
A Scalable Implementation of Information Theoretic
Feature Selection for High Dimensional Data

Anthony Kleerekoper∗, Michael Pappas†, Adam Pocock‡, Gavin Brown†, Mikel Lujan†
∗ School of Computing, Mathematics and Digital Technologies, Manchester Metropolitan University, UK

† School of Computer Science, The University of Manchester, UK
‡ Oracle Labs, Burlington, MA

Abstract—With the growth of high dimensional data, feature
selection is a vital component of machine learning as well as
an important stand alone data analytics tool. Without it, the
computation cost of big data analytics can become unmanageable
and spurious correlations and noise can reduce the accuracy of
any results. Feature selection removes irrelevant and redundant
information leading to faster, more reliable data analysis.

Feature selection techniques based on information theory are
among the fastest known and the Manchester AnalyticS Toolkit
(MAST) provides an efficient, parallel and scalable implemen-
tation of these methods. This paper considers a number of
data structures for storing the frequency counters that underpin
MAST. We show that preprocessing the data to reduce the
number of zero-valued counters in an array structure results
in an order of magnitude reduction in both memory usage and
execution time compared to state of the art structures that use
explicit mappings to avoid zero-valued counters.

We also describe a number of parallel processing techniques
that enable MAST to scale linearly with the number of processors
even on NUMA architectures. MAST targets scale-up servers
rather than scale-out clusters and we show that it performs
orders of magnitude faster than existing tools. Moreover, we
show that MAST is 3.5 times faster than a scale-out solution
built for Spark running on the same server. As an example of
the performance of MAST, we were able to process a dataset of
100 million examples and 100,000 features in under 10 minutes
on a four socket server which each socket containing an 8-core
Intel Xeon E5-4620 processor.

Keywords—Big Data, Data Analytics, Data Structures, Feature
Selection, Information Theory, Mutual Information, Parallel Pro-
cessing

I. INTRODUCTION

Feature selection is a component of machine learning
and can also be used as a stand alone data analytics tool
[1]. It identifies the parts of the data that are relevant to
the knowledge we seek and separates those parts from other
irrelevant or redundant parts. With the growth of data with very
high dimensionality, feature selection is becoming a critical
step in big data analytics. Without using feature selection, the
high dimensionality results in greatly increased computation
costs as well as undermining the accuracy of analysis because
of noise accumulation and spurious correlations [2].

Fortunately, in many large data sets a very large propor-
tion of the features are not relevant [3]. Feature selection
can greatly reduce the dimensionality of the data without

Dr Pocock’s work on this project was completed whilst he was at the
University of Manchester.

compromising analytical accuracy by removing irrelevant or
redundant features. Unfortunately, the high dimensionality of
the data that makes feature selection so necessary also affects
feature selection itself. Fast feature selection techniques are
needed and filter methods are the fastest techniques as they are
independent of any machine learning algorithm and rely only
on correlations inherent in the data [4], [5] (Section II-A). A
large number of filter methods are based on information theory,
specifically mutual information, to mathematically evaluate
the relevance and redundancy of data [6], [7] (Section II-B).
As well as using inherently faster methods, optimising their
implementation through efficient parallelisation is also crucial.

In this paper we describe an efficient, parallel and scalable
implementation of information theoretic operations as well as
some of the most popular filter methods, part of the Manch-
ester AnalyticS Toolkit (MAST). We consider the question
of which data structure to use to minimise memory use and
execution time. A basic building block of information theoretic
operations is the maintenance of a large number of counters
that store the number of times combinations of feature values
appear in the data. There is a trade-off between implicitly and
explicitly storing the mapping from the keys (feature values) to
the counters. If we store the mapping implicitly (e.g. in arrays)
then we can have faster access times but may have to store
zero-valued counters. On the other hand, an explicit mapping
never has to store zero-valued counters but has increased
access times (Section III).

In this paper we propose pre-processing steps to reduce
the number of zero-valued counters needed when using an
implicit mapping. We show that the resulting data structure,
which we call a tokenised array, uses an order of magnitude
less memory and is an order of magnitude faster than using
standard explicit mappings such as hash tables and balanced
binary trees (Section IV). We also describe some of the
parallelisation techniques used to ensure that MAST scales
linearly with the number of threads even on NUMA (Non-
Uniform Memory Access) server architectures (Section V).

MAST targets scale-up servers rather than scale-out clus-
ters. Recently, it has been observed that the majority of big data
analytics problems running on clusters are in the order of 10s
to 100s of Gigabytes and would therefore benefit more from
scale-up than scale-out [8], [9]. Compared to existing tools
that target single servers, MAST is orders of magnitude faster
even over small datasets. MAST is also capable of handling
very large datasets whereas existing tools could not process
more than 100,000 examples on our machine. We also compare
MAST to an existing information theoretic feature selection

package released recently for Spark [10] and find that MAST
is more than 3.5 times faster (Section VI).

II. FEATURE SELECTION

A. Feature Selection Techniques

The data used for feature selection is commonly formatted
as a two-dimensional matrix of values where each row rep-
resents one example and each column represents one feature.
Every example is associated with a class label which is the
value that learning algorithms aim to predict.

With the growth of big data - specifically high dimensional
data - it is becoming challenging to apply traditional machine
learning techniques. Not only is the computation time greatly
increasing but the quality of the models generated by the
machine learning algorithms are reduced by the plethora of
features. Spurious relationships can emerge as simple artefacts
of the data which are statistically true but reveal no true
knowledge about the underlying system [2], [3].

In this context, feature selection is vital because it identifies
a subset of the features that are actually relevant to the class
label. Consider, for example, a data set concerning the price of
cars. We know by experience which features are likely to be
relevant (e.g. the mileage) and which are likely to be irrelevant
(e.g. the colour of the wheel trim). In some cases a feature may
become redundant in the presence of another, for example we
might not need to know the age of a car if we know its mileage.
In more complex datasets or those for which we have little
experience we must rely on automated, statistical methods.

In many high-dimensional data sets, a majority of the
features are actually irrelevant [3]. Feature selection can iden-
tify a subset of features that are, ideally, the most relevant,
but it is clearly impossible to consider every possible subset
and therefore greedy methods are used. Typically this process
either starts with no features and adds one per iteration up to
some maximum (forward selection) or else starts with all the
features and removes one per iteration up to some minimum
(backwards elimination) [11]. In all cases, scores must be
assigned to subsets in order to rank them and either add or
remove the appropriate features.

In general there are two approaches to assigning these
scores: wrapper and filter methods. In wrapper methods the
score is based on the accuracy of a given machine learning
algorithm. The algorithm is trained on each subset and the
resulting model is used to predict the values of the class labels
for some testing data. The score for the given subset is the
accuracy or error of those predictions. In filter methods the
scoring function is independent of any learning algorithms.
Instead, each subset is given a score based on statistical
relationships between the features and the class labels.

Because filter methods do not include any machine learning
algorithm during their calculation of the scores they are known
to be the fastest methods [4], [5]. They rely on identifying
statistical relationships between the features and the class
labels such as correlations. Simple linear correlation tests, such
as Pearson’s, are limited in their ability to discern relationships.
As an alternative, methods using mutual information, have
emerged as the prime filter methods. Recently, more than 15
such techniques have been brought together under a common

mathematical framework as approximate iterative maximisers
of the conditional likelihood [6], [7].

B. Calculating Mutual Information

Mutual information is a way of quantifying the amount of
information that one random variable contains about another.
Another way of putting it is that the mutual information is
the information contained in one variable that is revealed by
a second one.

In information theory, the amount of information contained
in a variable is measured by its entropy, H(X). Entropy can
also measure the information of a variable conditioned on a
second, H(X|Y), which measures the amount of information
contained in a variable X given that we know all the informa-
tion contained in Y . Mutual information measures the amount
of information that is common to two variables. It is therefore
defined as the difference between the total information of a
variable and the information of that variable condition on a
second variable. That is, the mutual information is:

I(X;Y) = H(X)−H(X|Y).

In terms of probabilities, if the variable X has values
{x1, x2 . . . xi}, the probability that a sample of X has value
xi is p(xi) and the mutual information is defined as:

I(X;Y) =
∑
ij

p(xi, yj) log

(
p(xi, yj)

p(xi)p(yj)

)
. (1)

It is also possible to extend this idea to joint mutual in-
formation which gives a measure of the information contained
by a pair of variables about a third.

The feature selection component of MAST currently offers
a number of methods including Conditional Mutual Informa-
tion Maximisation (CMIM) [12] and Max-Relevance Min-
Redundancy (MRMR) [13]. MAST also provides APIs for
information theoretic values which facilitates the addition of
further methods.

III. STORING FREQUENCY COUNTERS

From Equation (1) in the previous section, we see that
in order to calculate mutual information we estimate the
probability of every combination of feature and label values.
That is, for every pair of features X and Y with label
L, we need to estimate the probability of the combination
(xi, yj , lk). An effective method of estimating this probability
is to adopt the histogram method based on counting the
frequency of occurrences in the data [14]. This method is
especially appropriate for big data because of the Strong
Law of Large Numbers which tells us that as we have more
examples the probability estimate converges almost surely to
the true probability.

Because probability estimates are required so
frequently, MAST provides data structures called
jointRandomVariable objects (jrv) that store the
frequency counts and provide information theoretic measures.
We handle the process of reading and processing the data and

TABLE I. SUMMARY OF THE THREE DATA STRUCTURES WE CONSIDER
FOR STORING THE COUNTERS

Data Structure Mapping Type Access Time Memory Requirement
Array Implicit O(1) O(n)

Hash Table Explicit O(1) on average O(n)
Balanced Binary Tree Explicit O(log n) O(n)

the jointRandomVariable objects provide interfaces for
other modules to make efficient use of the processed data.

The jrv objects constitute the main memory use because if
there are m features then (m2−m)/2 jrv objects are needed
(i.e. the number of pairs of m elements without repetition). A
crucial question, therefore, is which data structure for storing
the counters results in the fastest execution time and least
memory usage. In the remainder of this section we describe
the trade-offs involved and the preprocessing steps we take to
produce an efficient structure that we call a tokenised array.

A. Data Structure Trade-off

Each counter stores the frequency for a given combination
of feature and label values and can therefore be though of
as a <key, counter> pair where the key is of the form
(xi, yj , lk). There is a choice between explicitly or implicitly
storing the mapping between keys and counters. Explicitly
storing the mapping may result in additional processing time
for updates and inserts, but it ensures that we never store zero-
valued counters – i.e. counters for a combination of values that
never appear in the data. On the other hand, implicitly storing
the mapping can reduce the processing time but potentially
requires storing zero-valued counters in order to maintain the
mapping.

For example, suppose that in a given dataset the valid
values of feature X are {1, 2, 4} and for feature Y they are
{1, 2, 3}. An implicit mapping might store the counters in the
following key order: (1,1), (2,1), (3,1), (4,1) (for convenience
we do not include the label values). Although the key (3,1)
can never appear in the data because 3 is not a valid value for
feature X , there is no way to know this in advance. Therefore,
the counter corresponding to key (3,1) must be stored in order
to maintain the mapping. In contrast, if we store the keys
explicitly then we would not store an entry for key (3,1)
because it would never appear in the data.

We consider two standard data structures that explicitly
store keys but have fast average access times: hash tables and
balanced binary trees (in the form of Red-Black Trees). Both
offer O(n) space requirements where n is the number of items
being stored but differ slightly in their time complexity. Hash
tables have constant amortised access times but can have O(n)
time in the worst case. Balanced binary trees have O(log n)
access times in both the average and worst case. For implicit
mappings we consider an array-based structure which has
constant access times (see Section III-B for details). The three
structures are summarised in Table I.

Another difference, aside from their time complexities, is
the constant overhead of identifying a counter given a key. For
arrays, the mapping is implicit and so the key value directly
provides an index into the array. Hash tables have higher
overheads because of the need to compute the hash function to
find the counter address from the key. Balanced binary trees

also have higher overheads because the tree is traversed by
comparing keys.

Therefore, the trade-off is between potentially storing un-
necessary zero-valued counters but having fast access times
and having slower access times but never storing unnecessary
data. In the remainder of this section we describe preprocessing
steps we can take to reduce the number of zero-valued counters
stored in an array, which we then call a tokenised array.

B. Preprocessing for Tokenised Arrays

We have seen that there is a trade-off between storing zero-
valued counters and access time. Updating and later accessing
counter values is the dominant operation of MAST which
might lead us to assume that the reduced overhead of arrays
makes it the best choice. However, the problem of zero-valued
counters is potentially extremely severe.

Zero-valued counters can appear for two reasons. The first
is that a particular combination of values simply does not
appear in the data. The second is that a particular combination
of values is not valid, as in the key (3,1) in the earlier example.
We cannot prevent the first but we can preprocess the data to
prevent the second.

The second cause of zero-valued counters is potentially far
more severe because the valid values for a given feature can
be any set of discrete values 1. For implicit mapping to work
we have to be able to use the values of the features to directly
index the array. However, we do not know the valid values of
a feature when creating the arrays and therefore, we have no
choice but to have the lowest index as 0. If, in fact, the smallest
valid value for a feature is a large integer then we will have
to “pad” the entire range of invalid values with zero-valued
counters. Moreover, the valid values need not be consecutive
integers meaning that we may have to pad within the range of
valid values. These problems are so severe that, depending on
the data, we may consume the entire memory of any machine
with only zero-valued counters.

For example, consider a dataset in which a given feature
can only have values {15, 30, 45, 60}. Since we have no way
of knowing in advance that the smallest value is 15, we have
no choice but to store counters corresponding to keys 0-14
even though they will all be zero-valued. Similarly, we cannot
know that there are no valid keys in the ranges 16-29, 31-
44 and 46-59 and so we store a large number of zero-valued
counters.

To avoid this problem we propose two preprocessing steps
to remove the second cause of zero-valued counters and
thereby make arrays a feasible choice for storing counters. The
two steps are tokenisation and transposition and are illustrated
in Fig. 1.

The aim of tokenisation is to translate the true valid values
of a feature into a set of “tokens” which is a contiguous set of
integers beginning with 0. During tokenisation, the true values
of each feature are read and compared to a stored mapping
of values to tokens (see Fig.1(c)). If the value has been seen
before then it is replaced with the corresponding token, if
not, a new token is generated and a new mapping is created

1A discretisation tool is included with MAST to preprocess real-valued data

30

15

15

45

60

15

45

45

60

15

45
45 15 60 45 0 1 2 0

60 2

15 1

45 0

Block Processing Transposition Tokenisation
(a) (b) (c)

Fig. 1. Data is preprocessed for tokenised arrays in three steps. First the data is read in blocks. Those blocks are then transposed so that the consecutive values
of the same feature are in contiguous blocks of memory. Finally the feature values are converted into “tokens” which are consecutive integers.

and then the value is replaced with the new token. For our
example, if the original values were {45, 15, 15, 60, 30, 30, 45}
the corresponding tokens would be {0, 1, 1, 2, 3, 3, 0}.

For all subsequent operations the tokens are used and not
the original values. This does not affect the correctness of the
program, but has the advantage that the tokens can be used
to directly index the tokenised array. The only zero-valued
counters that will be stored are those corresponding to cases
where a combination of values is simply missing in the data,
which we cannot know in advance.

There are two inefficiencies with tokenisation. The first is
that we must store the mapping between original values and
tokens and this brings us back to the same problem we are
trying to solve with the counters. We note, however, we need
far fewer such mappings. Whilst we need O(m2) jrv objects
for m features we only need O(m) mappings for the tokens.
Moreover, each jrv object contains O(n3) keys if each feature
and the label has n valid values whereas each set of tokens
contains only O(n) keys.

The second problem is the time required to preprocess
all the data and tokenise it. Since the tokenisation process
is independent for each feature we note that it is perfect
parallelism. However, the benefit of parallelisation is hindered
by the format of the data. Consecutive values of a given
feature are separated by the values of all the other features and
therefore there could be potentially long strides leading to poor
performance. We therefore introduce a second preprocessing
step before tokenisation which we call transposition.

In transposition the layout of the input data is changed so
that each row now contains all the values of a given feature
(see Fig. 1(b)). Consecutive feature values will therefore be in a
contiguous block of memory which will enhance performance,
assuming a C-array layout.

Since the data may be very large we cannot efficient trans-
pose the entire dataset in one go and therefore we use block
processing during transposition, tokenisation and updating the
counters. A relatively small number of examples are read in a
block and then processed before the next block is read (see Fig.
1(a)). This avoids the danger of filling memory with the data
and having to offload some of it to disk during transposition
and tokenisation.

TABLE II. THE TWO MACHINES WE USED FOR TESTING

Sockets Processors per Socket Main Memory Operating System
Machine A 1 4-core Intel Core i5-760 6GB Ubuntu 13.04
Machine B 4 8-core Intel Xeon E5-4620 264GB Ubuntu 12.04 LTS

Fig. 2. The peak memory usage with arrays was consistently an order of
magnitude lower than with either of the alternative storage methods.

IV. COMPARING DATA STRUCTURES

In the previous section we introduced the three data struc-
tures for storing counters and the preprocessing steps required
for tokenised arrays. Here we show that the tokenised array
results in an order of magnitude reduction in both memory and
execution time compared to the alternatives - despite the added
overhead of preprocessing the data. The hash table structure
was implemented with the unordered_map container and
the balanced binary tree structure was implemented with the
map container from the Standard Template Library [15].

A. Memory Usage

The memory usage of MAST is determined primarily by
the number of features which determines how many jrv
objects there will be. The number of examples is important
only in as much as we need to create counters for every
combination of feature values. If there is only a small number

Fig. 3. The execution time of MAST increases exponentially with the number
of features but is approximately an order of magnitude faster with the chosen
storage system than with the alternatives.

of examples then many combinations may not appear in the
data. As the number of examples increases the likelihood of
seeing every valid combination at least once increases. For
each new valid combination a new counter is needed (at least
when keys are stored explicitly) but once all the counters have
been created any increase in the number of examples does
not affect the memory usage. Since our primary interest is for
big data we may reasonably expect to have a large number of
examples relative to the number of features and therefore we
only show results for the effect of the number of features.

To test the memory requirements of MAST with the three
structures we ran the feature selection tool using Valgrind’s
massif tool and recorded the peak memory usage [16]. The
experiments were run on Machine A in Table II.

In the first experiment we fixed the number of examples at
100,000 and varied the number of features, always selecting
10%. The results in Fig. 2 show (on a log-log scale) that the
memory requirement grows quadratically with the number of
features since we have (m2−m)/2 jrv objects for m features.
The array method uses approximately an order of magnitude
less memory than the alternatives which both have very similar
usage. The difference grows as the number of features grows,
starting at approximately 7.5 times less memory with only 10
features and rising to approximately 40 times and then 50 times
less with 1,000 features.

B. Execution Time

The results in Fig. 2 show that the tokenised array struc-
ture results in significantly less memory usage than with the
alternatives. Here we consider whether the preprocessing that
reduces the memory leads to increased execution time.

Fig. 3 shows the results when varying the number of
features. The overall execution time of MAST increases
quadratically with the number of features because the number
of pairs of features is proportional to the square of the number
of features. When using the tokenised array structure, the exe-
cution time is approximately an order of magnitude faster than
when using the other structures. The preprocessing required for

Fig. 4. The execution time of MAST increases linearly with the number of
examples but is approximately an order of magnitude faster with the array
data structure than with the alternatives.

the array structure turns out to be very fast, corresponding to
less than 5% of the total execution time even for very small
datasets and less than 1% for larger ones. Since updating and
accessing the counters is the dominant operation, the faster
operations of the tokenised array more than compensates for
the preprocessing time.

When varying the number of examples, Fig. 4 shows that
the execution time increases linearly. This is because the
total execution time is dominated by the time to update the
counters which is linear in the number of examples. The array
structure results in an order of magnitude speedup over the
other methods because of its lower overhead.

V. OVERALL SCALABILITY

As well as performing tokenisation in parallel, we have also
implemented the updating of the counters and calculation of
mutual information in parallel. Here we present experimental
results showing the impact of some of the optimisations and
of the overall scalability of the parallelisation. All of the
experiments in this section were conducted on our scaled-up
server, Machine B in Table II.

A. Avoiding malloc Locks

We implement parallelism throughout by parsing, transpos-
ing, tokenising, updating the counters and selecting the features
in parallel. Many of the stages require malloc operations
to alter data structure sizes during processing. For example
as new values are seen that have to be given new tokens or
when the jrv objects must grow bigger to accommodate new,
unseen tokens. Since the memory being assigned is shared
there is contention between threads requiring locks in order to
avoid errors. These locks can cause significant overhead during
parallel processing.

One way around this problem would be to pre-scan the
entire dataset so that the required sizes of all data structures
is known in advance. However, this approach is certainly
not suitable for big data because of the size of the datasets
involved. Doing nothing, however, is also not a viable option

Fig. 5. jemalloc brings a small overhead which causes additional
processing time during single-threaded execution but brings significant benefits
during multi-threaded execution.

Fig. 6. MAST scales very well on a single socket using the optimisations.
Here the results are for selecting 100 features from a datset of 1,000 examples
and 1,000 features.

because we are likely to have a very large number of malloc
operations and the overheads will become very significant.

MAST therefore makes use of the open-source jemalloc
package which provides an alternative implementation of
malloc designed to reduce the overhead of shared memory
accesses [17]. Fig. 5 shows the impact of using jemalloc
within MAST. It brings some added overhead which causes a
small increase in execution time when only a single thread is
being used but for multiple threads it results in significant im-
provements. Indeed, the relative improvement of jemalloc
over malloc increases as the number of threads increases
from 1.1 times speedup with 2 threads to 1.75 with 8.

B. Overall Scalability

Fig. 6 shows the scaling of the total execution time for
a relatively small dataset consisting of 1,000 rows and 1,000
features. In the example 10% of the features are selected which
means that the execution time is split approximately 70%-30%

Fig. 7. The scaling of MAST improves as the data becomes more complex
because the overheads become less significant.

between selecting the features and updating the counters. The
scaling for the feature selection part of the program (FS) is
slightly better than for the updating time (JRV) and therefore
the scaling overall is in between these two, slightly closer to
FS than JRV.

The optimisations and parallelism have resulted in scaling
that is close to linear even for this relatively small dataset.
The main reason for not achieving ideal, linear speedup is
that there is overhead in creating and destroying threads
during execution which increases with more threads. With
larger datasets, however, those constant overheads become
increasingly insignificant and the scalability asymptotically
approaches the ideal linear speedup.

C. NUMA Architecture

Scale-up servers are most likely to have not just multiple
cores but multiple sockets and adopt the NUMA (Non-Uniform
Memory Access) architecture. In the NUMA architecture,
main memory is physically divided and distributed among the
sockets. Each socket has a direct connection to the memory
“attached” to it but must use interconnects with the other
sockets to access the other parts of main memory. Access to
the attached memory is significantly faster than to other parts,
hence the name non-uniform memory access.

In NUMA machines there is often a first-touch policy
which means that a newly created object or data read from
disk is placed into the main memory attached to the socket
whose CPU created or read the data. If a different CPU on
a different socket wants to access that data it must access
it through the first socket and this can create a bottleneck.
To solve this problem, MAST creates objects in parallel so
that they are better spread among the sockets. The increased
overhead of creating threads to create objects is more than
compensated by the faster memory accesses during the course
of the program’s execution.

Fig. 7 shows how MAST scales on a NUMA server with
four sockets and 32 cores in total. When more threads are being
used there is significant overhead which causes the speedup to
slow down. Nevertheless, as the number of features increases
the scaling increases, approaching the ideal, linear speedup. Of

Fig. 8. Even when only using a single thread MAST is at least two orders of
magnitude of faster than InfoSel++ and at least one order of magnitude faster
than PengLab.

course, it is precisely with larger datasets that scaling becomes
more important and we show that it can approach near-
ideal scaling when the overheads of multi-threaded processing
become less important.

VI. COMPARISON WITH RELATED WORK

A. Scale-Up

There are a number of existing tools and programs that can
perform feature selection on scale-up servers. Here we briefly
describe the tools most similar to our own and show their
limitations in terms of information theoretic feature selection
(see Fig. 8).

Weka: Weka is the premier program for machine learning
produced by the University of Waikato [18]. The program is
primarily aimed at performing machine learning but also has
the capability of performing feature selection (which they call
attribute selection) and a number of approaches are provided.
In all there are 11 search methods available with 17 scoring
functions although not all are available for every data set.
Additional methods can be added from external packages.
Weka contains only one feature selection method based on
mutual information, called InfoGain, which ranks features
based on their mutual information with the class label.

PengLab: PengLab is a feature selection tool produced
by Hanchuan Peng which implements his proposed MRMR
algorithm [13].

InfoSel++: InfoSel++ is the newest tool and is designed for
information based feature selection [19]. It consists of a series
of C++ libraries with more than twenty selection methods and
is intended to facilitate rapid prototyping of new methods.
InfoSel++ can also be used as a stand alone program.

We compared MAST to Weka, InfoSel++ and PengLab on
Machine A (see Table II), a standard desktop. Since InfoSel++
and PengLab are only capable of single-threading we ran
MAST in single-thread mode, even though this negates the
parallelism built in to the framework.

Fig. 8 shows the execution times of the four tools for
datasets of 1,000 features with varying number of examples
on a log-log scale. The results show the limitations of the
alternative tools. PengLab failed for datasets with more than
1,000 examples and InfoSel++ failed for those with more
than 10,000. Weka ran out of Java heap memory during its
execution of a dataset with 400,000 examples after running for
more than 4 hours (the heap size was set to the maximum of
6GB). In contrast, MAST was able to perform feature selection
on datasets up to 1 billion examples without memory issues.

The results also show that MAST is an order of magnitude
faster than InfoSel++ and up to six times faster than PengLab,
even though it was only using a single thread which negated
many of its improvements. Weka, by contrast is faster than
single-threaded MAST for small datasets but for large data
becomes slower.

We note, however, that the comparison between MAST
and Weka is not a direct comparison of the same algorithm.
The information theoretic scoring function available in Weka
only considers the mutual information between each feature
indvidualy and the class label. It does not consider joint
mutual information between pairs of features or between pairs
of features and the label. Therefore, it is not as complex
as the feature selection algorithms implemented in MAST,
performing approximately m times less work where m is
the number of features. We include the comparison only for
completeness.

These results therefore illustrate the gulf in performance
between MAST and the alternative feature selection tools
targeted at single machines rather than clusters.

B. Scale-Out

A number of machine learning packages have been created
for scale-out clusters. Mahout offers a platform for scalable
machine learning algorithms [20]. It includes matrix decom-
position techniques for feature selection but not any based on
information theory. MLLib offers feature selection using the
Chi Squared method which tests for the independence of the
features with the class label but does not take into account the
relationship between features [21].

Recently, information theoretic feature selection methods
have been implemented for Spark [10]. In our experiments
we found that this implementation was unable to process a
dataset with 5,000 features. We compared MAST with the
Spark implementation on a dataset with 1 million examples
and only 1,000 features, both running on Machine B (Table
II) with Spark running standalone with one job per core. The
Spark implementation took 1,038 seconds whereas MAST took
289 seconds to process the dataset, a speedup of more than 3.5
times.

VII. CONCLUSIONS

Feature selection is vital for analytics of data with very high
dimensionality. Without it, the computational cost is extremely
high and spurious correlations can affect the validity of results.
Information theoretic feature selection methods are among
the fastest known methods and the Manchester AnalyticS
Toolkit (MAST) provides an efficient, parallel and scalable
implementation of the most popular such methods.

Information theory relies on probability estimation which
can be done effectively through the use of frequency counters.
In this paper we considered which data structure for storing
counters results in the smallest use of memory and execution
time. We consider the trade-off involved in the choice between
implicitly or explicitly storing the mapping from feature values
to counters. We show that by transposing and tokenising the
input data we can use an array-based structure which reduces
memory usage and execution time by an order of magnitude
compared to hash tables or balanced binary trees.

MAST also implements its stages in parallel, adding an
additional transposition stage to rearrange the data in memory
to facilitate parallel tokenisation. By transposing the data,
consecutive feature values are in contiguous memory blocks.
Furthermore, MAST uses the open-source malloc alternative,
jemalloc, to provide memory allocation that is better suited
to parallel programming.

Experimental results show that these optimisations have
extremely significant impact on the scalability of MAST. When
the number of threads is small, MAST has almost linear
scaling with the number of threads. On NUMA architectures,
with more threads and more overhead, MAST’s scalability is
hampered but as the number of features increases it approaches
linear scaling.

On a standard desktop and limiting MAST to a single
thread, we found that MAST is an order of magnitude faster
when compared to the most similar alternative, InfoSel++, and
many times faster than PengLab. Moreover, MAST was able
to handle very large datasets whereas InfoSel++, PengLab and
even Weka, failed to handle larger datasets. As an example of
possible performance, MAST was able to compute a solution
to a dataset of 100 million examples and 100,000 features in
under 10 minutes using 32 threads on four 8-core Intel Xeon
E5-4620 processors.

MAST targets scale-up servers as recently it has been
observed that a large number of big data analytics jobs are
more suited to scale-up servers than scale-out clusters. Many
scale-out packages do not offer information theoretic feature
selection and one recent offering was unable to match the
performance of MAST. Nevertheless, there will certainly be
situations where scale-out is necessary. We believe that the
optimisations and methods included in MAST for scale-up can
be successfully applied to scale-out to provide an efficient and
scalable implementation for extremely large data.

Another area of future work is to consider advanced data
structures for storing the counters. These structures can offer
sublinear memory requirements by only maintaining approx-
imations to the true counts. Early work suggests that these
structures may be useful for the probability estimation task
[22].

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement 318633 and from the
EPSRC under grants PAMELA EP/K008730/1 and AnyScale
Applications EP/L000725/1. M. Lujan is funded by a Royal
Society University Research Fellowship.

REFERENCES

[1] Isabelle Guyon and André Elisseeff. An introduction to variable and
feature selection. The Journal of Machine Learning Research, 3:1157–
1182, 2003.

[2] Jianqing Fan, Fang Han, and Han Liu. Challenges of big data analysis.
National science review, 1(2):293–314, 2014.

[3] Mingkui Tan, Ivor W Tsang, and Li Wang. Towards ultrahigh dimen-
sional feature selection for big data. The Journal of Machine Learning
Research, 15(1):1371–1429, 2014.

[4] Noelia Sánchez-Maroño, Amparo Alonso-Betanzos, and Marı́a
Tombilla-Sanromán. Filter methods for feature selection–a comparative
study. In Intelligent Data Engineering and Automated Learning-IDEAL
2007, pages 178–187. Springer, 2007.

[5] Verónica Bolón-Canedo, Noelia Sánchez-Maroño, and Amparo Alonso-
Betanzos. A review of feature selection methods on synthetic data.
Knowledge and information systems, 34(3):483–519, 2013.

[6] Gavin Brown. A new perspective for information theoretic feature
selection. In International Conference on Artificial Intelligence and
Statistics, pages 49–56, 2009.

[7] Gavin Brown, Adam Pocock, Ming-Jie Zhao, and Mikel Luján. Condi-
tional likelihood maximisation: A unifying framework for information
theoretic feature selection. The Journal of Machine Learning Research,
13:27–66, 2012.

[8] Antony Rowstron, Dushyanth Narayanan, Austin Donnelly, Greg
O’Shea, and Andrew Douglas. Nobody ever got fired for using hadoop
on a cluster. In Proceedings of the 1st International Workshop on Hot
Topics in Cloud Data Processing, page 2. ACM, 2012.

[9] Raja Appuswamy, Christos Gkantsidis, Dushyanth Narayanan, Orion
Hodson, and Antony Rowstron. Nobody ever got fired for buying a
cluster. Technical report, Technical Report MSR-TR-2013-2, Microsoft
Research, 2013.

[10] Sergio Ramrez-Gallego, Hctor Mourio-Taln, and David Martnez-Rego.
An information theoretic feature selection framework, 2015.

[11] Rich Caruana and Dayne Freitag. Greedy attribute selection. In ICML,
pages 28–36. Citeseer, 1994.

[12] François Fleuret. Fast binary feature selection with conditional mutual
information. The Journal of Machine Learning Research, 5:1531–1555,
2004.

[13] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based
on mutual information criteria of max-dependency, max-relevance, and
min-redundancy. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 27(8):1226–1238, 2005.

[14] David W Scott. Multivariate density estimation: theory, practice, and
visualization. John Wiley & Sons, 2015.

[15] Phillip James Plauger, Meng Lee, David Musser, and Alexander A
Stepanov. C++ Standard Template Library. Prentice Hall PTR, 2000.

[16] Nicholas Nethercote, Robert Walsh, and Jeremy Fitzhardinge. Building
workload characterization tools with valgrind. In IEEE International
Symposium on Workload Characterization (IISWC 2006), October 2006.

[17] Jason Evans. A scalable concurrent malloc (3) implementation for
freebsd. In Proc. of the BSDCan Conference, Ottawa, Canada. Citeseer,
2006.

[18] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H Witten. The weka data mining software: an
update. ACM SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

[19] Adam Kachel, Jacek Biesiada, Marcin Blachnik, and Włodzisław Duch.
Infosel++: Information based feature selection c++ library. In Artificial
Intelligence and Soft Computing, pages 388–396. Springer, 2010.

[20] Sean Owen, Robin Anil, Ted Dunning, and Ellen Friedman. Mahout in
action. Manning Shelter Island, 2011.

[21] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,
Sean Owen, et al. Mllib: Machine learning in apache spark. arXiv
preprint arXiv:1505.06807, 2015.

[22] Anthony Kleerekoper, Mikel Luján, and Gavin Brown. Exploring
sketches for probability estimation with sublinear memory. In Big Data,
2013 IEEE International Conference on, pages 79–86. IEEE, 2013.

