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Abstract

Recent advances in microscopy imaging and genomics have created an explosion of patient data in 

the pathology domain. Whole-slide images (WSIs) of tissues can now capture disease processes as 

they unfold in high resolution, recording the visual cues that have been the basis of pathologic 

diagnosis for over a century. Each WSI contains billions of pixels and up to a million or more 

microanatomic objects whose appearances hold important prognostic information. Computational 

image analysis enables the mining of massive WSI datasets to extract quantitative morphologic 

features describing the visual qualities of patient tissues. When combined with genomic and 

clinical variables, this quantitative information provides scientists and clinicians with insights into 

disease biology and patient outcomes. To facilitate interaction with this rich resource, we have 

developed a web-based machine-learning framework that enables users to rapidly build classifiers 

using an intuitive active learning process that minimizes data labeling effort. In this paper we 

describe the architecture and design of this system, and demonstrate its effectiveness through 

quantification of glioma brain tumors.
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I. Introduction

Pathology is a medical subspecialty that practices the diagnosis of disease. It is an area of 

medicine that is rich with data – from comprehensive molecular characterizations of tissues 

obtained by genomic and sequencing analysis, to high-resolution images of tissues obtained 

through various forms of microscopy imaging or histology. Pathologists use these data 

resources in various scenarios to render diagnosis, and often to assess prognosis and stratify 

patients into risk groups associated with expected outcomes. Microscopic evaluation of 

tissues is a time-honored practice in pathology, dating back more than a century [1]. The 

visual properties of tissues carry important information on disease-related processes – like 

the formation of blood vessels, or immune system response. In cancers, the shapes and types 

of cells present carry important diagnostic and prognostic information that are used to 

classify the tumor and assess how advanced a patient’s disease is. Manual evaluation of 

tissue histology by trained professionals is highly subjective, being prone to both 

considerable intra-observer and inter-observer variations [2]. The development of more 

objective quantitative metrics for evaluating pathology images remains a significant barrier 

in effectively using this resource in research and clinical care.

Recent advances in microscopy imaging now enable the digitization of massive volumes of 

histology data. Slide scanning microscopes can produce whole slide images (WSIs) that 

capture the entire histological detail of a tissue specimen in a single high-magnification 

image pyramid. These images contain billions of pixels each, with image dimensions in the 

tens-of-thousands of pixels. A single WSI can be digitized in around 2.5 minutes, and a 

single slide-scanning device can easily produce a terabyte of image data in a single day. 

These devices are increasingly being adopted in both clinical and research settings, resulting 

in an explosion of histology image data.

The creation of vast collections of WSIs creates an opportunity to extract information from 

this content using image analysis algorithms. By segmenting the microanatomy in these 

images and representing each discrete object with a set of quantitative features, these 

algorithms can produce objective and repeatable descriptions of the visual properties of 

patient tissues. When combined with genomic and clinical data, these representations can be 

used to improve accuracy of diagnosis and prognosis, and to reveal new insights into disease 

biology. Public repositories such as The Cancer Genome Atlas (TCGA) provide archives of 

WSIs, genomic and clinical data for more than 10,000 human subjects, spanning more than 

20 selected types of cancers. Each WSI can contain hundreds of thousands to more than one 

million cells – resulting in hundreds of millions of cells for just a single cancer type.

The visualization, management and analysis of this data bring new challenges for human-

computer interaction, big data management and machine-learning. For example, one of the 

most common applications is to apply learning algorithms to develop classification rules for 

phenotypes of interest, with the goal of quantifying the abundance of a specific type of cell 

for each patient in a cohort. Building systems that provide analysis capabilities to end-users 

(pathologists and biologically-oriented researchers) remains a significant barrier the 

utilization of quantitative histologic features.
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In this paper we present a software system developed to facilitate the application of 

machine-learning algorithms to classify histologic entities in datasets containing hundreds of 

millions of discrete objects. This system is browser-based, requiring only an Internet 

browser to access, and enables the visualization and interaction with image analysis features. 

The backbone of this system is a machine learning framework that enables users to rapidly 

build phenotype classifiers from massive datasets through an intuitive process called active 
learning that improves classifier performance while reducing data labeling efforts. This 

system makes the following contributions:

1. Scalable browser-based visualization algorithm-derived annotations for 

WSIs with a million or more discrete objects.

2. An active learning strategy for intelligent sampling of samples to reduce 

training effort and batch effects.

3. Heatmap-based visualization of classifier metrics as feedback of classifier 

accuracy and to guide labeling efforts.

In the sections that follow we discuss the design and architecture of this system and 

demonstrate its utility using data from TCGA to quantify angiogenesis in glioma brain 

tumors in an analysis of over 100 million cells.

A. Related Work

A number of related works have addressed problems related to the analysis and management 

of data in the digital pathology domain. A data model and spatial database for scalable 

management of pathology image data was presented in [3]. Several comprehensive reviews 

of image analysis of WSIs are available [1, 4, 5].

Integrated systems for the visualization, management and analysis of digital pathology data 

are not common. The FARSIGHT toolkit is a comprehensive software platform for 

managing and analyzing microscopy images [6, 7]. It provides extensive functionality for the 

segmentation and classification of microscopy image data, including some active learning 

capabilities, but is intended for traditional microscopy modalities with limited fields and 

does not scale to support WSI images. The Bio-Image Semantic Query User Environment 

(BisQue) is a cloud-based system for the management, visualization and analysis of 

bioimages. It provides support for whole-slide image formats through OpenSlide and its 

database can scale to large numbers of annotations, but does not provide fluid visualization 

when the number of objects/annotations scales to millions per image [8]. The Open 

Microscopy Environment (OME) is a solution for the storage and analysis of large-scale 

microscopy data, but has traditionally focused on images generated by traditional 

microscopy with limited fields of view, with limited WSI functionality added only recently 

[9]. None of these systems provides the functionality needed for scalable interactive learning 

on large WSI datasets.

Perhaps the most common analysis task in histology datasets is the classification of cells and 

other microanatomic entities [10, 11]. Information about disease processes and patient 

prognosis are often encoded in the types of cells present in a sample and how their shapes 

vary. The traditional approach to developing machine learning classifiers in any application 
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is through the passive learning [12]. In passive learning, a domain expert first creates a 

training set of labeled examples containing both positive and negative examples for the 

phenotype of interest, and the features and labels of this training set are used to develop a 

classification rule. The trained classifier is then applied to a test set of examples independent 

of the training set to estimate the generalization error on the problem domain and predict 

how it will perform on future unseen data. In passive learning, training is a one-time event 

with no interaction or feedback between the classifier and domain expert.

One issue with passive learning approaches in “big” datasets is selection bias [13]. With an 

abundance of data, the domain expert will tend to select “text book” training examples that 

unambiguously represent each class, and can avoid ambiguous examples entirely. This 

leaves large swaths of the feature space unexplored and does not adequately constrain the 

classifier, potentially increasing generalization error. Active learning, which involves the 

strategic selection of training data by an objective algorithm, has been shown to overcome 

this problem in general machine-learning problems [14–16]. In the active learning paradigm, 

a sampling strategy is used to select training examples for the expert to label, using a 

criterion that predicts which examples are most likely to improve classifier performance. 

This process is iterative, with the expert labeling a small set of objectively selected examples 

in each round. The classifier is updated with each new round of feedback and then all 

samples are re-evaluated for their potential to improve the newly updated classifier. Active 

learning has been shown to achieve a much better generalization performance with fewer 

labeled examples required [14–16].

Active learning has not been widely employed in biomedical imaging applications due to the 

complex software infrastructure needed to facilitate visualization and interaction with 

possibly terabytes of image data, and to collect and manage user feedback. CARTA is an 

active learning framework aimed at bioimage classification. The main focus of this 

framework is the ease of interactive annotation [17]. It makes use of self-organizing maps to 

cluster similar images together for display. Based on the distance from a labeled image, 

other images can be automatically labeled thereby reducing the amount of effort needed. In 

[18] , the focus is on improving classification accuracy by using a class balanced active 

learning strategy. This work involves WSIs but is focused on classification of fields of view 

with a focus on balancing performance for under-represented target classes. A system for 

scoring high-content screening image datasets was presented in [19] where the user is 

queried to correct classification errors, but without active learning metrics used to pr redict 

impact on classifier performance or to minimize labeling effort.

The infrastructure needed to effectively train and apply machine-learning algorithms on 

large WSI datasets has been largely overlooked outside of the commercial domain. For 

active learning and other interactive approaches, the scale and complexity of WSI data 

requires that significant attention be paid to a variety of considerations including user 

interface, data management and high performance computing. This motivated us to develop 

a comprehensive system that could enable end users to effectively build machine-learning 

classifiers from large WSI datasets using active learning.
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II. A Web-Based System for Interactive Classification of Whole-Slide 

Pathology Data

We have created a web-based system for active learning classification on pathology WSI 

datasets. The system has four major components: 1. The learning server - updates the 

classifier, selects new samples to be labeled by the user and generates heat maps. 2. The 

image server - Provides whole slide image pyramids that allow the user to zoom and pan 

through the whole slide images. 3. Database - Contains the centroids and boundaries of all 

the segmented cells 4. Web application - User interface to the system. The system 

architecture is presented in Figure 1. In this section we review the design and 

implementation of each of these components and their role in creating a functioning WSI 

active learning system.

The interactive nature of our system implies an expected responsiveness - while a hard real-

time response is not required, delays measured in more than several seconds will diminish 

the user experience. As we strove to avoid delays in the system as a whole, there were two 

areas of particular concern: 1. Scalable visualization of whole-slide images and annotations 

and 2. Implementing a responsive sampling strategy when possibly hundreds-of-millions of 

samples are available.

A. Image Analysis Features and Segmentation Boundaries

Our system accepts as input a set of WSI images, in any of the vendor formats supported by 

the OpenSlide library, and a collection of image analysis object boundaries and features in 

simple text and HD5 formats. The boundaries and features are application specific, and can 

be generated by any number of algorithms depending on the analysis goals. An example of 

the data we used in this study is shown in Figure 2 and described in detail in [20]. In short, 

we segmented cell nuclei and calculated a set of 48 descriptive features describing the 

nucleus of each individual cell.

B. Scalable Visualization

Building object classifiers requires that the user be able to visualize and interact with raw 

WSI data and the objects annotated by image analysis. A single WSI can contain over 

108,000 by 86,000 pixels at maximum magnification, and contain a million or more discrete 

object annotations. Display of this type of content requires a multi scale approach as used in 

Google satellite maps – users must be able to pan and zoom seamlessly and without delay 

through pyramidal representations of each slide that can contain well over 10GB of raw 

pixel data. In addition to the WSI content, each WSI contains up to a million or more objects 

that must be rendered seamlessly. These annotations not only inform the user about the 

boundaries and location of each object, their colors can be used to encode dynamic metadata 

- like object class or membership in the training dataset - that changes as the classifier is 

updated as the user provides labels for training examples. It is possible that tens of thousands 

of annotations are to be displayed at once while maintaining the ability to pan smoothly 

through the image.
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For visualization of image data, we used the Cancer Digital Slide Archive 

(cancer.digitalslidearchive.net) for the visualization of whole-slide images [21]. This system 

uses OpenSeadragon, a Javascript based open-sourced solution for zoomable pyramid 

viewing, and OpenSlide, a library to support access to pyramids in proprietary WSI file 

formats [22]. This provides a basic viewer window which can be sized on any webpage and 

that enables users to zoom and pan through a WSI at any resolution.

The scalable display of 1+ million annotations has not been implemented previously in any 

published WSI viewer. We achieved this using a vector graphics (SVG) format combined 

with spatial caching as illustrated in Figure 3. A dynamic SVG of object boundaries is 

generated for the view currently displayed in the viewport, as well as the immediately 

surrounding areas that are not visible. This SVG is populated on the fly with (x,y) boundary 

coordinates from the database, and color coded to represent each object’s class and inclusion 

in the training dataset. The most common action in viewing WSIs is a panning event, and so 

caching objects in the adjacent views that are not yet visible enables smooth rendering of 

object boundaries as the user pans. Objects that move outside of this cache window are 

deleted, and the objects are also not displayed at low magnifications where they are not 

discernable. At this point the system will switch to a heatmap view that is described below to 

represent the concentration of objects of a given class. Figure 4 shows the slide viewer in 

various states.

C. Responsive Selection Strategy for Training Examples

The interactive nature of active learning imposes computational demands on machine 

learning algorithms. With the user providing iterative feedback, the sampling strategy must 

scan through a large number of examples to select the next examples for labeling. A typical 

dataset for cell nuclei can contain from tens to hundreds of million objects that need to be 

classified and evaluated by the sampling strategy at each iteration, placing constraints on the 

choice of classifier and sampling strategy to provide responsiveness.

Our system employs uncertainty sampling as an active learning strategy. The idea is that 

most classifiers produce not only a class label, but also a measure of certainty when 

performing classification – by selecting examples that appear ambiguous to the classifier, we 

can explore uncharted regions of the feature space and improve classifier performance. For 

histologic datasets, there is a spectrum ranging from the positive to the negative class with 

those examples lying near the class boundary sometimes very difficult or impossible to 

differentiate.

We implemented uncertainty sampling using a Random Forest classifier, chosen for their 

speed and resistance to overfitting. The random forest is a collection of individual tree 

classifiers that each vote on the label of the sample. In this case, classifier uncertainty is 

measured as the consistency of votes, with a vote of 50/50 being ambiguous. To calculate the 

uncertainty score for each sample Ui, the positive class probability from the votes was 

normalized to be centered at 0 and have a range of −1 to 1. We then adjusted the uncertainty 

score to reflect the number of samples from each slide in the training dataset:
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(1)

where N is the training set size, and Ns is the number of examples from image s in the 

training set. This adjustment is made to balance the training set and to mitigate batch effects 

by encouraging even representation from each image in the training dataset. For our 

implementation, we used the random forest implementation from the OpenCV library that is 

highly parallel and that supports multithreading.

III. User Experience and Workflow

The web application provides a primary interface for the user to access all the functions of 

our system. From here the user can build a classifier, view WSIs or download data such as a 

training set or the results of a classifier being applied to a specific WSI or dataset. The 

viewport allows the user to zoom and pan through a whole slide image from any of the 

datasets, to display the boundaries of objects identified by image analysis, and to view 

classification results for these objects. When a learning session is active, the classifier is 

built from the current training set. When there is no training set, the user can choose to load 

a classifier built in a previous session.

The user initiates an active learning session by selecting the dataset to use and naming the 

classifier, positive and negative classes. In this first iteration the entire dataset is unlabeled. 

The first step prompts the user to “prime” the training set by selecting four examples from 

each class. The process that follows progressively builds the training set by selecting 

examples for labeling and acquiring feedback from the user (see Figure 5). At each iteration 

the classifier is updated, eight new examples are selected by the sampling strategy, and the 

interface automatically directs the user to these examples to visually review them and 

provide labels so that they can be added to the training set. This continues until the user is 

satisfied with the accuracy of the classifier, at which point the results can be saved, exported 

or applied to another dataset.

To better facilitate browsing of classification results, a heatmap view is available to visualize 

metrics of the updated classifier as a heatmap overlay in the viewport (see Figure 6). As the 

classifier learns and evolves, the distribution of object certainty scores Ui tends to skew more 

and more towards certainty. To help the user navigate the classification results, we rank the 

WSIs by their median classification uncertainty, placing at the top those slide images 

containing cells that are more likely to be misclassified. An uncertainty heatmap and a 

positive class heatmap is generated for each WSI to display the spatial distribution of class 

labels and classifier uncertainty in each WSI. The user can select WSIs from this list and use 

these heatmaps to rapidly zoom in on regions where the classifier is less confident in its 

decisions. Misclassified cells encountered in this viewing process can also be added to the 

training set separate from the sampling strategy.
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IV. Results - Classifying Angiogenesis in Brain Tumors

To evaluate our system, we focused on classifying endothelial cells in glioma brain tumors. 

Endothelial cells create a thin layer of cells that make up the lining of blood vessels. The 

development of blood vessels or “angiogenesis” in brain tumors is a signal of disease 

progression and a negative prognostic indicator. Additionally, many new cancer therapies 

like Avastin aim to target blood vessels as a mechanism of containing tumor growth.

We deployed our system on a high performance server with dual 12 core 2.5GHz Intel Xeon 

processors (48 threads total), 128 GB of main memory, 1.2 TB of solid-state storage and 

13TB of raid storage. All experiments were run with this configuration.

To test scalability of the sampling strategy we measured the elapsed runtime of the sample 

selection with datasets ranging from 11 million to 100 million cell nuclei objects. Timings 

were averaged over 10 total experiments for each condition. Figure 7 shows the timing 

results for the sample selection strategy. The time increases nearly linearly with the number 

of objects in the dataset as expected, with a maximum delay of 18.2 seconds for the 100 

million cell dataset.

To test the classification accuracy of our system, we created an independent test dataset of 

160 endothelial and 161 non-endothelial cells. A classifier was trained over 18 sampling 

iterations, labeling 169 samples total, 46 samples added by fixing (5 were ignored as 

incorrectly segmented). The ROC curve for this classifier and test set are shown in Figure 8. 

The classifier achieves an area-under-curve of 0.902.

To generate further evidence of the effectiveness of this classifier, we used the genomic data 

from TCGA to explore the correlations between the abundance of endothelial cells in each 

sample, and the expression of endothelial specific molecular markers in these samples. 

PECAM1 is the platelet endothelial cell adhesion molecule that is highly specific to 

endothelial cells. We used the available mRNA expression data from 21 samples 

corresponding to slides in our system, and correlated PECAM-1 expression in these samples 

with the proportion of endothelial cells in each WSI. The correlation between a patient’s 

PECAM-1 and endothelial cell abundance in these samples was 0.61 (see Figure 9).

A. Conclusion and Future Work

Whole-slide imaging combined with image analysis provides a quantitative means to gain 

insights into the disease processes that unfold in tissues at the microscopic scale. While 

many gains have been made recently in developing scanning hardware and image analysis 

algorithms, the infrastructure needed to enable clinicians and researchers to extract 

meaningful information from this rich data resource has been relatively under-developed.

This paper demonstrates a system that enables end-users to efficiently build accurate 

classifiers of microanatomy in whole-slide pathology image datasets that contain many 

millions of examples. We show that given a suitable infrastructure that addresses user 

interface, data management and machine learning considerations, it is possible to train an 

accurate classifier with reasonable user effort. Employing active learning to guide classifier 
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development was effective in creating an accurate classifier with a very small number of 

training examples. Accuracy was validated with both hand a hand labeled dataset, and by 

independent means using genomic data associated with the tissue images.

Further scaling of the active learning framework requires additional hardware resources and 

better algorithmic approaches. For the 48 threads available on the test system, a dataset of 

100 million samples takes an average of 18 seconds per iteration. While this is not 

unreasonable for end users, times of 1 minute or more may limit the utility of such a system 

in practice. The development of sampling strategies that can effectively identify labeling 

candidates without exhaustively scanning the unlabeled examples is desirable. Such a 

strategy could leverage the statistics and modality of the dataset via pre-clustering to avoid 

exhaustive evaluation. In our future research we plan to investigate these ideas, and extend 

the implementation of this system to address multiclass classification problems.
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Figure 1. 
A web-based system for interactive classification of WSI datasets. All components are 

coordinated by a browser-based user interface and web application. A WSI image server 

provides image content to the interface to facilitate visualization of results. The database 

enhances visualization by serving the boundaries of image analysis objects for overlay onto 

WSI content. The machine-learning server implements the active learning sampling strategy 

and performs scalable and timely classification.
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Figure 2. 
Image analysis algorithms can be applied to delineate and characterize microanatomic 

objects in WSI images. Each WSI contains billions of pixels and up to a million or more 

discrete objects. Here, delineated cell nuclei (light blue) from brain tumor tissue are 

depicted. The test data used for our system characterizes each cell nucleus with a set of 48 

features describing their shape, size and texture.
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Figure 3. 
Spatial caching enables the scalable display of annotations with up to a million or more 

objects per slide. A database holds the (x,y) coordinates of object boundaries (cell nuclei in 

this case). A dynamic SVG is created to render the objects within the current viewport, as 

well as objects in regions adjacent to the viewport (spatial locality). This provides smooth 

rendering in the event that the user pans to an adjacent region. Object boundaries are color-

coded to represent dynamic metadata like the object’s class and membership in the training 

dataset.
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Figure 4. 
The browser-based slide viewer used in our active learning system. From left to right, top to 

bottom: (a) The browser viewport enables the user to select a WSI and to pan and zoom to 

any region in that image. (b) Object boundaries identified by image analysis algorithms can 

be displayed. (c) These boundaries are color-coded based on dynamic metadata for each 

object like predicted class or membership in the training dataset. Here the green boundaries 

encode cells that are classified as endothelial cells.
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Figure 5. 
The active learning process. An objective sampling strategy scans the unlabeled samples to 

identify those that will improve the classifier the most. The user labels a small set of the 

samples, the classifier is updated, and the cycle begins again.
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Figure 6. 
Heatmap view of classifier uncertainty to aid user review. WSIs are ranked in terms of 

median uncertainty and presented to the user as a sorted list (left). A heatmap of the 

classifier uncertainty is available for each slide as an overview layer in the slide viewport 

(right). This helps the user rapidly navigate to regions where the classifier is uncertain of its 

decisions in order to assess the accuracy of the current classifier.
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Figure 7. 
Execution time of sampling strategy for various dataset sizes. Times shown were averaged 

over 10 sampling iterations.
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Figure 8. 
The classifier trained by our framework achieved an AUC of 0.9 when tested against 321 

independent examples.
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Figure 9. 
Genomic data was used to validate classifier accuracy. Here we correlated the mRNA 

expression of an endothelial specific marker (PECAM1) with the abundance of endothelial 

cells in 21 slides consisting of over 11 million cells.
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