3 Col. ¥ Col. column. Therefore, the number of column-entries to be
read in columnj during the reconstruction of column

ppppPQ | D | D | DI D] P Q| ,
ppDDQP [ D | D [ D [ D [ @ [ P | s precisely
pppPDQ | D | D | Dl P | D |Q
k(k—1)— - - .
ppDQDP [ D | D | D 1@ | D | P (k=1)=rpg —rrq =ror
DDPDDQ | D D P D 1D @ | Hence, ifrpg, rpq, andrgp are all constants for every
DDQDDP D D Q D D P pair (i, j) then the reconstruction workload is uniformly
. : distributed to all surviving columns. As the extended-
. rows of G correspond to all possible arrangements of
PQDDDD D Q D D D D P-, Q-, and D-columns in an RDP array of size, we
QPDDDD [Q [P | D | DD [D |hpae
Fig. 5: The simplified layout of a balancéeparity group rpg=k—2, rpg=1, rgp =1,

G obtained from an RDP array & 5) _
for every pair of columng and j of G. Therefore,G

satisfies (C3).
columns in an RDP array, every other column has to The same modification also turns an EVENODD array
be read in full. Hence, the reconstruction workloadode or an RS code into a balancggarity group. In
for two missing column is already uniform across théact, this method works for every horizontal array code,
columns ofG. To recover one missing column in anas long as they have separate parity columRs &nd
RDP array, each of other columns either has to be regdcolumns) and have reconstruction rules that can be
in full or is not accessed at all. Therefore, it sufficeslearly stated in tables similar to the one in Hig. 6.
to regard each (RDP) columP, P, or Q as a single
entry, or more precisely, aolumn-entryin g, a_nd US€  Note that a simple cyclic rotation doe®t turn a
the reconstruction _rule for RDP as shown in F[@ orizontal array code into a balanc@eparity group.
Those cplumn-entrles of correspond toco.lu.mn-umts For instance, consider an array obtained by juxtaposing
on physical disks where each column-unit is & coluMpyticaly all cyclic rotations of an RDP array with
of data/parity units. p =5 as in FiglT. Suppose the first column is lost. For

We refer to eactd; (1 < i < k(k—1)) as anextended- reconstruction, according to the rule illustrated in Fig. 6
row Ogg('j Theng ha_sk(k I_ 1) exten_ded-rovv_s and ea(?hone needs to accedive column-entries on the second
extended row containk column-entries. For instance, ingq,mn ang onlyfour column-entries on the last column.

Fig.[3, G has30 extended-rows and each extended-ropionce the reconstruction workload is not distributed

containst cqlu_mn-entrles. _ _ , uniformly among the surviving columns.
For two distinct columng andj of G, we define the

following quantities:

« rpqg: the number of extended-rows that ha®aat [Col. o] Col. T Col. d Col. 3 Col. | Col]p
Columni and has &) at Columnyj;

» 7pg: the number of extended-rows that hag’aat DDDDPQ | D D D D P Q
Columni and has aQ at Columnj; QpPPDP | Q@ [ D | D [ D | D [P
« rop: the number of extended-rows that hagaat £QPDDD | P | @ | D | D | D | D
Columni and has aP at Columnj. DPQDDD | D | P | Q | D | D | D
DDPQDD | D D P Q D D
Lost | To be accessed Not to be accessed DDDPQD | D D D P Q D
g g r g Fig. 7: Rotated RDP array does not form a balanged
arity group p =5
0 D 7 parity group f = 5)

Fig. 6: Reconstruction rule for an RDP array Definition IIl.3. The balance@-parity group obtained

from an RDP array code as in Examplell.2 is called an
fbalancedRDP 2-parity group An EVENODD2-parity
group and anRS2-parity groupare defined in the same
way.

According to the reconstruction rule of RDP array
(Fig.[8), these extended-rows (that defing,, rpq, and
rop as above) ar@reciselythe extended-rows of on
which the recovery of the column-entry in tith column
does not require access to the column-entry in jfte



Lemma Il.4. Suppose G is a balanced Example lll.5. Supposgj is a balance@-parity group

RDP/EVENODD/RS2-parity group of sizek. Then of size four. For instanceg can be obtained from a

to reconstruct a missing column 6f one needs to read 2 x 4 RDP array p = 3) using the method described

a portion % of the total content of each other columnin Example[ll.2. Then the simplified layout & is as

In fact, this also holds for every horizontal code thafollows (Fig.[9). Each column of actually corresponds

has the same reconstruction rule as the RDP code. to a column of24 = 2 x (4 x 3) parity/data units on a
physical disk.

Proof: Appendix[A. [

B. Design of Declustered-Parity Layouts \BaDesigns

Recall that the size: of a 2-parity groupg is its Fig. 9: A balanced-parity group of size four
number of columns. Each column ¢f corresponds to

a column-unit in a physical disk, which is a column of Suppose we have = 8 physical disks. Consider the

data/parity units. following 3-(8,4,1) designD = (X, B) where
k columns ofG X ={0,1,2,3,4,5,6,7},
v ,’ data and
g ;;ti?y B={{0,1,2,3},{0,1,4,5},{0,1,6,7},{0,2,4,6},
tt data {0’27557}v{0’374’7}1{0137576}7{4757&7}’
— — —\ . {2,3,6,7},{2,3,4,5},{1,3,5,7},{1,3,4,6},
\ L]
g N {1,2,5,6},{1,2,4,7}}.

Fig. 8: Simplified layout of z&-parity group The resulting array codgé is depicted in Figl_1l0. There

] ) ) are14 2-parity groups inC, namelyG;, 0 < i < 14. The
The following algorithm extends Algorithm 1 to €ON-9_parity groupG; has its columns, labeled by spread

struct declustered-parity layout for two-failure tolerang . oss the disks indexed by elements from the biBck
codes. Compared to Algorithm 1, in the resulting arrag o < ; ~ 14. For example, aB;; = {1,2,4,7}, the

that Algorithm 2 produces, the number of parity units iRqumns 0fG13, labeled by13, are located on DisK,
every column is already balanced (see Thedreml I11.6) pigk 9, Disk 4, and Disk7. As eachg; is a24 x 4 array,

Algorithm 2 C is actually a168 x 8 array (168 = 7 x 24).

« Input: n is the number of physical disks in the array[ i i i i i i i
andk is the parity group size. Disk Q| Disk 1 Disk 2 Disk B Disk p Disk 6 Disk|6 Disk 7
« Step 1:Choose a balancettparity groupg of size
k (G hask columns). 0 0 0 0 1 1 2 2
« Step 2:Choose &-(n, k, A) designD = (X, B) for
some. 1 1 3 5 3 4 3 4
« Step 3: For each blockB; = {bio,...,b;x—1} €
B, 0 < i < |B|, create a balance®-parity group 2 2 4 6 5 6 6 5
G, as follows. Firstly,G; must have the same data-

parity pattern and the same reconstruction rulg as 3 10 8 8 7 7 7 7
Secondly, the: columns ofG; are located on disks
with Iabelsbm, ceey bi,k—l- 4 11 9 9 9 9 8 8

o Output: The n-disk array with |B| parity groups
and their layouts according to Step 3.

Note that even thougly;, 0 < i < [B|, all have the 6 | 13113111t l13 11212113
same data-parity pattern gf on the physical disks, they
store independent sets of data/parity units. The steps in Fig. 10: The resulting array cod®
Algorithm 2 are illustrated in the following example.

5) 12 12 10 11 10 11 10




Theorem I11.6. Algorithm 2 produces an array code that Surviving Disk  LostDisk  Lost Disk

satisfies the following properties

(P1) it can tolerate at most two simultaneous disk fail-
ures;

(P2) when one or two disks fail, the reconstruction work-
load is evenly distributed to all surviving disks;

(P3) every column of has the same number of parity
units and data units.

Proof: Appendix(B. [

Number of related units between
3 disks must be a constant

We now give a high level explanation of h@adesigns Fig. 12: Requirement for any group of three disks
and balance@-parity groups work well together to pro-
duce declustered-parity layouts for two-failure tolerant
codes. in the same number of blocks. At first sight, it is not
First, let us examine again the applicatior2edesigns clear how to translate this condition on points/blocks
to one-failure tolerant codes. When one disk fails, it iback to the aforementioned condition on disks/groups.
required that all other disks contribute the same amoudbwever, one can do so with the help from some results
of data accesses during the reconstruction process.innDesign Theory. More details can be found in the
other words, we are examiningirs of diskgone failed, proof of Theoren{III.b in the Appendik]B. Note also
one survived) and want to make sure that all of theskat as a3-design is also &-design (see Corollafy B.3),
pairs have the same number of related data/parity unitsiform workload for reconstruction of one failed disk
(Fig.[11). (Related units are units that belong to the sanwautomatically guaranteed.
parity group). On the other hand, irRadesign, a similar-  The balance of the-parity group used in Algorithm 2
looking condition is applied tpairs of points every pair is another key condition to guarantee the balanced re-
of points must belong to the same number of blocks. Thebnstruction workload. In the following example, it is
is how the connection between one-failure tolerant coddemonstrated that Algorithm 2 applied to an unbalanced
and2-designs could be established. 2-parity group doesot produce a code with this prop-

N _ erty.
Surviving Disk Lost Disk

Disk 0|Disk 1| Disk 2 Disk B Disk | Disk b Disk|Bisk 7

Dy | Do | Po | Q| A | Q1| P | Q2

Dy | Di | Ds | Ds | Bs Py Qs Q4

Y Dy | Do | Dy | Ds | P5s | Ps | Qo | @5

Number of related units between
2 disks must be a constant Ds | Dig| Ds | Ds | D7 | D7 | Ps Q7

Fig. 11: Requirement for any pair of disks

Dy | Din | Dy | Do | Po | Qo | Pz | @s

The problem of designing declustered-parity layoutd
for two-failure tolerant codes also has a similar red
quirement. It is required that when one or two diskd Ds | Dis | Dis | D | s | P2 | Qiz | Qs
fail, all surviving disks contribute the same number of
data accesses during the_reconstructio_n Process. Supp(ﬁa 13: Unbalanced input leads to unbalanced output
two disks fail. We are in fact examiningroups of
three diskqtwo failed, one survived) and want to make
sure that all of these groups have the same numberBBtample 111.7. Suppose th8-designD in Exampld L5
“related" data/parity units (Fid._12). (We use a differenand G, an RDP2 x 4 array, are used in Algorithm 2.
meaning here for “related units”. See Appenflik B foNote thatG is an unbalance@-parity group with the
more details.) If we considera&design, the key property reconstruction rule given in Fid.] 6. The layout of the
is that everygroup of three pointanust be contained resulting code is depicted in Fig.]13.

D5 | Dia | Dia| Dio | Pi1 | Pro | Qu | Qo




Suppose Disk) and Disk1 fail. Let us examine the C. Storage Efficiency and Reconstruction Workload
number of column-units on Disk and 6, respectively, Trade-Off
that need to be accessed for reconstruction of Disk | this subsection we examine the trade-off (of the

and Disk1. According to the reconstruction rule of eacrbleclustered-parity layout produced by Algorithm 2) be-

group (Fig.[6), five column-units on Disk4 must be yyeen storage efficiency and the workload on every disk

accessed, whereas ordpe column-unit on Disk6 must  qyring the reconstruction of disk failures. If @1 x n

be accessed (see Flg.]14). Therefore, the workload fé’rrray codeC containsz parity units andMn — = data

reconstruction of the first two disks is not uniformly,nits then we say that the numberdigks worth of parity

distributed to the surviving disks. in C is & The ration — & is called the number afisks
worth of dataof C. In other words(C usesy; disks to

store parities ana — 7 disks to store data.

Disk 0 | Disk 1 | Disk 4 | Disk 6 Another attribute of the array codé produced by

Group Gy D D X X Algorithm 2 that needs to be examined is the number
Group G, D D P X of rows M, or depth of C. The depth ofC counts how
Group Gs D D X P many units are there in each of its columns. An array with
GroupGs D X P Q fewer rows results in a smaller-size table being stored
Group Gy D X X X in the memory and faster (table) look-up. Furthermore,
GroupGs D X P X a code with a smaller depth provides a better local
Group Gs D X X Q balance (see Schwabe and Sutherland [22]). The depth
Group g7 X X D P of C depends om, k, and ), as shown in the following
GroupGs X X X P theorem. Whem and k are fixed, the bigger the index
Group Gy X X P X A is, the more rowsC has. Therefore3-designs with
GroupGio X D X X smaller\ are preferred.
Group Gy X D P Q
Group G2 X D X Q Theorem 111.8. The array codeC produced by Algo-
GroupGi3 X D P X rithm 2 satisfies the following properties:

Fig. 14: Related column-units on Disks 1, 4, and6. (P4) € has An—1)(n—2)

The underlined entries are those which must be accessed M= mm

for reconstruction of Disk$) and 1. An "X’ in a row _ _

labeled by Groupg; and in a column labeled by Disk rows, wherem is the number of rows in the-

j means that Diskj does not contain any column-unit parity 9,20_%539; _ .

from G,. (P5) C has (T" disks worth of data and®? disks

worth of parity.

Moreover, if an RDP/EVENODD/RS3-parity group is

The reason why Algorithm 2 fails to produce a desireHSEd in Algorithm 2 ther® also satisfies the following

array code in the above example can be explainQEODert'eS: . ) I

as follows. Even though thé-design spreads out the (P6) To reconstruct one failed disk, a porpoﬁ[—l of
columns of the2-parity groups evenly among the disks, the total content of each surviving disk needs to
the columns within each group do not play the same role _ P€ read; _ _ _

in the reconstruction of a lost column. More specifically{P7) To _reconstruct two failed disks, a portion

the P-column and the correspondir@-column do have % of the total content of each surviv-
different roles in the reconstruction of &-column. ing disk needs to be read.

Indeed, according to the reconstruction rule for RDP  prgof: Appendix(G. m
arrays stated in Fid.l 6, the reconstruction dbacolumn

requires the access to thé-column, but not to the)- When k = n, that is, there is no parity declustering

column. For example, even though both Disknd Disk involved, Theoreni II[.B states the familiar facts about
6 contain column-units frongs, the column-unit’; on an MDS two-failure tolerant array codé:hasn — 2 =
Disk 4 must be read, while the column-ur; on Disk @ disks worth of data an@ = 27” disks worth of
6 is not read (see Fi§. 114). If a balancegbarity group parity; to reconstruct one failed disk, a portiq;ﬁ—f of
is used instead, we will not have this problem, as evetie total content of each surviving disk needs to be read;
column in a balanceg-parity group plays the same roleand to reconstruct two failed disks, each surviving disk

in the reconstruction of a missing column. needs to be read in fulll(= %). Note that



the second property does not hold for most of knowresulting array codes divided by, the depths of the
MDS array codes in their original formulations. In factpalanced2-parity groupsG (see Algorithm 2). These
it only holds for these codes after some transformatiofigures depend on, &, and\.

such as the one in Examglell.2, is applied. The ingredient balanceg-parity groupsg of size k

f(3 < k < 20) can be constructed using the method
presented in Examp[eIIl.2. This method can be applied
to an RS code of lengttk for an arbitraryk > 3

to obtain a(k(k — 1)) x k balanced2-parity group
(m = k(k—1)). For an EVENODD code [3], this method
produces a(k(k — 1)(k — 3)) x k balanced2-parity
group (n = k(k — 1)(k — 3)), for everyk = p + 2
wherep is a prime. For an RDP codgl[9], this method

Example II1.9. In this example, we fix the number o
disks in the array to be = 20. The parity group size
k varies from3 to 20. The availability of a particulas-
(n,k, \) design can be found inl[7, Part Il, Table 4.37]
Note that a¢-design,t > 3, is also a3-design. In this
table we choose to be the smallest possible.

i A_| 1failure | 2 failures | Parity | depthin produces dk(k—1)(k—2)) x k balanced®-parity group

3 1 °.3% 10.5% 13.3 171 (m=k(k—1)(k —2)), for everyk = p+ 1 wherep is

4 1 10.5% 20.5% 10.0 57 2 brime '

5| 6 | 158% | 298% | 80 | 171 prime.

6 | 10 | 21.1% 38.6% 6.7 171

71 35| 26.3% 46.8% 5.7 399 Remark 111.10. Corbett introduced in his paterit![8] a
8 | 14 | 31.6% 54.4% 5.0 114 method to mixn/2 data disks from one array code with

9 | 28 | 36.8% 61.4% 4.4 171 n/2 data disks from another code to produce an array
10| 4 42.1% 67.8% 4.0 19 code that has data disks. When one or two disks falil,
11 | 55 47 .4% 73.7% 3.6 209 the reconstruction workload is distributed evenly to all
12 | 55 | 52.6% 78.9% 3.3 171 surviving data disks (but not to all data/parity disks). His
13 | 286 | 57.9% 83.6% 3.1 741 method actually uses theomplete3-(n,n/2, \) design

14 | 182 | 63.2% 87.7% 2.9 399 (X, B) where all(n/2)-subsets oft’ are blocks. In fact,

15 | 273 | 68.4% 91.2% 2.7 513 any self-complementar§-designs would work well with

16 | 140 | 73.7% 94.2% 25 228 his construction (a design is self-complementary if it
17 | 680 | 78.9% 96.5% 2.4 969 satisfies thatB € B if and only if X \ B € B). The

18 | 136| 84.2% 98.2% 2.2 171 Hadamard3-(n,n/2,n/4 — 1) design is such a design
19 | 17 89.5% 99.4% 2.1 19 (see [16]). Using a Hadamard design results in an array
20 1 94.7% 100% 2.0 1 code of onlym(n — 1) rows, wherem is the depth of

the original array codes. By contrast, the construction in

Fig. 15: Different parity group sizes lead to array codeg) nroduces an array code of an extremely large depth
with different performancesy= 20) m( n )
n/2)"

The third and fourth columns show the percentage of
data/parity units that have to be read on each surviving
disk in order to reconstruct one and two failed disks,
respectively. The fifth column presents the number of The generalization of Algorithm 2 to Algorithm 3
parity disks to be used when the corresponding paritelow that works for¢ — 1)-failure tolerant codes (> 2)
group sizek is used. The figures in the third, fourth,is straightforward.
and fifth columns only depend onandk. As expected,
when k increases, the percentage of units that have Adgorithm 3

IV. PARITY DECLUSTERING FOR(t — 1)-FAILURE
TOLERANT CODES VIA t-DESIGNS

be accessed for disk recovery increases, and the number
of parity disks used decreases. Thus, one has to trade
the storage efficiency for the reconstruction workload (on «
each disk): increasing storage efficiency, which is good,
leads to increasing workload during disk recovery, which
is bad, and vice versa. One extreme is wher= n, .
where there is no parity declustering. The array code
becomes a normal MDS array code, with two disks worth
of parities andl00% load on every surviving disk during
the reconstruction of two failed disks.

The figures in the last column are the depths of the

Input: n is the number of physical disks in the array
and k is the parity group size.

Step 1: Choose a balance@ — 1)-parity groupg

of sizek.

Step 2: Choose &-(n, k, \) designD = (X, B).
Step 3:For each blockB; = {b;0,...,b;x—1} € B,

0 <i < |B|, create a balance@ — 1)-parity group
G, as follows. Firstly,G; must have the same data-
parity pattern and the same reconstruction rul§ as
Secondly, thes columns ofG; are located on disks
with Iabelsbi,o, Ce ,bi71€_1.
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« Output: The n-disk array with|B| parity groups some requirements on the array code. A similar question,

and their layouts according to Step 3.

which is aimed to one-failure tolerant array codes, has

already been discussed by Schwabe and Suthetland [22].
Relevant¢-designs can be found inl[7, Part Il, Ta-Another open question is on the issue of constructing a
ble 4.37] and in the references therein. The ingrediebalancedt— 1)-parity group. In this work, we show that
balanced(t — 1)-parity groupgG in Algorithm 3 can be horizontalarray codes can be employed to produce such
constructed by applying the method in Example]11.2 tparity groups. However, the question of whetkertical
any MDS horizontal array code that tolerates 1 disk array codes can also be useful is still open.

failures. More specifically, suppose that the originalarra
code hask — ¢t + 1 data columns D) andt¢ — 1 parity
columns, namelyP;-columns,i = 1,...,¢ — 1. There
are(t — 1)!(tfl) ways to arrange the parity columns ofdi
the original array. For each of such arrangements, we
obtain a new array. By juxtaposing vertically all of these
(t—1)!(,*,) arrays, we obtain a balancétl— 1)-parity
group. The proof that the above method works for generaH
t is almost the same as for= 3. For example, fot = 4,
instead of considering justpg, rpg, andrgp, we now
need to consider other quantities, such'as,, rpp, p,, ]
orrp, p,p,. They are, in fact, all constants. Therefore, the[
arguments go the same way as in Exarfiple]lll.2. We will
not provide a detailed proof here.

Except from the well-known RS codes, some othefs
known MDS horizonta(t—1)-failure tolerant codeg (>
3) were studied by Blomeet al. [6], Blaum et al. [5],
[4], Huang and Xul[[14]. 4]

V. CONCLUSION

We propose a way to extend the parity declusterings]
technique to multiple-failure tolerant array codes based
on balancedt — 1)-parity groups and-designs { > 2). [6]
Balanced(t — 1)-parity groups can be obtained from any
known horizontal array codes that tolerate uptte 1
disk failures. Besidesi-design is a very well-studied 7
combinatorial object in the theory of Combinatorial De-
signs. Therefore, one of the advantages of our approagé]
is that we can exploit the rich literature from both Erasur
Codes theory and Combinatorial Designs theory. [9

The second advantage of the approach based-on
designs is its flexibility. By simply using different
designs in the array code construction, one can obtainia]
variety of different trade-offs between storage efficiency
and the recovery time. Note th@& = (X, B) whereB
consists of allk-subset ofX is a t-design (called the [11]
trivial design) for anyl < ¢ < k < n. Therefore, for any
given number of disks and any given parity group size
k < n, there always exists &(n, k, A) design for some [12]
A

One disadvantage of this approach is that sometimes,
the smallest-design still has an unacceptably large indep 3]
A, which leads to an impractically deep array code.
A natural question to ask is whether the depth of the
array code, in those cases, can be reduced if we relax

]
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the array code produced by Algorithm 2. Suppose that in
column-entries in each of the other columns. As eaah (and hence in everg;), to recover one (two) missing
column containg:(k — 1) column-entries, the portion of column, preciselyr; () entries have to be read from
content of each column that has to be accessed is  every other column.

k(k—2) k-2

k(k— 1) T L1 B. Proof ofC satisfying (P3)
First note that due to Corollafy B.2, each column of
APPENDIX B C contains precisely\; = % column-units.
PROOF OFTHEOREMIILGI Therefore, each column @f contains the same number

of units. Also, as each column df; (that is, each
column-unit ofC) contains the same number périty

The following results from Design Theory are usefulinits for all0 < ¢ < |B|, each column of contains the
in our discussion. same number oparity units. ThusC satisfies (P3).

A. Known Results from Design Theory



C. Proof ofC satisfying (P1)

According to Definitior1Il.1, eacl2-parity group can
recover up to two missing columns. Moreover, according
to Algorithm 2, no two columns of the same group
are located (as column-units) in the same columig of
Therefore( can tolerate up to two disk failures. Thds
satisfies (P1).

D. Proof of C satisfying (P2)

Suppose Disky of C fails. Let z be an arbitrary
surviving disk of C. According to Corollary[ BB, in

Disk x Disk y
Ug
Uy
L L1 [ 1]
— I — >

g;
Fig. 16: One disk fails

points/blocks language, there argblocks in5 that con-
tain both pointse andy of X. Translated to disks/groups
language, there arg, pairs of column-unitgu,, u,),
whereu,, is in Disk z, u, is in Disk y andu, andu,
are from the same-parity group. For such a pair of
column-units(u,, u,), in order to recovew,,, precisely
71 units have to be read from,. Therefore \a7; units
have to be read from Disk for the recovery of Disky.
This number of units is a constant for every pair of Disk
z andy. Hence, when one disk fails, the reconstruction
workload is uniformly distributed to all surviving disks.
Now suppose that Disk and Diskz of C fail. Let x
be an arbitrary surviving disk af. A column-unitu, in
Disk z is involved in the reconstruction of the two failed
disks if and only if one of the following three cases holds.

« Case 1:There exist column-units, in Disk y and
u, in Disk z so thatus, u,, andu, all belong to
some 2-parity groupg;. In this case, agj; loses
two columns, namely,, andu., 7 units have to be
read fromu, for the recovery of the lost columns.
According to the definition of &-design, there are
precisely\ such triples(ug, uy, u.).

12

Disk z Disk y Disk z

Ug

\ /

Uz

g
Fig. 17: Case 1

Case 2:There exists a column-unit, in Disk y
such that that:, and u, belong to some2-parity
group G; and moreover, none of the columns of
G, are located in Disk:. In this case, ag; loses
only one column, namely,, 71 units have to be
read fromu, for the recovery of this lost column.
According to Corollary B4, there are preciselg})
such pairs(ug, uy).
Disk x

Disk y Disk z

Uy

=\

Fig. 18: Case 2

e Case 3:There exists a column-unit, in Disk z

such that that:, andu, belong to some-parity
group G; and moreover, none of the columns of
G; are located in Disky. In this case, agj; loses
only one column, namely.,, 7, units have to be
read fromu, for the recovery of the lost column.
According to Corollary B#, there are precisely)
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such pairg(u,, u;). B. Proof ofC satisfying (P5)

We need to show thaf has@ disks worth of
data and®? disks worth of parity.

There are|B| 2-parity balanced groups and each
group consists ofm parity units (see Definition TIT]1).
Therefore, the total number of parity units@ns 2m|5|.
Uy ThereforeC contains
/ omlB| 2B 2%eiea  2n
M N AMeDm-2) Tk
Uy (k—1)(k—2)
L1 |

Disk = Disk y Disk z

disks worth of parity. We deduce th@tcontains
2n  (k—2)n

disks worth of data.

G;

C. Proof ofC satisfying (P6
Fig. 19: Case 3 ing (P6)

We need to prove that § is an RDP/EVENODD/RS
2-parity group then in order to reconstruct one failed
disk, a portion% of the total content of each surviving
disk needs to be read.

Suppose one column df is lost. According to Ap-
ATy +2/\§1)T1- pendix[B, \>7; entries must be read from each other

As this number is a constant for every three distinct disi@!umn for the reconstruction of the missing column.
z, y, and z, we conclude that when two disks fail, theSince each column af consists ofM/ entries, a portion

reconstruction workload is evenly distributed across all A(n=2) k-2
.. . )\27'1 k—2 mk—l k-2
surviving disks. = =

Therefore, in summary, when Disk and Disk z fail,
the number of units to be read from Disk for the
reconstruction is precisely

M )\(n—l)(n—Q)m n—1
APPENDIXC (=D k=2) o
PROOF OFTHEOREMIILS] of the total content of each surviving disk must be read.

Suppose the-parity groupg employed in Algorithm 2
hasm rows. Recall that;, i = 1,2, denotes the numberD. Proof ofC satisfying (P7)
of entries to be read from every other column when \We need to show that i is an RDP/EVENODD/RS
columns ofG are lost. IfG is an RDP/EVENODD/RS 2-parity group then in order to reconstruct two failed
2-parity group therr; andr, can be explicitly computed. disks, a portiont:-227—k-1) of the total content of

. A . 1)(n—2)
Indeed, according to Lemniall.4, we have each surviving disk needs to be read.
k—2 4 Suppose two columns of are lost. According to
nETECT () Appendix[B, A, + 2)\§1)n entries must be read from

When two columns of are lost, allk — 2 other columns each other column for the reconstruction of the two

have to be read in full for the recovery of the losfhissing columns. Thus, a portion

columns. Therefore ATy + 2)\8)71 ©)

T2 =M. ) M
A. Proof ofC satisfying (P4) of the total content of each surviving column needs to be

read for the recovery of two columns 6f Substituting

According to Corollary B.P, each column 6fcontains @), (8), @), and[(B) intol(6), the ratio in this equation
precisely A, column-entries. Moreover, each of these . pa simplified to

column-entries consists af: entries. Therefore, each

column of C consists of (k—2)2n—k-1)
A(n—1)(n—2) (n—1)(n —2)
IEDUED)

M=mMA=m

entries.
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