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Abstract—In this paper we present a framework to enable
data-intensive Spark workloads on MareNostrum, a petascale
supercomputer designed mainly for compute-intensive applica-
tions. As far as we know, this is the first attempt to investigate
optimized deployment configurations of Spark on a petascale
HPC setup. We detail the design of the framework and present
some benchmark data to provide insights into the scalability of
the system. We examine the impact of different configurations
including parallelism, storage and networking alternatives, and
we discuss several aspects in executing Big Data workloads
on a computing system that is based on the compute-centric
paradigm. Further, we derive conclusions aiming to pave the
way towards systematic and optimized methodologies for fine-
tuning data-intensive application on large clusters emphasizing
on parallelism configurations.

I. INTRODUCTION
The work described in this paper explores the performance

and scalability of Apache Spark [1], deployed on a real-
world, petascale, HPC setup, the MareNostrum supercom-
puter.1 Spark may be deemed as an evolution of Hadoop
[2], aiming to benefit from memory availability, elegantly
handling iterations and being suitable for both batch and
streaming jobs; overall it is shown to outperform Hadoop
for many applications by orders of magnitude [3], [4]. Our
framework is named Spark for MareNostrum (or Spark4MN)
and allows to efficiently run a Spark cluster over a Load
Sharing Facility(LSF)-based environment while accounting
for the hardware particularities of MareNostrum.
Apart from deployment, the next biggest challenge in

massively parallel big data applications is scalability and
proper configuration. Simply running on hundreds or thou-
sands of cores may yield poor benefits (e.g., as in [5])
or even degraded performance due to overheads [6]. We
deal with this issue and we aim to make the first step
towards systematic analysis of the several parameters and
optimized configuration. Spark4MN provides functionalities

1This work is partially supported by the Spanish Ministry of Economy
and Competitivity under contract TIN2012-34557, by the BSC-CNS Severo
Ochoa program (SEV-2011-00067), and by the SGR programme (2014-
SGR-1051) of the Catalan Government.

to evaluate different configurations in terms of cores per
execution managers, networking, CPU affinities, and so on.
This has allowed us to perform multiple optimizations and
to identify solutions to potential inefficiencies of a data-
centric framework running over a compute-centric infras-
tructure. More specifically, we evaluate the behavior of
two representative data-intensive applications, sorting and
k-means. We discuss the impact of several configuration
parameters related to massive parallelism and we provide
insights into how the job configuration on a HPC compute-
centric facility can be optimized to efficiently run data-
intensive applications. Overall, our conclusions, as presented
hereby, aim to assist both HPC administrators to deploy
Spark and Spark developers having access to HPC clusters
to improve the performance of their applications.
In the next section, we provide background information

about Spark. Sec. III discusses related work.The Spark4MN
job submission framework is presented in Sec. IV. Then,
we discuss the benchmarking applications (Sec. V) and
the experimental results, aiming to shed light onto the
parameters that have the biggest impact and their effective
configuration (Sec. VI). We conclude in Sec. VII.

II. APACHE SPARK
Apache Spark is an open-source cluster computing frame-

work. Memory usage is the key aspect of Spark and the
main reason that it outperforms Hadoop for many appli-
cations [3]. Spark is designed to avoid the file system as
much as possible, retaining most data resident in distributed
memory across phases in the same job. Such memory-
resident feature stands to benefit many applications, such as
machine learning or clustering, that require extensive reuse
of results across multiple iterations. Essentially, Spark is an
implementation of the so-called Resilient Distributed Dataset
(RDD) abstraction, which hides the details of distribution
and fault-tolerance for large collections of items.
RDDs provide an interface based on coarse-grained trans-

formations (e.g., map, filter and join) that apply the same
operation to many data items. Spark computes RDDs lazily
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the first time they are used in an action, so that it can pipeline
transformations; actions are operations that return a value
to the application or export data to a storage system. In our
work, we focus on cases where the aggregate memory can
hold the entire input RDD in main memory, as typically
happens in any HPC infrastructure.
Spark attempts to include all the transformations that can

be pipelined in a single stage to boost performance. Between
different stages, it is necessary to “shuffle” the data. The
shuffling of intermediate data constitutes the major perfor-
mance bottleneck of all MapReduce implementations and its
descendants, including Spark. When a shuffle operation is
encountered, Spark first flushes in-memory output from the
previous stage to the storage system (storing phase), possibly
storing also to disk if allocated memory is insufficient; then it
transfers the intermediate data across the network (shuffling
phase). Due to shuffling overhead, when employing m

more machines, it is very common to achieve speed-ups
considerably smaller than m; in general, shuffling overhead
is proportional to the number of machine pairs, i.e., O(m2).

III. RELATED WORK
In [5], a framework is described to enable Hadoop

workloads on a Cray X-series supercomputer. The authors
evaluate the framework through the Intel HiBench Hadoop
benchmark suite and a variety of storage backends, including
node local memory (RAM) storage, node local hard drive
storage, and a shared Lustre filesystem used as either a direct
file store or with HDFS layered over it. The results show
that, in most cases, local storage performed slightly better
than Lustre.The memory-resident implementation of Spark
is a key difference with Hadoop, and thus the results of
this work are not directly comparable with ours. In [7], the
performance of Spark on an HPC setup is investigated. This
work studies the impact of storage architecture, locality-
oriented scheduling and emerging storage devices. Our in-
vestigation is orthogonal, since we focus on scalability and
configuration properties.
In [8], the authors compare the performance of traditional

HPC setups against Hadoop-like frameworks over clusters of
commodity hardware with respect to the processing of data-
intensive workloads. They also propose a set of Big Data
applications as a benchmark to investigate and evaluate the
different paradigms. This work shows experimental results
for the k-means algorithm running on Hadoop, Mahout,
MPI, Python-based Pilot-k-means, HARP and Spark. In our
work, we also employ k-means as a benchmark application,
but we complement it with another one, for which the effects
of data shuffling are even more prominent, and overall we
perform a different kind of experiments. In addition, there
are several efforts that have investigated the deployment of
HPC applications on cloud-based data centers, e.g., [9], [10].
Efficient configuration of MapReduce environments is a

topic that has attracted a lot of interest recently. Some

proposals aim to optimally configure Hadoop through cap-
italizing on previous executions logs and using a what-if
engine to predict the behavior of the system under different
configurations (e.g., [11]). Other techniques employ task
profiling and optimization algorithms for searching the space
of all possible configurations (e.g., [12]). A large portion
of efforts have been devoted to addressing the problem of
skew and load balancing among workers (e.g., [13]) and
mitigating the impact of data shuffling (e.g., [14]). Never-
theless, the main research topic has been the development
and re-engineering of data management algorithms for the
MapReduce setting.There is no work to date that aims to
investigate the optimal configuration of Spark applications
on large clusters, apart from a few recommended best
practices’ tips in books, such as [15] and websites2. Our
work aims to scratch the surface of this important topic and
initiate the systematic research towards understanding how
to best utilize such an emerging dataflow framework on HPC
infrastructures.

IV. THE SPARK4MN FRAMEWORK

We have designed and developed a framework
(Spark4MN) to efficiently run a Spark cluster on
MareNostrum. Spark4MN runs over IBM LSF Platform
workload manager, but it can be ported to clusters with
different managers (e.g., Slurm manager) and does not rely
on Spark cluster managers, such as Apache Mesos and
Hadoop YARN. Spark4MN is also in charge to manage the
deployment of any additional resource Spark needs, such
as a service-based distributed file system (DFS) like HDFS.
Essentially, Spark4MN is a collection of bash scripts with
three user commands (spark4mn, spark4mn benchmark and
spark4mn plot). spark4mn is the base command, which
deploys all the Spark cluster’s services, and executes the
user applications. spark4mn benchmark is a test automation
command to execute the same user application with a
series of different hardware configurations. All the metric
files generated by a benchmark are finally gathered by
spark4mn plot.

Marenostrum Overview: MareNostrum is the Spanish
Tier-0 supercomputer provided by BSC. It is an IBM System
X iDataplex based on Intel Sandy Bridge EP processors at
2.6 GHz (two 8-core Intel Xeon processors E5-2670 per ma-
chine), 2 GB/core (32 GB/node) and around 500 GB of local
disk (IBM 500 GB 7.2K 6Gbps NL SATA 3.5). Currently the
supercomputer consists of 48896 Intel Sandy Bridge cores
in 3056 JS21 nodes, and 84 Xeon Phi 5110P in 42 nodes
(not used in this work), with more than 104.6 TB of main
memory and 2 PB of GPFS (General Parallel File System)
disk storage. More specifically, GPFS provides 1.9 PB for
user data storage, 33.5 TB for metadata storage (inodes and

2http://databricks.gitbooks.io/databricks-spark-knowledge-base/content/
best practices



internal filesystem data) and total aggregated performance of
15GB/s. The GPFS filesystems are configured and optimized
to be mounted on 3000 nodes. All compute nodes are
interconnected through an Infiniband FDR10 network, with
a non-blocking fat tree network topology. In addition to the
40 Gb/s Infiniband, 1 Gb/s full duplex Ethernet is in place.
With the last upgrade, MareNostrum has a peak performance
of 1.1 Petaflops.

Cluster setup and Spark application submission:
Spark4MN scripts read a configuration file, describing the
application and the Spark cluster configuration, provided
by the user (see below) and submits one or more jobs to
the MareNostrum workload manager. Once the cluster’s job
scheduler chooses a Spark4MN job to be executed, an ex-
clusive number of cluster’s nodes are reserved for the Spark
cluster and (if requested) for the DFS (e.g. HDFS) cluster
(may be the same nodes, depending on the configuration).
After the resource allocation procedure, Spark4MN starts
the different services. If a DFS is requested, its master
service (e.g. the HDFS namenode service) is executed first.
Then, all the DFS worker services (e.g. the HDFS datanode
services) are launched and connected to the master. Once
the DFS cluster has been setup the Spark setup is done in
the same way (wait for master to be ready, start workers). In
Spark4MN, the Spark master corresponds to the standalone
Spark manager, and workers are Spark worker services,
where the Spark executors are received and launched. The
cluster startup requires about 12 seconds. This is indepen-
dent of the size of the cluster (the number of nodes). Since
real world applications (e.g. PubMed article processing) may
run for dozens of minutes, this constitutes an acceptable
overhead. Each application is executed via spark-submit
calls. During each Spark job execution, intermediate data
is produced, e.g., due to shuffling. Such data are stored on
the local disks and not on DFS by default (as in [5], this
yields the best performance). Finally, Spark timeouts are
automatically configured to the maximum duration of the
job, as set by the user.

V. BENCHMARKING APPLICATIONS

We have selected two representative benchmarking appli-
cations, namely sort-by-key and k-means, which are also part
of HiBench3. We have run these applications over synthetic
data generated with the spark-perf Spark performance testing
framework 4 to allow for easy reproduction of our experi-
ments by others. The selected applications are characterized
by different challenges in terms of their efficient paral-
lelization. sort-by-key’s performance is largely bounded by
the communication cost during shuffling, whereas k-means
requires a significant amount of resources in terms of both
CPU and networking. These challenges are representative

3https://github.com/intel-hadoop/HiBench/
4https://github.com/databricks/spark-perf/

of two generic types of real applications: a) one where
(iterative) applications can be parallelized in a straightfor-
ward manner with relatively small shuffling/communication
cost between iterations, like k-means; b) another one where
the data shuffling cost is more prominent, with sorting
being the most representative example of this category since
it repartitions the complete dataset, while performing a
meaningful job. There are many different parameters that can
be configured in both the Spark framework (e.g., number of
nodes, cores per node, available memory, affinity, network
and storage, and so on) and within the selected benchmarks
(e.g., input data size, number of partitions, number of
iterations, number of centers, and so on), which renders the
efficient parallelization even more challenging.
k-means is a well-known clustering algorithm for knowl-

edge discovery and data mining. Spark’s MLlib includes
a parallelized variant of the k-means++ method called k-
means|| [16]. Overall, k-means is both a compute and
communication intensive application. When applied to a d-
dimensional dataset of n records, the computation complex-
ity is O(ndk), assuming bounded number of iterations. The
data transmitted over the network is not proportional to the
input size but to the k and d values and the number of
data partitions. In each iteration, each task reports the local
statistics per intermediate center using a reduceByKey trans-
formation. The master collects these intermediate results,
computes the global intermediate centers, which are then
broadcasted to all tasks for the next iteration. As such, there
is a clear trade-off between a lower degree of parallelism
and increased communication cost.In our experiments, the
intention has not been to modify the MLlib k-means||, but
to identify the best performing parallelization parameters,
when this algorithm runs on top of MareNostrum. On
the other hand, sort-by-key is a critical operation used by
many applications that helps in better revealing the pattern
of shuffle operations. More formally, the amount of data
transmitted over the network is O(n), where n is the amount
of input data records to be sorted.

VI. RESULTS
We have submitted and tested several thousands of jobs

to MareNostrum, but we describe only the results that
are of significance. Our runs include an extensive set of
configurations; for brevity, when those parameters were
shown to be either irrelevant or to have negligible effect,
we use default values. Each experimental configuration was
repeated at least 5 times. Unless otherwise stated, we report
median values in seconds. In most cases, we do not exploit
the full computational power of MareNostrum but use a
more limited amount of cores, motivated by the fact that
most Hadoop clusters to date are relatively small [17].
In all experiments, we allocate enough memory resources

so that RDDs can fit into the main memory.This, however,
does not mean that we do not utilize local and network



storage; access to local storage is inevitable due to the way
shuffling is handled, whereas for network storage, utilization
is performed for test purposes and involves evaluating the
overhead of reading source data. In this work, we mostly
focus on parallelism configurations, which are identified as
particularly significant in determining performance; thor-
ough investigation of storage alternatives, especially when
RDDs cannot fit in the main memory, are out of scope and
left for future work.

A. Performance and Scalability
The main goal of these experiments is to evaluate the

speed-up, scale-up, and size-up properties of the selected
algorithms. To this end, we use datasets up to hundreds
of GBs of raw data. The size of RDDs is reported to be
2-5 times larger than that; in our experiments 400GBs of
data in the sort-by-key application correspond to an RDD
of 1TB. The cluster sizes range from 128 cores (i.e., 8 16-
core machines) up to 4096 (i.e., 256 machines).
1) K-means speed-up: In the first set of experiments, we

keep the input dataset constant and we increase the size
of nodes/cores running the Spark application; whenever we
refer to nodes, we mean MareNostrum machines that run
the executors, while the driver always runs on a separate
machine; each machine is equipped with 16 cores and 32
GB of RAM. The main set-up of k-means is motivated by
the experiments in the Spark RDD and Shark papers [3], [4],
and we set the datasize to 100GBs. We distinguish between
3 cases: (i) 10M vectors of 1000 dimensions (10M1000d);
(ii) 100M vectors of 100 dimensions (100M100d); and (iii)
1B vectors of 10 dimensions (1000M10d). In each case,
the vectors were randomly generated in memory before
execution, k is set to 100, and we allow k-means to run for
exactly 10 iterations so that all time metrics refer to the same
amount of computation. The algorithmic complexity in all
cases is the same, but the three datasets behave differently.
The results from 128 (8 nodes) up to 512 cores (32 nodes)
are shown in Figure 1, where we can see that for large
datasets in terms of number of records, k-means can scale
well. In the figure, we present the performance for the most
efficient configurations; we discuss these configurations in
detail later.
There are three significant observations that can be drawn

from Figure 1. First, although the raw data are of the same
size containing 10 billion atomic elements thus being of
equal algorithmic complexity, their processing cost differs
significantly. Second, when there are 1000 dimensions, the
speed-up is smaller. This is attributed to the fact that the
extra overhead in data shuffling (same number of centroids
to shuffle but bigger) partially outweighs the benefits of
parallelism. Third, in practice, it is more expensive to
process larger datasets with smaller records, as shown by
the running times for the 1000M10d dataset. In those cases,
even the RDDs as Java objects are larger in size (by more
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Figure 1: Times for running k-means for 10 iterations.
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Figure 2: Times for running k-means for 20 iterations
showing the scale-up (top) and size-up capability (bottom).

than 20%), and the system is stressed more with regards to
memory during shuffling. The latter problem is alleviated
when we increase the aggregate memory through increasing
the number of nodes, and it is of no surprise that we can
observe super-linear speed-up when going from 8 to 16
nodes. Note that similar super-linear speed-ups have been
reported for Hadoop applications as well [6].
Finally, in [3], it is shown that the average time per

iteration when 400 cores are employed, where each core
is equipped with 4GB of memory, is approximately 33secs,
without considering the first iteration, which is significantly
more expensive. Our results are not directly comparable, as
we use up to 512 cores with 2GB of memory, however,
the average time per iteration can be as low as 10 secs
approximately, without omitting the first iteration. When
omitting the first iteration, for 32 nodes and the 100M100d
dataset, the average time per iteration drops to 2.2 secs,
which is lower than the number of 4.1 secs, recently reported
by Databricks.5

5R. Xin’s presentation “Performance Optimization Case Study: Shatter-
ing Hadoop’s Sort Record with Spark and Scala” during Spark Summit
East 2015.
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Figure 3: Speed-up (top), scale-up (bottom-left) and size-up
(bottom-right) capability for sort-by-key.

2) K-means scale-up: We process the same datasets, and
we now modify both the number of records and the number
of machines, i.e., the infrastructure scales-out. Apart from
the sizes reported above, we also test half and double values,
i.e., from 50 to 200GBs of raw data. Further, we increase
the number of k-means iterations to 20, in order to decrease
the standard deviation per iteration. The results are shown
in Figure 2(top). In this figure, we show both the average
and the median values. Ideally, all the plots should be
horizontal; our system behaves closely to that. The most
linear behavior is exhibited by the 100-dimensional dataset,
where the largest difference between the three settings is
no more than 15%. In line with the results of Figure 1,
the 1000-dimensional data set, although runs faster, is the
hardest to scale-up linearly, due to the significant increase
in the communication cost as explained earlier.
3) K-means size-up: We perform a third set of experi-

ments, to assess the capability of sizing-up. We keep the
number of nodes constant (either 16 or 32), and we gradually
increase the dataset from 100GBs to 200GBs (raw data
sizes). As shown in Figure 2(bottom), Spark4MN exhibits
a behavior where the curves are (almost) linear. Processing
100M 100-dimensional records takes 57.8 secs (resp. 95.8
secs) when using 32 (resp. 16 machines); the elapsed time
to run 20 iterations of k-means on a 200M dataset is 103.2
secs (resp. 174 secs). Moreover, when we process the 10-
dimensional dataset and we double the size, the processing
time grows from 181.3 to 365.1 secs, i.e., just over 2 times.
4) Sort-by-key speed-up, scale-up and size-up: In this

experiment, we sort string key-value pairs of 100 bytes each
(key: 10 bytes, value: 90 bytes). The amount of data to be
shuffled is equal to the amount of source data. This means
that there is a significant disk contention during shuffling that
stresses the commodity local hard disks. The contention is
aggravated by the fact that each local disk is shared among
16 tasks. Moreover, in this experiment we significantly
increase the maximum number of cores employed to identify
the turning point, where the overheads due to shuffling and
parallelism outweigh benefits.

Figure 3 shows the main results. The top figure refers to
sorting 100GB of raw data with degree of parallelism from
1024 up to 4096. We can see that, when going to 2048 cores,
there is an 1.38X speed-up. However, further increasing the
degree of parallelism to 4096, causes a slow down of more
than 10%. Of course, this is also due to the relatively small
amount of data processed; sorting 200GB of raw data with
4096 cores leads to speed-ups of 10% compared to the 2048
case. In Figure 3(bottom-left) we see that the scale-up curve
is not horizontal, thus clearly depicting the effects of data
shuffling overhead. Nevertheless, the size-up curve is almost
linear, as shown in Figure 3(bottom-right).
How do these figures compare to the 100TB sort behavior

reported by Databricks? This is hard to answer, but we
provide some indicative numbers. We consider only the
cases with 4096 cores, where the shuffling overhead is more
prominent so that the numbers are more representative (in-
stead of presenting the highest throughput observed with less
cores). The average sorting rate per core in the Databricks
case is 0.011 GBs/sec. In our case, it is 0.003GBs/sec. We
use similar types of processors. Databricks scientists use
6592 cores, whereas the maximum number of cores we use
is 4096 as already mentioned. The communication overhead
is proportional to the number of core pairs [6], and we have
less than 40% of core pairs than Databricks. However, in this
shuffling-intensive scenario, memory and disk is of crucial
importance, and our nodes are at least 4 times inferior in this
regard. Databricks cores have approx. 8 GBs of memory
(compared to 2GBs in our case) and each SSD disk is
shared among 4 cores (compared to a single SATA disk
shared among 16 cores in our case). Given all these, having
approximately 4 times lower average throughput per core is
another indication of the efficient deployment of Spark on
top of MareNostrum.

B. Parallelism Configuration for k-means
In the previous experiments, we showed the scalability

of the applications when run on our infrastructure. Here,
we examine the configurations that directly impact on par-
allelization. More specifically, we assess the impact of (i)
the degree of parallelism, (ii) the executor size, and (iii) the
processor affinity.
Regarding the degree of parallelism, in our benchmarks

(in both k-means and sort-by-key setup) the number of tasks
is equal to the number of RDD partitions. Given that we can
change the partitioning (increasing or decreasing the number
of partitions), we can experiment with varying number of
tasks over the same amount of cores (we keep the default
Spark configuration6 to allocate each task to a single core,
i.e., a single task not to be processed by multiple cores).
We experiment with cases that overall assign 1, 2 or more
partitions per core.

6http://spark.apache.org/docs/1.4.0/configuration.html
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1 16-core worker per node 4 4-core worker per node
NODE 0.9894 NODE 1.0366
SOCKET 1.7165 SOCKET 1.0541
CORE 11.532 CORE 3.2247

Table I: Impact of core affinities.

The results are that, for k-means, the best-performing con-
figuration is to have as many partitions as cores (contrary to
the suggestion in http://spark.apache.org/docs/1.4.0/tuning.
html). In our experiments, the performance degradation of
setting the number of tasks to 2 times the number of cores
can reach up to 31.59%, whereas we have also observed
some cases where doubling the number of tasks incurred
small improvements (of up to 3%). Two representative
examples are shown in Figure 4, where we process the
100M100d dataset with 8 and 32 nodes. The plots show how
the performance degrades when using 2 or 4 times more par-
titions than the number of available cores for three different
configurations regarding the allocation of workers per node.
When using 8 nodes and doubling the number of partitions,
very small improvements have been observed (when using
256 instead of 126 partitions). However, in those examples,
using 4 tasks per node can degrade performance up to 42%
for 8 nodes and up to 14.82% for 32 nodes (both configured
to run 4-core workers). The partition size did not seem
to have an impact on our experiments, i.e., the number of
partitions could not be derived by simply looking at the size
of RDDs.
Another important observation that can be drawn form

Figure 4 is that the number of spark workers for a given
number of cores is a configuration parameter, which requires
special attention. We performed experiments with different
distribution of the workers within each node (Spark4MN
allows for workers from 1 to 16 cores); for example, 2
exclusive cores per worker, 4 exclusive cores per worker,
shared cores, and so on.The larger the worker, the more tasks
it has to supervise and control. We experiment with workers
from 1 to 16 cores and the results show that, on average,
larger workers are preferable. 4 workers per node with 4
cores each can perform up to 30% worse than 2 workers with
8 cores each, or 1 worker per node with 16 cores. Figure 5
shows how the performance degrades when the 16 cores of
each node are divided into 1 to 16 workers. When processing
the 100M100d with 32 nodes, we can observe that the 2 8-
core workers configuration outperforms the setting with 16
single-core ones by a factor of 2.5, i.e, the same amount
of cores can yield 2.5 times higher running times. For the
10-dimensional dataset, the performance degradation due to
smaller executors is even higher.
Regarding the core affinity, allowing for overlap-

ping degrades performance significantly since k-means is
cpu0intensive. We use the 100-dimensional dataset, and
we modify the core affinities, testing the different options
mentioned in Section IV. Table I presents the normalized
values for 32 nodes. 1 corresponds to not setting any affinity,
thus allowing the Spark4MN/MareNostrum scheduler to
make decisions on resource allocation. We can observe that
forcing all cores of a worker to be on the same physical
machine may yield negligible benefits (very close to statis-
tical errors). However, when forcing joint use of physical
cores, then the performance starts degrading. For example,
pinning 16 requested cores to a single socket implies that the
corresponding tasks will run on 8 physical cores, and leads
to performance degradation by a factor of 1.71. If all 16
tasks are pinned to a single core, then the degradation is of
an order of magnitude. For settings, where the executors are
smaller, the negative effects of joint use of physical cores are
mitigated. Pinning all cores of an executor to a single socket
(containing 8 cores) does not lead to significant performance
penalty. However, trying to run 4 tasks on a single core,
increases the running time by a factor of 3.25. Finally,
Spark4MN gives the opportunity to request nodes that are
as physically close as possible to minimize the number of
switches in-between. In the 100-dimensional dataset, this has
not been observed to yield any benefits; on the contrary,
due to these restrictions, there were significant delays in
scheduling the job that reached up to 52 hours.

C. Parallelism Configuration for sort-by-key
We evaluate the impact of the degree of parallelism and

the executor size for sort-by-key. More specifically, we sort
1 billion records using 64 nodes. Figure 6(left) depicts
how the performance is affected when allocating 1, 2 or
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Figure 6: Impact of partition (left) and executor size (right)
for sort-by-key.

k-means (32 nodes)
Dataset Infiniband Ethernet
10M1000d 33.455secs 43.164secs
100M100d 34.649secs 35.879secs
1000M10d 103.282secs 108.303secs

sort-by-key (64 nodes)
Partitions Infiniband Ethernet
1024 31.824secs 40.622secs
2048 23.821secs 25.213secs

Table II: Impact of network.

4 partitions per core. Contrary to the previous case, we
observe speed-ups when there are 2 partitions per core, but
again, significant degradation for 4 partitions per core. This
behavior is attributed to the extremely shuffling-intensive
nature of the job. In other words, the extent to which
shuffling dominates plays a significant role in the optimal
number of tasks per core. Figure 6(right) is in line with
Figure 5. Having 2 8-core executors instead of 8 2-core
ones, improves on the running time by a factor of 2.79
leaving all the other parameters the same. This shows that
the worker size depends on the infrastructure rather than on
the application.

D. Impact of Network Interface and Storage Architecture
We conduct further experiments that (i) use the Ethernet

network instead of Infiniband and (ii) read the initial datasets
from DFS instead of generating in and reading from main
memory directly. For assessing the impact of the network
interface, we fixed the setting of k-means to 32 nodes and
2 8-core workers per node. Table II contains the results. We
can observe significant differences only for the 10M1000d
dataset, which incurs the highest communication cost due
to increased data shuffling. In this case, the performance
benefits of Infiniband amount to 22.5% compared to Ether-
net. In the other two cases, the benefits are limited to 3.5%
and 4.6%, respectively. Sort-by-key is also affected by the
network interface. When using a small number of partitions,
the relative difference is more than 27%, despite the fact
that the major bottleneck due to shuffling is storing on the
local disk rather than transmitting data over the network.
This difference gets significantly smaller as we increase the
number of partitions.
Regarding GPFS, we repeated the k-means experiment

with the 100-dimensional dataset (for 32 nodes). When read-
ing from GPFS directly, the median running time exceeds
200secs (5.47X increase). When reading from GPFS and

10M1000d 100M100d
partitions sort hash sort hash
512 1 0.936 0.825 0.81
1024 1.129 1.326 0.88 0.887
2048 1.673 1.829 1.059 1.036

Table III: Impact of the shuffling implementation mechanism
(normalized)

caching, the running time increase dropped to the half.
Reading from GPFS mainly impacts the first iteration of
the k-means algorithm. Even with data in memory, the first
iteration is 7-8 times more expensive than the subsequent
ones; when the data are read from GPFS the difference is at
two orders of magnitude. We conducted another experiment,
where we replaced the local temporary storage for shuffle
partitions with GPFS, for the sort-by-key case with 64
nodes. The results showed negligible differences. We also
experimented with deploying HDFS and storing temporary
data there rather than on local disks directly; such a setting
incurred a small overhead of a few seconds. More systematic
evaluation of storage alternatives is left for future work.

E. Additional Spark configurations
Spark contains more than one hundred configuration pa-

rameters, and understanding in depth the role and impact
of each parameter on performance is an open issue. In this
final part of experiments, we aim to review the parameters
that have been shown to affect the performance according
to the Spark’s website or other publications such as [7].
Shuffle manager: Since the version 1.2.0 of Spark, shuf-

fling has ceased to rely on hashing and employs a sort-
based approach. In general, sort is expected to perform
significantly better for large numbers of partitions, e.g., 15K,
relaxing the memory contention for the outgoing buffers. In
k-means, we experimented with fewer number of (larger)
partitions. In Table III, we show the normalized results for
2 of the datasets, 10M1000d, which suffers from increased
data shuffling, and 100M100d. In the former case, there
can be performance benefits at the order of 10%, whereas
the differences in the latter case are negligible. In that
experiment, we employed 32 nodes (64 8-core workers).
Compression: Compression is another important param-

eter, coming with inherent trade-offs. It may relax mem-
ory limitations at the expense of extra computational cost.
By default, compression is enabled during shuffling and
broadcasting, but is disabled for RDDs. However, to achieve
the 23 minutes record for sorting 100TB mentioned earlier,
compression has been totally disabled. We further investigate
this hint. Regarding k-means, for the 10M1000d dataset,
we observed speed-ups of more than 13% (for 32 nodes
running 64 8-core workers). When we fully de-activated
compression, the memory speed-ups for the 1000M100d
were less than 5%. The memory speedups for sort-by-key
ranged from approx. 6% (when sorting 1B records with 64



machines) to negligible ones (e.g., when sorting 2B records
with 128 machines).
Finally, we have observed that in cases of memory

limitation, for example when running k-means on 100GB
using 8 nodes, apart from compressions, two additional
configurations are beneficial. First, to increase the locality
wait threshold; this setting is also used in the 100TB sorting
case by Databricks. Second, since k-means does not have
any special memory requirements, we can allocate a larger
proportion of memory to hold RDDs.

VII. CONCLUSIONS
The research work presented in this paper explores the

feasibility and efficiency of deploying Apache Spark over
a real-world, petascale, HPC setup, such as MareNostrum.
To this end, we have designed and developed a framework,
called Spark4MN, to automate the usage of Spark over an
IBM LSF-based environment. We have also explored two
key algorithms, k-means and sorting, and we showed how we
can achieve scalability through proper configuration. Below,
we summarize the most important lessons, verified also by
additional experiments (not presented here due to space
constraints):
First, it is feasible not only to deploy a data-centric

paradigm on a compute-centric infrastructure, but also, to
achieve high performance in data-intensive applications.
Nevertheless, employing a lot of machines and cores does
not guarantee high-performance, unless followed by ju-
dicious configuration. Second, in our case, k-means, for
which data shuffling is not the dominant cost, performed
significantly better when we allocated only a single parallel
task on each core. For sort-by-key, which is shuffling-
intensive, allocating 2 tasks per core, exhibited the highest
performance. For even more shuffling-intensive scenarios,
the amount of tasks per core needs to be further increased.
This correlation between the significance of shuffling in an
application and the number of tasks per core applies to a
different infrastructure that we tested, too. Third, the size
of a spark worker/executor matters, and we observed that
having larger workers in terms of the number of cores is
beneficial for both types of applications. More specifically,
the recommended configuration for Spark4MN has been 8-
core workers. For an additional infrastructure tested, this
parameter also played a key role and the optimal setting
was also application independent (but largely different from
the one for Marenostrum). Fourth, GPFS overheads are
significant and may outweigh benefits stemming from opti-
mized parallelism configuration; optimized configuration of
secondary storage remains an important open issue.
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