
Graph Analytics using the Vertica Relational Database

Alekh Jindal∗ Samuel Madden∗ Malú Castellanos? Meichun Hsu?

∗CSAIL, MIT ?Vertica, HP Software

Abstract
Graph analytics is becoming increasingly popular, with a deluge of
new systems for graph analytics having been proposed in the past
few years. These systems often start from the assumption that a
new storage or query processing system is needed, in spite of graph
data being often collected and stored in a relational database in the
first place. In this paper, we study Vertica relational database as
a platform for graph analytics. We show that vertex-centric graph
analysis can be translated to SQL queries, typically involving table
scans and joins, and that modern column-oriented databases are
very well suited to running such queries. Specifically, we present
an experimental evaluation of the Vertica relational database sys-
tem on a variety of graph analytics, including iterative analysis, a
combination of graph and relational analyses, and more complex 1-
hop neighborhood graph analytics, showing that it is competitive to
two popular vertex-centric graph analytics systems, namely Giraph
and GraphLab.

1. INTRODUCTION
Recent years have seen growing interest in the area of graph data

management from businesses and academia. This focus on graphs
arises from their use in a number of new applications, including so-
cial network analytics, transportation, ad and e-commerce recom-
mendation systems, and web search. As a result, a deluge of new
graph data management systems have been proposed. In particular,
many systems focus on graph analytics, e.g., efficiently computing
statistics and other metrics over graphs, such as PageRank or short-
est paths. These graph analytics workloads are seen as quite differ-
ent from traditional database analytics, largely due to the iterative
nature of many of these computations, and the perceived awkward-
ness of expressing graph analytics as SQL queries (which typically
involves multiple self-joins on tables of nodes and edges). Exam-
ples of these new systems include a number of so-called “vertex-
centric” systems (e.g., Pregel [1], Giraph [2], GraphLab [3], Trin-
ity [4], and Pregelix [5]).

1.1 Why Relational Databases?
Given the popular demand for graph analytics, a natural question

is whether or not traditional database systems really are a bad fit for
these graph analytics workloads? This question arises because, in
many real-world scenarios, graph data is collected and stored in a
relational database in the first place and it is expensive to move data
around. Given this, if it is avoidable, users may prefer not to ex-
port their data from the relational database into a graph database.
Rather, they would like to perform the graph analytics (with com-
parable performance) directly with the relational engine, without
the expensive step of copying data into a file system (or distributed
storage system like HDFS), in order to be processed by a graph
system, and then (possibly) back into the relational system for fur-
ther processing. Indeed, some early efforts to implement graph
queries in relational databases [6, 7, 8] have shown promise in this

regard, but have typically only evaluated one or a small number of
benchmarks, and not demonstrated the feasibility of implementing
an efficient, general-purpose graph engine in a relational system.

Apart from the need to avoid copying data in and out of file sys-
tems, graph engines suffer from another limitation. As graphs get
larger and larger, frequently the users want to (or will have to) select
a subset of a graph before performing analysis on it. For example,
it is unlikely that a user will run a single-source shortest path query
on the entire trillion node Facebook graph — this would be pro-
hibitively slow on any system. Rather, it is more likely that users
will run several shortest paths queries over different subsets of the
graph (e.g., the N-hop neighbors of some particular user.) Further-
more, real-world graphs have vertices and edges accompanied by
several other attributes. For example, edges in a social network may
be of different types such as friends, family, or classmates. Simi-
larly nodes may have several attributes to describe the properties
of each person in the social network, e.g., their username, birth-
date, and so on. Given such metadata, an analyst would typically
do some ad-hoc relational analysis in addition to the graph anal-
ysis. For instance, the analyst may want to preprocess and shape
the graph before running the actual graph algorithm, e.g., filtering
edges based on timestamp or limiting the graph to just close friends
of a particular user. Similarly, he may want to analyze the output of
the graph analysis, e.g., computing aggregates to count the number
of edges or nodes satisfying some property, or other statistics. Such
pre- and post- processing of graph data requires relational operators
such as selection, projection, aggregation, and join, for which rela-
tional databases are highly optimized.

In addition to combining relational analysis, several graph anal-
yses compute aggregates over a larger neighborhood. For example,
counting the triangles in a graph requires every vertex to access
its neighbors’ neighbors (which could potentially form the three
vertices of the triangle). Likewise, finding whether a vertex acts
as a bridge (weak ties) between two disconnected vertices requires
every vertex to check for the presence of edges between its neigh-
bors, i.e. the 1-hop neighborhood. Vertex-centric interfaces like
Pregel [1] are tedious for expressing the above queries, as they re-
quire sending neighborhood information to all its neighbors in the
first superstep and then performing the actual analysis in the sec-
ond superstep. SQL, on the other hand, is a much more powerful
and general purpose language for capturing such analyses. For ex-
ample, in Vertica, we can express triangle counting as a three-way
self-join over the edge table very efficiently [7]. Similarly, we can
detect weak ties using two inner joins (to get the two vertices on
either side of the bridge) and one outer join (to make sure that the
two vertices are not connected by an edge). Thus, by simply adding
more joins, SQL is more flexible at expressing such graph analyses.

Finally, the query optimizer in a relational database picks the
best plan for the multi-join queries and the system can take care of
re-segmenting the data when needed. As an example, the optimizer
may decide to fully pipeline the triangle counting query and never
materialize the intermediate output. This is in contrast to static

1

ar
X

iv
:1

41
2.

52
63

v1
 [

cs
.D

B
]

 1
7

D
ec

 2
01

4

query execution plans in typical graph analytics systems such as
Giraph. Furthermore, since graph manipulations in Giraph are not
implemented as operators, it is difficult to modify or extend the
Giraph execution pipeline. Relational databases, on the other hand,
are extensible by design.

1.2 Why Column Stores?
Graph analytics typically involves scan-oriented table joins fol-

lowed by aggregates, which are highly suited for column-oriented
relational databases like Vertica. In an earlier effort, we compared
the performance of different relational data stores over graph queries
and column stores were a clear winner [9]. This is due to combi-
nation of several features in modern column stores, including effi-
cient data storage (vertical partitioning and compression), vector-
ized data access, query pipelining, late materialization, and numer-
ous join optimizations. Furthermore, in contrast to the narrow ta-
bles in raw graphs, the presence of metadata results in wide vertex
and edge tables, where column stores will perform especially well
with as they only need to access the columns that are relevant for
the analysis.

In this paper, we describe four key aspects necessary to build
high-performance graph analytics in the Vertica column-oriented
database. First, we look at how we can translate the logical query
plans of vertex-centric graph queries into relational operators and
run them as standard SQL. Although vertex compute functions can
be rewritten into pure SQL in some cases, we find that table UDFs
(offered by many relational databases, including Vertica) are suffi-
cient to express arbitrarily complex vertex functions as well. Sec-
ond, we show several query optimization techniques to tune the
performance of graph queries on Vertica. These include consid-
ering updating vs replacing the nodes table on each iteration, in-
cremental evaluation of queries, and eliminating redundant joins.
Third, we outline several features specific to a column-store like
Vertica that makes it well suited to run graph analytics queries. Fi-
nally, we show how Vertica can be optimized using table UDFs
to run iterative graph analytics in-memory, which significantly re-
duces the disk I/Os (and overall query time) at the cost of higher
memory footprint.
Contributions. In summary, our key contributions are as follows:

(1.) We take a closer look at vertex-centric graph processing, using
the Giraph system (a popular graph analytics system) as an exam-
ple. We show that vertex-centric graph processing can be expressed
as a query execution plan, which in the case of Giraph is a fixed
plan that is used to run all Giraph programs. We then show that this
plan can be expressed as a logical query plan that can be optimized
using a relational query optimizer (Section 2).

(2.) We show how we can translate this vertex-centric plan into
SQL, which can be run on standard relational databases. We de-
scribe several query optimizations to improve the performance of
vertex-centric queries and describe Vertica specific features to run
these queries efficiently. As a concrete example, we discuss the
physical query execution plan of single source shortest path on Ver-
tica. Lastly, we show how Vertica can be extended via table UDFs
to run the entire unmodified vertex-centric query in-memory and as
a single transaction (Section 3).

(3.) We provide an extensive experimental evaluation of several
typical graph queries on large, billion-edge graphs in Vertica. We
compare it with two popular vertex-centric graph processing sys-
tems, GraphLab and Giraph. Our key findings are: (i) Vertica has
comparable end-to-end performance to these popular vertex-centric
systems, (ii) Vertica has a much smaller memory footprint than
other systems, at the cost of much greater disk I/O, (iii) We can

public void compute(Iterable<IntWritable> messages) {

// get the minimum distance
if (getSuperstep () == 0)

setValue (new DoubleWritable(Integer .MAX VALUE));
int minDist = isSource () ? 0 : Integer .MAX VALUE;
for (IntWritable message : messages)

minDist = Math.min(minDist, message.get ()) ;

// send messages to all edges if new minimum is found
if (minDist < getValue() . get ()) {

setValue (new IntWritable (minDist)) ;
for (Edge<?, ?> edge : getEdges()) {

int distance = minDist + edge.getValue () . get () ;
sendMessage(edge. getTargetVertexId () , new IntWritable (distance)) ;

}
}
voteToHalt () ; // halt

}

Listing 1: Single Source Shortest Path in Giraph.

extend Vertica to trade an increased memory footprint for faster
runtimes, comparable to that of GraphLab, (iv) relational engines
naturally excel at combining graph analysis with relational analy-
sis, and (v) relational engines can implement more complex 1-hop
neighborhood graph analyses, which vertex-centric programming
cannot express efficiently (Section 4).

2. BACKGROUND
Vertex-centric graph processing, first proposed in Pregel [1], has

become the most popular general purpose way of processing graph
data, due to its ease-of-use and proven ability of engines based on
it to scale to large graphs [3, 10, 4, 11, 5]. In this section, we first
recap the vertex-centric programming model. Then, to understand
the graph processing in a typical vertex-centric system, we analyze
the execution pipeline in Giraph, an open-source implementation
of Pregel, and express it as a logical query plan. Other Pregel-
like systems use a similar static query plan, though some may use
different scheduling strategies, e.g. GraphLab.

2.1 Vertex-centric Model
In the vertex-centric programming model, the user provides a

UDF (the vertex program) specifying the computation that happens
at each vertex of the graph. The UDFs update the vertex state and
communicate by sharing messages with neighboring vertices. The
underlying execution engine may choose to run the vertex-centric
programs synchronously, as a series of supersteps with synchro-
nization between then, or asynchronously, where threads update a
representation of the graph in shared memory. Programmers do not
have to worry about details such how the graph is partitioned across
nodes/threads, how it is distributed across multiple machines, or
how message passing and coordination works. Each vertex may
be on the same physical machine or a different, remote machine.
The concept is similar to MapReduce, where programmers only
specify map and the reduce functions without worrying about the
system details. To illustrate, Listing 1 shows how a programmer
would implement single source shortest paths (SSSP) using Gi-
raph (other Pregel-like systems have very similar syntax). In this
program, each vertex compares its current shortest distance to the
source to the distance reported by each of its neighbors, and if a
shorter distance is found, updates its distance and propagates the
updated distance to its neighbors.

2.2 Giraph Execution Pipeline
We now provide a detailed study of execution workflow used in

Giraph, to illustrate the key steps in vertex-centric program execu-
tion. Giraph runs graph analyses as user provided vertex-centric

2

Hash-based shuffling  
No sorting, as
opposed to Hadoop
Intermediate data is
not persisted

G
ira

ph
 M

ap
pe

r

Scan

RecRead

Shuffle

W1 W2 W3 W4

… … …

Server Data

vertexCompute
Shuffle

partition store
W1 W2 W3 W4

… … …edge store
message store

synchronizeMaster

Server Data

vertexCompute
Shuffle

partition store
W1 W2 W3 W4

… … …edge store
message store

synchronizeMaster

Server Data

cleanup
store

partition store
W1 W2 W3 W4

… … …edge store
message store

synchronizeMaster

Split
G=(V,E)HDFS

G’=(V’,E’)HDFS

…

In
pu

t S
up

er
st

ep
Su

pe
rs

te
p

1
O

ut
pu

t S
up

er
st

ep
…

…
.

Physical Execution Pipeline Logical Query Plan

V E

M

V’ U M’

vertexCompute

γ
V

V.id=E.from

V.id=M.to

Figure 1: Giraph Physical Execution Pipeline and its Logical
Representation.

programs on top of Hadoop MapReduce. The user provides the
computation that happens at each vertex of the graph and Giraph
takes care of running it in a distributed fashion over a large cluster.

Specifically, Giraph executes the vertex-centric query as a map-
only job (the GiraphMapper) on Hadoop MapReduce. However, it
uses the Hadoop MapReduce infrastructure only to allocate nodes,
using mappers simply as containers for Giraph workers. These map
jobs run for the duration of the job, repeatedly executing the com-
pute UDF and communicating with other mappers over sockets. To
illustrate this data flow, the left-side of Figure 1 shows the physical
execution of Giraph with four workers W1 to W4. The execution
in Giraph is organized into supersteps, wherein each worker oper-
ates in parallel during the superstep and the workers synchronize
at the end of the superstep. During the InputSuperstep, the system
splits the input graph into a list of vertices V and list of edges E
as it reads data from HDFS. Each worker reads the split assigned
to it, parses it into vertices and edges, and partitions them across
all workers, typically using a hash-based partitioner. Each worker
then builds its ServerData, consisting of three components: (i) the
partition store to keep the partition vertices and related metadata,
(ii) the edge store to keep the partition edges and related metadata,
and (iii) the message store to keep the incoming messages for this
partition. At the end of the InputSuperstep, i.e. when all work-
ers have finished creating the ServerData, the workers are ready to
perform the actual vertex computation. In each superstep after the
InputSuperstep, the workers run the vertexCompute UDF for the
vertices in their respective partition and shuffle the outgoing mes-
sages across all workers. The workers then update their respective
ServerData and wait for everyone to finish the superstep (the syn-
chronize barrier). Finally, when there are no more messages to pro-
cess, the workers store the output graph back in HDFS during the
OutputSuperstep. Thus, we see that similar to MapReduce execu-
tion in Hadoop [12], Giraph has a static hard-coded query execution
pipeline.

2.3 Logical Query Plan

Hash-based shuffling  
No sorting, as
opposed to Hadoop
Intermediate data is
not persisted

G
ira

ph
 M

ap
pe

r

V
M

V’ U M’
vertexCompute

γV

V.id=E.from
V.id=M.to

E

E

M

vertexCompute

γ
V

V.id=M.to

M’

V’

V

V.id=E.from

E

vertexCompute

γV1

V1.id=E.to

V’

V1
V2

V2.id=E.from

1 2 3

V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

Γd’=min(V2.d+1)

σd’<V1.d

V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

Γcc’=min(V2.id)

σcc’<V1.cc V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

ΓV1.r=0.15/n+0.85* 
sum(V2.r/V2.outD)

Giraph logical 
query plan

Pushing down the  
vertexCompute UDF

Replacing M
by V E

Figure 2: Rewriting Giraph Logical Query Plan.

The above Giraph physical execution pipeline can also be rep-
resented as a logical query plan, consisting of relational operators
and the vertexCompute UDF. The right-side of Figure 1 shows such
a simplified logical query plan. Assuming that the graph structure
itself remains unchanged1, the Giraph execution pipeline is essen-
tially a distributed vertex update query. That is, it takes the set of
vertices V (each having an id and a value), edges E (each having a
source and a destination vertex id) and messages M (each having
destination vertex id and the message value), runs the vertexCom-
pute UDF for each vertex, and produces the set of output vertices
(V ′) and messages (M ′), as shown on the right in Figure 1.

The downside of the above vertex-centric query execution in Gi-
raph is that all graph analysis is forced to fit into a fixed query
plan. This is not desirable for several analyses. For example, trian-
gle counting, which requires a three-way join over the edges table,
is very difficult to fit in this model. Moreover, the Giraph logical
query plan is not really implemented as a composition of query op-
erators, making it very difficult to modify, extend, or add function-
ality to the execution pipeline. For instance, the join with M is im-
plemented as a sort merge join; changing to another join implemen-
tation would require several deep changes in the system. Further-
more, even if one could extend or modify the physical execution
pipeline, e.g. switch merge join to hash join, Giraph cannot make
dynamic decisions regarding the best physical plan. For example,
hash join may be suitable for very large numbers of intermediate
messages and merge join better for small numbers of messages.
Giraph does not have this flexibility. Finally, Giraph is a custom
built query processor restricted to a specific type of graph analysis.
It cannot be used for more broader types of queries, e.g. multi-hop
analysis, or end-to-end graph analysis, e.g. analyzing the output of
graph analysis, or combining multiple graph analyses.

In the rest of the paper, we show how relational databases can
overcome many of these limitations and, in particular, how Vertica
is highly suited for a variety of graph analytics.

3. GRAPH ANALYTICS USING VERTICA
In this section, we describe how vertex-centric queries can be run

in SQL on a relational database like Vertica. The goal of this sec-
tion is to show how we can: (i) translate vertex-centric graph analy-
ses to standard SQL queries, (ii) apply several query optimizations
to improve the performance of graph analyses, and (iii) leverage
key features of Vertica for efficiently executing these graph analyt-
ics queries.

3.1 Translation to SQL
In the following, we describe how we rewrite and translate the

Giraph logical query plan to standard SQL.

3.1.1 Eliminating the message table
1This is true for several typical vertex-centric graph analysis, such
as PageRank, shortest paths, connected components, etc.

3

Hash-based shuffling  
No sorting, as
opposed to Hadoop
Intermediate data is
not persisted

G
ira

ph
 M

ap
pe

r

V
M

V’ U M’
vertexCompute

γV

V.id=E.from
V.id=M.to

E

E

M

vertexCompute

γ
V

V.id=M.to

M’

V’

V

V.id=E.from

E

vertexCompute

γV1

V1.id=E.to

V’

V1
V2

V2.id=E.from

1 2 3

V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

Γd’=min(V2.d+1)

σd’<V1.d

V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

Γcc’=min(V2.id)

σcc’<V1.cc V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

ΓV1.r=0.15/n+0.85*  
sum(V2.r/V2.outD)

Giraph logical 
query plan

Pushing down the  
vertexCompute UDF

Replacing M
by V E

(a) SSSP

Hash-based shuffling  
No sorting, as
opposed to Hadoop
Intermediate data is
not persisted

G
ira

ph
 M

ap
pe

r

V
M

V’ U M’
vertexCompute

γV

V.id=E.from
V.id=M.to

E

E

M

vertexCompute

γ
V

V.id=M.to

M’

V’

V

V.id=E.from

E

vertexCompute

γV1

V1.id=E.to

V’

V1
V2

V2.id=E.from

1 2 3

V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

Γd’=min(V2.d+1)

σd’<V1.d

V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

Γcc’=min(V2.id)

σcc’<V1.cc V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

ΓV1.r=0.15/n+0.85*  
sum(V2.r/V2.outD)

Giraph logical 
query plan

Pushing down the  
vertexCompute UDF

Replacing M
by V E

(b) CC

Hash-based shuffling  
No sorting, as
opposed to Hadoop
Intermediate data is
not persisted

G
ira

ph
 M

ap
pe

r

V
M

V’ U M’
vertexCompute

γV

V.id=E.from
V.id=M.to

E

E

M

vertexCompute

γ
V

V.id=M.to

M’

V’

V

V.id=E.from

E

vertexCompute

γV1

V1.id=E.to

V’

V1
V2

V2.id=E.from

1 2 3

V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

Γd’=min(V2.d+1)

σd’<V1.d

V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

Γcc’=min(V2.id)

σcc’<V1.cc V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

ΓV1.r=0.15/n+0.85* 
sum(V2.r/V2.outD)

Giraph logical 
query plan

Pushing down the  
vertexCompute UDF

Replacing M
by V E

(c) PageRank

Figure 3: Logical query plans for three vertex-centric queries:
(i) single source shortest path (SSSP), (ii) connect components
(CC), and PageRank.

Consider again the Giraph logical query plan, shown on the left
in Figure 2. The relation M in this plan is an intermediate output
and an artifact of message passing, a consistency mechanism in
Giraph. Since relational databases take care of consistency and
allow us to operate directly on the relational tables, we can get rid
of M . Note that the relation M is used to communicate the new
values of vertices to its neighbors. Therefore, we can push down
the vertex compute function and obtain the new messages M ′ by
joining the new vertex values (V ′) with the outgoing edges (E), as
shown in the middle of Figure 2. Finally, we can replace M with
V 1 E and get rid of relation M completely, as shown on the right
in Figure 2. This simplified query plan deals only with relations V
and E as the input and produces modified relation V ′ as output.

3.1.2 Translating the vertex compute functions
The vertexCompute in the Giraph logical query plan (Figure 1)

can be an arbitrary user defined function, similar to map/reduce in
the MapReduce framework. However, for many graph analytics,
the vertex function involves relatively simple and well defined ag-
gregate operations, which can be expressed directly in relational
algebra/SQL. For example, the vertex function for SSSP in List-
ing 1 finds the MIN of the neighboring distances and applies the
filter for detecting smaller distances, i.e.:

SSSP : vertexCompute 7−→ σd’<V1.d(Γd’=min(V2.d+1))

Figure 3(a) shows the resulting logical query plan. Similarly, the
vertex function for connected components finds the minimum ver-
tex ID amongst its neighbors and filters for new minimum found
(Figures 3(b)), whereas the vertex function for PageRank combines
the PageRank of its neighbors (Figure 3(c)), i.e.:

CC : vertexCompute 7−→ σcc’<V1.cc(Γcc’=min(V2.id))

PageRank : vertexCompute 7−→ Γ
V1.r=

0.15
n

+0.85∗sum(
V2.r

V2.outD
)

By rewriting the vertex functions as relational expressions, the re-
sulting query plans become purely relational and can be imple-
mented completely in standard SQL, without using user-defined
function features in the database system at all (we describe a more
general implementation based on UDFs in Section 3.4 below). For
instance, we could write SSSP from Figure 3(a) as the following
SQL expression:

SELECT v1.id, MIN(v2.d+1) AS d
FROM vertex AS v1, edge AS e, vertex AS v2
WHERE v2.id = e.from_node AND v1.id = e.to_node
GROUP BY e.to_node, v1.d
HAVING MIN(v2.d+1) < v1.d

The above SQL query computes the minimum neighboring distance
of every vertex and filters, via the HAVING clause, distances that

are smaller than the already known distance. The resulting vertices
can then be used to update the vertex relation, as shown in List-
ing 2.

UPDATE vertex AS v SET v.d=v’.d
FROM (

SELECT v1.id, MIN(v2.d+1) AS d
FROM vertex AS v1, edge AS e, vertex AS v2
WHERE v2.id = e.from node AND v1.id = e.to node
GROUP BY e.to node, v1.d
HAVING MIN(v2.d+1) < v1.d

) AS v’
WHERE v.id=v’.id;

Listing 2: Shortest Path in SQL.
Finally, a driver program (run via a stored procedure) repeatedly

runs the above shortest path query as long as there are any updates,
i.e. at least one of the vertices finds a shorter distance.

3.2 Query Optimizations
The advantage of expressing graph analysis as relational queries

is that we can apply several relational query optimizations, i.e. we
have the flexibility to optimize the queries in several different ways
in order to boost performance, in contrast to the hard-coded exe-
cution pipeline in Giraph. In the following, we present three such
query optimizations that can be used to tune the performance. We
use vertex-centric single source shortest paths as the running ex-
ample. However, of course, these optimizations are applicable in
general to SQL-based graph analytics.

3.2.1 Update Vs Replace
Graph queries often involve updating large portions of the graph

over and over again. However, large number of updates can be a
barrier to good performance, especially in read optimized systems
like Vertica. To overcome this problem, we can instead replace the
vertex or edge table with a new copy of tables containing the up-
dated values. For instance, the single source shortest path involves
updating all vertices that find a smaller distance in an iteration. As
we explore the graph in parallel, the number of such vertices can
quickly grow very large. Therefore, instead of updating the ver-
tices in the existing vertex relation, we can create a new vertex
relation (vertex prime) by joining the updated vertices with the
non-updated vertices:

CREATE TABLE vertex prime AS
SELECT v.id, ISNULL(v’.d, v.d) AS d

FROM vertex AS v LEFT JOIN (
SELECT v1.id AS id, MIN(v2.d+1) AS d

FROM vertex AS v1, edge AS e, vertex AS v2
WHERE v2.id=e.from node AND v1.id=e.to node
GROUP BY e.to node, v1.d
HAVING MIN(v2.d+1) < v1.d

) AS v’
ON v.id = v’ . Id ;

Listing 3: Shortest Path with Replace instead of Update.
Afterwards, we replace vertexwith vertex prime. This replace-
ment is quite fast, and, in general, creating a new table is faster
than updating because it allows new records to be written sequen-
tially to the table, rather than performing random I/O to update-
in-place or recording large delete lists in Vertica. One downside
of this approach is that we lose the physical design (i.e., indexes)
on the original table, and physical designs are expensive to create
during query execution. However, many graph analyses, including
PageRank and SSSP, update only the smaller vertex table and there-
fore the physical designs on the larger edge table can be preserved.
Still, update-in-place may be more efficient for algorithms that per-
form small numbers of updates. For instance, the parallel graph

4

exploration in single source shortest path updates very few vertices
in the first few iterations. Therefore, a more sophisticated approach
is to apply updates in the first few iterations before switching to re-
place. In this work, we experimentally determine a fixed threshold
to switch from updates to replace. Eventually, of course, a cost-
based optimizer could be use to determine when to switch.

3.2.2 Incremental Evaluation
Typically, iterative queries process different portions of the data

in different iterations. As a result, there is an opportunity for in-
cremental query evaluation. This is applicable to iterative graph
queries as well. For example, in single source shortest path, we do
not need to explore the entire graph in every iteration. We need
to only explore the neighbors of vertices that found a smaller dis-
tance in the previous iteration. This introduces the overhead of
keeping track of such vertices from previous iteration, but allows
us to benefit by only joining the incrementally updated vertices ta-
ble (v update) with its neighbors. To achieve this, we initialize
v update with the startNode since that is the only vertex that
updated its distance to 0. Thereafter, in each iteration, we get the
new set of updated vertices (v update prime) from the existing
set (v update). Although we need to materialize additional inter-
mediate output, we are able to exploit it to significantly reduce the
join cardinalities by expanding only the neighbors of the updated
vertices. We can then replace v update by v update prime and
get the updated set of vertices. Listing 4 shows the incrementally
evaluated single source shortest path query. Note that Giraph actu-
ally employs a similar optimization as it only computes updates for
active vertices in each superstep.

CREATE TABLE v update prime AS
SELECT v1.id, MIN(v2.d+1) AS d

FROM v update AS v2, edge AS e, vertex AS v1
WHERE v2.id=e.from node AND v1.id=e.to node
GROUP BY e.to node, v1.d
HAVING MIN(v2.d+1) < v1.d;

DROP TABLE v update;
ALTER TABLE v update prime RENAME TO v update ;

CREATE TABLE vertex prime AS
SELECT v.id, ISNULL(v update.d, v.d) AS value

FROM vertex AS v LEFT JOIN v update
ON v.id = v update . id ;

DROP TABLE vertex; ALTER TABLE vertex prime RENAME TO vertex;

Listing 4: Shortest Path with Incremental Evaluation.

3.2.3 Join Elimination
Several graph analysis perform neighborhood access without read-

ing the metadata associated with the neighboring vertices. This
means that even though the logical query plan may have a join be-
tween the vertex and the edge table, we read only the vertex id from
the vertex table. Thus, the join is redundant and can be eliminated.
For example, in the logical query plan for PageRank in Figure 3(c),
we read only the vertex id from V1. Therefore, the join with V1 is
redundant and can be eliminated as shown in Figure 4.
Eliminating one of the joins in the above query will result in much
better performance because the output of V2 1 E, which is as big
as the number of edges itself, does not need to be re-partitioned
again to perform the second join.

In summary, vertex-centric graph analyses can be translated to
SQL, enabling several optimization techniques to tune the perfor-
mance. In the following section, we look at the actual query execu-
tion of these graph queries and describe what makes Vertica a good

Hash-based shuffling 
No sorting, as
opposed to Hadoop
Intermediate data is
not persisted

G
ira

ph
 M

ap
pe

r

V
M

V’ U M’
vertexCompute

γV

V.id=E.from
V.id=M.to

E

E

M

vertexCompute

γ
V

V.id=M.to

M’

V’

V

V.id=E.from

E

vertexCompute

γV1

V1.id=E.to

V’

V1
V2

V2.id=E.from

1 2 3

V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

Γd’=min(V2.d+1)

σd’<V1.d

V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

Γcc’=min(V2.id)

σcc’<V1.cc V’

E

γ
V1

V1.id=E.to

V1

V2

V2.id=E.from

ΓV1.r=0.15/n+0.85* 
sum(V2.r/V2.outD)

Giraph logical 
query plan

Pushing down the  
vertexCompute UDF

Replacing M
by V E

V’

E

γE.to

V2

V2.id=E.from

Γr=0.15/n+0.85* 
sum(V2.r/V2.outD)

V2

E

γV.id

V
V.id=E.from

ΓoutD=count(*)

Figure 4: Join Elimination in PageRank.

choice for such analyses.

3.3 Query Execution
In the previous section, we saw that graph analyses typically in-

volve full table scans and joins over the vertex and the edge tables.
We now look at some of the features that makes Vertica well-suited
for executing such queries. Specifically, we describe four key fea-
tures that Vertica provides: (i) an optimized physical database de-
sign, (ii) join optimizations, (iii) query pipelining, and (iv) intra-
query parallelism. Thereafter, we walk through the query execu-
tion plan of single source shortest path in Vertica and contrast it
with that of Giraph.

3.3.1 Physical Design
Vertica provides rich support for creating physical designs in or-

der to boost query performance. For instance, it allows creating
projections, sort orders, and segmentations within and across dif-
ferent nodes, as well as several encoding and compression schemes.
See [13] for more details on physical design using Vertica. Al-
though the columnar data representation is not useful for projec-
tions over narrow vertex and edge tables with just a few columns,
it is useful for efficiently compressing these tables and saving disk
I/O. As a result, we can create multiple table projections over these
tables, in order to boost the performance of queries, while still not
exceeding the raw data size. For instance, we can create two pro-
jections over the edge table, one segmented on from node and the
other on to node, in order to perform different self-joins over the
edge table locally. Likewise, we can sort the projections on differ-
ent attributes for performing merge join instead of hash join as well
as for evaluating selection predicates.

Thus, using Vertica, developers can efficiently encode and com-
press their graph data, create multiple sort orders and partitionings,
and based on the physical design, leverage the query optimizer to
automatically pick the best physical query operators for their anal-
ysis at run time.

3.3.2 Join Optimizations
Graph analyses when written in SQL make heavy use of joins.

Vertica is highly optimized to efficiently execute such joins over
large tables. For example, it can perform joins directly on com-
pressed data without decoding it, apply type dependent just-in-time
compilation of the join condition in order to avoid branching, and
use sideways information passing (SIP) to push down the join con-
dition as selection predicate over the outer input and thus filter
tuples early on [14]. Furthermore, databases are not limited to a
specific join implementation. Rather, the optimizer can choose be-
tween hash or merge joins, or even dynamically switch between the
two.

Efficient join processing is a key feature that makes graph anal-
ysis possible in Vertica, by allowing developers to quickly traverse
and manipulate large graphs via repeated self-joins.

3.3.3 Query Pipelining

5

BASE QUERY PLAN
Query: explain SELECT e.to_node AS id, min(n1.value+1) AS value

 FROM twitter_node AS n1, twitter_edge AS e, twitter_node AS n2
 WHERE n1.id=e.from_node AND n2.id=e.to_node

 GROUP BY e.to_node
HAVING min(n1.value+1) < min(n2.value);

All Nodes Vector:

 node[0]=node0 (initiator) Up
 node[1]=node1 (executor) Up
 node[2]=node2 (executor) Up
 node[3]=node3 (executor) Up

Root
OutBlk=[UncTuple(2)]

NewEENode
OutBlk=[UncTuple(2)]

ExprEval: e.to_node, <SVAR>

Recv from: node0,node1,node2,node3

Send to: node0

FilterStep: (<SVAR> < <SVAR>)

GroupByPipe: 1 keys
Aggs: min((n1.value + 1)), min(n2.value)

StorageMergeStep: twitter_edge; 1 sorted

GroupByPipe: 1 keys
Aggs: min((n1.value + 1)), min(n2.value)

ExprEval:
 e.to_node, (n1.value + 1), n2.value

Join: Merge-Join:
using previous join and twitter_node_b0

Join: Hash-Join:
using twitter_edge and twitter_node_b0

ScanStep: twitter_edge
SIP2(HashJoin): e.from_node
SIP1(MergeJoin): e.to_node

to_node (not emitted),from_node
Recv from: node0,node1,node2,node3

Send to: node0,node1,node2,node3

StorageUnionStep: twitter_node_b0

ScanStep: twitter_node_b0
id, value

StorageMergeStep: twitter_node_b0; 1 sorted

ScanStep: twitter_node_b0
id, value

Figure 5: Query execution plan of shortest paths in Vertica.

Vertica supports pipelined query execution, which avoids mate-
rializing intermediate results that would otherwise require repeated
access to disk. This is important because graph queries involve
join operations that can have large intermediate results which can
benefit dramatically from pipelining. For instance, in each itera-
tion, the single source shortest path joins a vertex with its incom-
ing edges and incoming nodes, thereby resulting in an intermediate
result with cardinality equal to the number of edges. We can in-
duce pipelining for such queries by creating sort orders on join and
group by attributes. Additionally, we can express graph operations
as nested queries, allowing the query optimizer to employ pipelin-
ing between the inner and outer query when possible. This is in
contrast to Giraph, which blocks the execution and materializes all
intermediate output before running the vertex compute function.

Thus, pipelining allows Vertica to avoid materializing large inter-
mediate outputs, which are typical in graph queries. This reduces
memory footprint and improves performance.

3.3.4 Intra-query Parallelism
Vertica includes capabilities that allow it employ multiple cores

to process a single query. To allow Vertica to explore graphs in
parallel as much as possible, we rewrite graph exploration queries
that involve a self-join on the edges table by adding a GROUP BY
clause on the edge id, and let Vertica partition the groups across
CPU cores to process subgraphs in parallel. Though such parallel
graph exploration ends up doing more work in each iteration, it still
reduces the number of joins and results in much better performance.

3.3.5 Example SSSP Query Execution on Vertica

Hash-based shuffling 
No sorting, as
opposed to Hadoop
Intermediate data is
not persisted

1 2 3Giraph logical 
query plan

vertexCompute UDF
as Table UDF

Replacing join
with union

V
M

V’ U M’
vertexCompute

γV

V.id=E.from
V.id=M.to

E
V

M

V’ U M’

γV.pid

V.id=E.from
V.id=M.to

E

sort

vertexCompute

V M

V’ U M’

γV.pid

E

sort

vertexCompute

U

V E

VE

γV.pid

sort

U

V’

M’

Vertex Compute

V’ U M’

V’

Synchronization
Updates

Table UDF

Table UDF
Table UDF

V M

V’ U M’

γV.pid

E

sort

vertexCompute

U

Table UDF

1 Disk-based Iterations 2 In-Memory Iterations

Figure 6: Rewriting Giraph Query Plan using Table UDFs.

We now look at the a specific example of physical query execu-
tion plan for single source shortest path (SSSP) on Vertica. Figure 5
shows the plan for running SSSP over the Twitter graph (41 million
nodes, 1.4 billion edges). The query involves two joins, one hash
and the other sort merge. To perform the hash join, the system
broadcasts the smaller node relation (shown in the middle). While
scanning the large edge relation, the query applies two SIP filters,
one for the hash join condition and other for the merge join con-
dition, in order to filter unnecessary tuples at the scan step itself.
The hash join blocks on the smaller node relation. However, once
the hash table is built, the remainder of the query is fully pipelined,
including the merge join, the group by, and writing the final output.
This is possible because the merge join and the group by are on the
same key. As a result, data does not need to be re-segmented for
the group by and the system performs 1-pass aggregation locally
on each machine.

The above query execution plan is different from the Giraph
query execution pipeline of Figure 1 in three ways: (i) it filters the
unnecessary tuples from the large edge table as early as possible by
using sideways information passing, (ii) it fully pipelines the query
execution as opposed to blocking the data flow at the vertex func-
tion in Giraph, and (iii) it picks the best join execution strategies
and broadcasts the data wherever required as compared to the static
hard-coded join implementation in Giraph. As a result, Vertica is
able to produce better execution strategies for such graph queries.

3.4 Extending Vertica
Relational database are extensible by design via the use of UDFs.

We see how we can extend Vertica to address two issues: (i) how
to run unmodified vertex programs without translating to SQL, and
(ii) avoiding the expensive intermediate disk I/O in iterative graph
queries.

3.4.1 Running Unmodified Vertex Programs
We saw in Section 3.1 that several common vertex functions can

be rewritten as relational operators. However, certain algorithms,
such as collaborative filtering, have more sophisticated vertex func-
tion implementations which cannot easily be mapped to SQL op-
erators. We can, however, still run vertex functions as table UDFs
in Vertica without translating to relational operators. The middle
of Figure 6 shows such a logical query plan. We first partition the
vertices, then sort the vertices in each partition, and finally invoke
the table UDF for each partition. The table UDF iterates over each
vertex, invokes the vertexCompute function over it, and outputs the
union of updated vertices (V ′) and outgoing messages (M ′). As an
optimization, by batching several vertices in each table UDF, we
can significantly reduce the UDF overhead in relational databases.
This query plan can be further improved by replacing the table joins
with unions, as shown in the right of Figure 6. The table UDF is
then responsible for segregating the tuples from different tables be-
fore calling the vertex function.

6

Hash-based shuffling  
No sorting, as
opposed to Hadoop
Intermediate data is
not persisted

1 2 3Giraph logical 
query plan

vertexCompute UDF
as Table UDF

Replacing join
with union

V
M

V’ U M’
vertexCompute

γV

V.id=E.from
V.id=M.to

E
V

M

V’ U M’

γV.pid

V.id=E.from
V.id=M.to

E

sort

vertexCompute

V M

V’ U M’

γV.pid

E

sort

vertexCompute

U

V E

VE

γV.pid

sort

U

V’

M’

Vertex Compute

V’ U M’

V’

Synchronization
Updates

Table UDF

Table UDF
Table UDF

V M

V’ U M’

γV.pid

E

sort

vertexCompute

U

Table UDF

1 Disk-based Iterations 2 In-Memory Iterations

Figure 7: In-memory Vertex-centric Query Execution in Ver-
tica.
3.4.2 Avoiding Intermediate Disk I/Os

Iterative queries generate a significant amount of intermediate
data in each iteration. Since relational databases run iterative queries
via an external driver program, the output of each iteration is spilled
to disk, thereby resulting in substantial additional I/O. This I/O is
also happens when running vertex functions as table UDFs. How-
ever, we can implement a special table UDF in which the UDF in-
stances load the entire graph at the beginning and store the graph in
shared memory, without writing the output of each iteration to disk
(emulating the Giraph-like map-only behavior using table UDFs
in Vertica). The right side of Figure 6 shows such a query plan.
Of course this approach has less I/O at the cost of a higher mem-
ory footprint. And since the entire graph analysis runs as a single
transaction, many of the database overheads such as locking, log-
ging, and buffer lookups are further reduced. However, the UDF is
now responsible for materializing and updating V 1 E, as well as
propagating the messages from one iteration to the other (the syn-
chronization barrier). Still, once implemented2, the shared memory
extension allows users to run unmodified vertex programs (or those
which are difficult to translate to SQL). In some cases it can also
yield a significant speed-up (up to 2.6 times) over even native SQL
variants (as shown in our experiments).

4. EXPERIMENTS
In this section, we describe the experiments we performed to an-

alyze and benchmark the performance of Vertica (version 6.1.2) on
graph analytics, and to compare it to dedicated graph-processing
systems (Giraph and GraphLab). We organize our experiments as
follows. First, we look at the performance of several typical graph
queries over large billion-edge graphs. Second, we dig deeper and
look at the memory footprint and disk I/Os incurred and analyze
the differences. Third, we evaluate our in-memory table UDF im-
plementation of vertex-centric programs over different graph anal-
yses. Fourth, we study end-to-end graph processing, comprising of
graph algorithms combined with relational operators to sub-select
portions of the graph prior to running analytics, project out graph
structure from graph meta-data, and perform aggregations and joins
after the graph analysis completes. Finally, we look at more com-
plex graph analytics beyond vertex-centric analysis, namely 1-hop
analysis, and evaluate the utility of Vertica on these operations.
Hardware. Our test bed consists of a cluster of 4 machines, each
having 12 (6x2) 2GHz Xeon cores, running 24-threads with hyper-
threading, 48GB of memory, 1.4T disk, running on RHEL Santiago
2Our current implementation runs on multiple cores on a single
node. Future work will look at distributing it across several nodes.

Type Name Nodes Edges

Directed

Twitter-small 81,306 1,768,149
GPlus 107,614 13,673,453
LiveJournal 4,847,571 68,993,773
Twitter 41,652,230 1,468,365,182

Undirected YouTube 1,134,890 2,987,624
LiveJournal-undir 3,997,962 34,681,189

Table 1: The datasets used in the evaluation.

Metric Dataset Vertica GraphLab Giraph

Upload Time (sec) LiveJournal 45.927 15.621 12.049
Twitter 916.421 472.358 267.799

Disk Usage (GB) LiveJournal 0.423 3.030 3.030
Twitter 9.964 73.140 73.140

Table 2: Data preparation over two datasets.

6.4. We ran all experiments with cold cache and report the average
of three runs.
Baselines. We compare Vertica with two popular vertex-centric
graph processing engines, Giraph (version 1.0.0 running on Hadoop
1.0.4 with 4 workers per-node) and GraphLab (version 2.2 running
on 4 nodes via MPI and using all available threads).
Datasets. We ran our benchmarks on a variety of datasets of vary-
ing sizes, including both directed as well as undirected graphs.
Table 1 shows the different datasets used in our evaluation. All
datasets are publicly available at http://snap.stanford.edu/data.
Data Preparation. The queries in our experiments must be read
data from an underlying data store before running the analysis.
While Vertica reads data from its internal data store, Giraph and
GraphLab read the data from HDFS. All datasets are stored as a
list of nodes and a list of edges. For GraphLab, we further split the
data files into 4 parts, such that each node can load (ingress=grid)
the graph in parallel during analysis. Table 2 summarizes the data
preparation costs for the three systems. We can see that Giraph and
GraphLab simply copy the raw files to HDFS and load faster than
Vertica. However, Vertica has significantly less disk usage, due to
compression and encoding, compared to Giraph and GraphLab.

4.1 Typical Vertex-centric Analysis
We first look at the performance of three typical graph queries,

namely PageRank, SSSP, and connected components, on Vertica
and compare it with Giraph and GraphLab. Then, we break the
total query time into the time to load/store from disk and the actual
graph analysis time. We used the built-in PageRank, SSSP, and
connected component algorithms for Giraph (provided as example
algorithms) and GraphLab (provided in the graph analytics toolkit).
For Vertica, we implemented these three algorithms as described
below:
PageRank. We implemented PageRank query shown in Figure 4 as
a combination of two SQL statements on the Vertex (V) and Edge
(E) tables: (i) to compute the outbound PageRank contributed by
every vertex:
CREATE TABLE V_outbound AS
SELECT id, value/Count(to_id) AS new_value
FROM E,V
WHERE E.from_id=V.id
GROUP BY id,value;

and (ii) to compute the total PageRank of a vertex as a sum of in-
coming PageRanks:
CREATE TABLE V_prime AS
SELECT to_node AS id, 0.15/N+0.85*SUM(new_value) AS value
FROM E,V_outbound
WHERE E.from_id=V_outbound.id
GROUP BY to_id;

After each iteration, we replace the old vertex table V with V prime,
i.e. drop V and rename V prime to V.

7

Connected Component

LiveJournal Twitter

GraphLab 42.209 462.632

Giraph 82.0425 437.904

Vertica 62.039497 377.965

LineRank (per iteration)

LiveJournal Twitter

Giraph

Vertica 60.6500052 1453.418775

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

378.0

62.0

437.9

82.0

462.6

42.2

GraphLab
Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

200

400

600

800

Untitled 1 Untitled 2

Giraph
Vertica

PageRank (3 iterations)

LiveJournal Twitter

Giraph 91.3016666
6666667

553.67333
333333333

Vertica 18.6986666
6666667

193.0605

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

Untitled 1 Untitled 2

193.1

18.7

553.7

91.3

Giraph
Vertica

Shortest Path-1

LiveJournal Twitter

GraphLab 30.253 392.107

Giraph 66.560 303.889

Vertica 39.732901 279.364689

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

279.4

39.7

303.9

66.6

392.1

30.3

GraphLab
Giraph
Vertica

Shortest Path (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Outp
ut

Giraph 148.0483.330 1.137 1.384 7.305 43.35715.7869.146 2.495 1.416 1.235 5.351 1.723 1.367 1.173 1.126 3.039 1.088 13.744
Vertica 0 13.00768927.2334098.93665320.16783720.92998243.52610131.52689318.73158415.78384515.0841597.7416410.3548839.0573978.58478810.31774810.0449955.995795

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Iterations
Inp

ut 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Outp

ut

Giraph
Vertica

PageRank (total of 10 iterations)

LiveJournal Twitter

GraphLab 41.44 493.511

Giraph 126.82 1040.81

Vertica 62.23063 643.535

Ti
m

e
(s

ec
on

ds
)

0

300

600

900

1,200

LiveJournal Twitter

643.5

62.2

1040.8

126.8

493.5

41.4

GraphLab
Giraph
Vertica

PageRank (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Giraph 143.52966.650103.60083.30887.06781.50185.20883.54879.21281.44585.85615.747
Vertica 0 7.163878100.72478276.58791877.87374777.55075576.98139676.45138576.79525278.10283376.881002 0

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Iterations
Inp

ut 1 2 3 4 5 6 7 8 9 10
Outp

ut

Giraph
Vertica

Bi-edges: 1867.98 sec

Shortest Path (per superstep for Twitter)-1

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 Outp
ut

Giraph 147.58261.60862.57118.63110.8112.158 1.451 1.264 1.37 1.439 1.293 1.189 5.824 1.068 1.034 1.091 1.144 1.014 0.946 0.957 1.048 1.087 1.017 1.097 1.039 0.97 1.021 1.038 1.056 0.987 1.007 0.968 1.007 1.007 0.99 0.987 1.021 1.021 0.964 1.182 1.131 1.03 0.945 0.925 1.062 1.038 1.032 0.954 1.006 1.042 1.024 0.887 1.118 0.988 0.984 0.956 1.024 1.026 0.92 0.92 1.082 1.028 1.048 1.044 0.962 0.979 1.036 0.946 1.004 0.966 0.951 1.009 0.96 0.919 1.096 1.019 5.503
Vertica 5.66030188.86565477.75300770.8516362.43566620.9996218.72108811.35781411.1949259.8650985.38888

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Iterations
Inp

ut 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Outp

ut

Giraph
Vertica

PageRank (Twitter)

Load / Store Iterations

GraphLab 374.811 118.7

Giraph 159.28 837.40

Vertica 0.00000 725.113

Ti
m

e
(s

ec
on

ds
)

0

350

700

1050

1400

GraphLab Giraph Vertica

Load / Store
Iterations

Shortest Paths (Twitter)

Load / Store Iterations

GraphLab 366.607 25.5

Giraph 161.79 101.46

Vertica 0.00000 277.025

Connected Components (Twitter)

Load / Store Iterations

GraphLab 370.709 91.923

Giraph 153.09 233.44

Vertica 0.00000 373.094

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store
Iterations

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store
Iterations

(a) PageRank

Connected Component

LiveJournal Twitter

GraphLab 42.209 462.632

Giraph 82.0425 437.904

Vertica 62.039497 377.965

LineRank (per iteration)

LiveJournal Twitter

Giraph

Vertica 60.6500052 1453.418775

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

378.0

62.0

437.9

82.0

462.6

42.2

GraphLab
Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

200

400

600

800

Untitled 1 Untitled 2

Giraph
Vertica

PageRank (3 iterations)

LiveJournal Twitter

Giraph 91.3016666
6666667

553.67333
333333333

Vertica 18.6986666
6666667

193.0605

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

Untitled 1 Untitled 2

193.1

18.7

553.7

91.3

Giraph
Vertica

Shortest Path-1

LiveJournal Twitter

GraphLab 30.253 392.107

Giraph 66.560 303.889

Vertica 39.732901 279.364689

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

279.4

39.7

303.9

66.6

392.1

30.3

GraphLab
Giraph
Vertica

Shortest Path (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Outp
ut

Giraph 148.0483.330 1.137 1.384 7.305 43.35715.7869.146 2.495 1.416 1.235 5.351 1.723 1.367 1.173 1.126 3.039 1.088 13.744
Vertica 0 13.00768927.2334098.93665320.16783720.92998243.52610131.52689318.73158415.78384515.0841597.7416410.3548839.0573978.58478810.31774810.0449955.995795

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Iterations
Inp

ut 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Outp

ut

Giraph
Vertica

PageRank (total of 10 iterations)

LiveJournal Twitter

GraphLab 41.44 493.511

Giraph 126.82 1040.81

Vertica 62.23063 643.535

Ti
m

e
(s

ec
on

ds
)

0

300

600

900

1,200

LiveJournal Twitter

643.5

62.2

1040.8

126.8

493.5

41.4

GraphLab
Giraph
Vertica

PageRank (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Giraph 143.52966.650103.60083.30887.06781.50185.20883.54879.21281.44585.85615.747
Vertica 0 7.163878100.72478276.58791877.87374777.55075576.98139676.45138576.79525278.10283376.881002 0

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Iterations
Inp

ut 1 2 3 4 5 6 7 8 9 10
Outp

ut

Giraph
Vertica

Bi-edges: 1867.98 sec

Shortest Path (per superstep for Twitter)-1

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 Outp
ut

Giraph 147.58261.60862.57118.63110.8112.158 1.451 1.264 1.37 1.439 1.293 1.189 5.824 1.068 1.034 1.091 1.144 1.014 0.946 0.957 1.048 1.087 1.017 1.097 1.039 0.97 1.021 1.038 1.056 0.987 1.007 0.968 1.007 1.007 0.99 0.987 1.021 1.021 0.964 1.182 1.131 1.03 0.945 0.925 1.062 1.038 1.032 0.954 1.006 1.042 1.024 0.887 1.118 0.988 0.984 0.956 1.024 1.026 0.92 0.92 1.082 1.028 1.048 1.044 0.962 0.979 1.036 0.946 1.004 0.966 0.951 1.009 0.96 0.919 1.096 1.019 5.503
Vertica 5.66030188.86565477.75300770.8516362.43566620.9996218.72108811.35781411.1949259.8650985.38888

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Iterations
Inp

ut 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Outp

ut

Giraph
Vertica

PageRank (Twitter)

Load / Store Iterations

GraphLab 374.811 118.7

Giraph 159.28 837.40

Vertica 0.00000 725.113

Ti
m

e
(s

ec
on

ds
)

0

350

700

1050

1400

GraphLab Giraph Vertica

Load / Store
Iterations

Shortest Paths (Twitter)

Load / Store Iterations

GraphLab 366.607 25.5

Giraph 161.79 101.46

Vertica 0.00000 277.025

Connected Components (Twitter)

Load / Store Iterations

GraphLab 370.709 91.923

Giraph 153.09 233.44

Vertica 0.00000 373.094

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store
Iterations

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store
Iterations

(b) Shortest Path

Connected Component

LiveJournal Twitter

GraphLab 42.209 462.632

Giraph 82.0425 437.904

Vertica 62.039497 377.965

LineRank (per iteration)

LiveJournal Twitter

Giraph

Vertica 60.6500052 1453.418775

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

378.0

62.0

437.9

82.0

462.6

42.2

GraphLab
Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

200

400

600

800

Untitled 1 Untitled 2

Giraph
Vertica

PageRank (3 iterations)

LiveJournal Twitter

Giraph 91.3016666
6666667

553.67333
333333333

Vertica 18.6986666
6666667

193.0605

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

Untitled 1 Untitled 2

193.1

18.7

553.7

91.3

Giraph
Vertica

Shortest Path-1

LiveJournal Twitter

GraphLab 30.253 392.107

Giraph 66.560 303.889

Vertica 39.732901 279.364689

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

279.4

39.7

303.9

66.6

392.1

30.3

GraphLab
Giraph
Vertica

Shortest Path (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Outp
ut

Giraph 148.0483.330 1.137 1.384 7.305 43.35715.7869.146 2.495 1.416 1.235 5.351 1.723 1.367 1.173 1.126 3.039 1.088 13.744
Vertica 0 13.00768927.2334098.93665320.16783720.92998243.52610131.52689318.73158415.78384515.0841597.7416410.3548839.0573978.58478810.31774810.0449955.995795

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Iterations
Inp

ut 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Outp

ut

Giraph
Vertica

PageRank (total of 10 iterations)

LiveJournal Twitter

GraphLab 41.44 493.511

Giraph 126.82 1040.81

Vertica 62.23063 643.535

Ti
m

e
(s

ec
on

ds
)

0

300

600

900

1,200

LiveJournal Twitter

643.5

62.2

1040.8

126.8

493.5

41.4

GraphLab
Giraph
Vertica

PageRank (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Giraph 143.52966.650103.60083.30887.06781.50185.20883.54879.21281.44585.85615.747
Vertica 0 7.163878100.72478276.58791877.87374777.55075576.98139676.45138576.79525278.10283376.881002 0

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Iterations
Inp

ut 1 2 3 4 5 6 7 8 9 10
Outp

ut

Giraph
Vertica

Bi-edges: 1867.98 sec

Shortest Path (per superstep for Twitter)-1

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 Outp
ut

Giraph 147.58261.60862.57118.63110.8112.158 1.451 1.264 1.37 1.439 1.293 1.189 5.824 1.068 1.034 1.091 1.144 1.014 0.946 0.957 1.048 1.087 1.017 1.097 1.039 0.97 1.021 1.038 1.056 0.987 1.007 0.968 1.007 1.007 0.99 0.987 1.021 1.021 0.964 1.182 1.131 1.03 0.945 0.925 1.062 1.038 1.032 0.954 1.006 1.042 1.024 0.887 1.118 0.988 0.984 0.956 1.024 1.026 0.92 0.92 1.082 1.028 1.048 1.044 0.962 0.979 1.036 0.946 1.004 0.966 0.951 1.009 0.96 0.919 1.096 1.019 5.503
Vertica 5.66030188.86565477.75300770.8516362.43566620.9996218.72108811.35781411.1949259.8650985.38888

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Iterations
Inp

ut 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Outp

ut

Giraph
Vertica

PageRank (Twitter)

Load / Store Iterations

GraphLab 374.811 118.7

Giraph 159.28 837.40

Vertica 0.00000 725.113

Ti
m

e
(s

ec
on

ds
)

0

350

700

1050

1400

GraphLab Giraph Vertica

Load / Store
Iterations

Shortest Paths (Twitter)

Load / Store Iterations

GraphLab 366.607 25.5

Giraph 161.79 101.46

Vertica 0.00000 277.025

Connected Components (Twitter)

Load / Store Iterations

GraphLab 370.709 91.923

Giraph 153.09 233.44

Vertica 0.00000 373.094

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store
Iterations

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store
Iterations

(c) Connected Components

Figure 8: Typical vertex-centric Analysis Using Vertica.

Connected Component

LiveJournal Twitter

GraphLab 42.209 462.632

Giraph 82.0425 437.904

Vertica 62.039497 377.965

LineRank (per iteration)

LiveJournal Twitter

Giraph

Vertica 60.6500052 1453.418775

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

378.0

62.0

437.9

82.0

462.6

42.2

GraphLab
Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

200

400

600

800

Untitled 1 Untitled 2

Giraph
Vertica

PageRank (3 iterations)

LiveJournal Twitter

Giraph 91.3016666
6666667

553.67333
333333333

Vertica 18.6986666
6666667

193.0605

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

Untitled 1 Untitled 2

193.1

18.7

553.7

91.3

Giraph
Vertica

Shortest Path-1

LiveJournal Twitter

GraphLab 30.253 392.107

Giraph 66.560 303.889

Vertica 39.732901 279.364689

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

279.4

39.7

303.9

66.6

392.1

30.3

GraphLab
Giraph
Vertica

Shortest Path (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Outp
ut

Giraph 148.0483.330 1.137 1.384 7.305 43.35715.7869.146 2.495 1.416 1.235 5.351 1.723 1.367 1.173 1.126 3.039 1.088 13.744
Vertica 0 13.00768927.2334098.93665320.16783720.92998243.52610131.52689318.73158415.78384515.0841597.7416410.3548839.0573978.58478810.31774810.0449955.995795

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Outp
ut

Giraph
Vertica

PageRank (total of 10 iterations)

LiveJournal Twitter

GraphLab 41.44 493.511

Giraph 126.82 1040.81

Vertica 62.23063 643.535

Ti
m

e
(s

ec
on

ds
)

0

300

600

900

1,200

LiveJournal Twitter

643.5

62.2

1040.8

126.8

493.5

41.4

GraphLab
Giraph
Vertica

PageRank (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Giraph 143.52966.650103.60083.30887.06781.50185.20883.54879.21281.44585.85615.747
Vertica 0 7.163878100.72478276.58791877.87374777.55075576.98139676.45138576.79525278.10283376.881002 0

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

Giraph
Vertica

Bi-edges: 1867.98 sec

Shortest Path (per superstep for Twitter)-1

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 Outp
ut

Giraph 147.58261.60862.57118.63110.8112.158 1.451 1.264 1.37 1.439 1.293 1.189 5.824 1.068 1.034 1.091 1.144 1.014 0.946 0.957 1.048 1.087 1.017 1.097 1.039 0.97 1.021 1.038 1.056 0.987 1.007 0.968 1.007 1.007 0.99 0.987 1.021 1.021 0.964 1.182 1.131 1.03 0.945 0.925 1.062 1.038 1.032 0.954 1.006 1.042 1.024 0.887 1.118 0.988 0.984 0.956 1.024 1.026 0.92 0.92 1.082 1.028 1.048 1.044 0.962 0.979 1.036 0.946 1.004 0.966 0.951 1.009 0.96 0.919 1.096 1.019 5.503
Vertica 5.66030188.86565477.75300770.8516362.43566620.9996218.72108811.35781411.1949259.8650985.38888

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Outp
ut

Giraph
Vertica

PageRank (Twitter)

Load / Store Iterations

GraphLab 374.811 118.7

Giraph 159.28 837.40

Vertica 0.00000 725.113

Ti
m

e
(s

ec
on

ds
)

0

350

700

1050

1400

GraphLab Giraph Vertica

Load / Store
Iterations

Shortest Paths (Twitter)

Load / Store Iterations

GraphLab 366.607 25.5

Giraph 161.79 101.46

Vertica 0.00000 277.025

Connected Components (Twitter)

Load / Store Iterations

GraphLab 370.709 91.923

Giraph 153.09 233.44

Vertica 0.00000 373.094

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store
Iterations

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store
Iterations

(a) PageRank

Connected Component

LiveJournal Twitter

GraphLab 42.209 462.632

Giraph 82.0425 437.904

Vertica 62.039497 377.965

LineRank (per iteration)

LiveJournal Twitter

Giraph

Vertica 60.6500052 1453.418775

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

378.0

62.0

437.9

82.0

462.6

42.2

GraphLab
Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

200

400

600

800

Untitled 1 Untitled 2

Giraph
Vertica

PageRank (3 iterations)

LiveJournal Twitter

Giraph 91.3016666
6666667

553.67333
333333333

Vertica 18.6986666
6666667

193.0605

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

Untitled 1 Untitled 2

193.1

18.7

553.7

91.3

Giraph
Vertica

Shortest Path-1

LiveJournal Twitter

GraphLab 30.253 392.107

Giraph 66.560 303.889

Vertica 39.732901 279.364689

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

279.4

39.7

303.9

66.6

392.1

30.3

GraphLab
Giraph
Vertica

Shortest Path (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Outp
ut

Giraph 148.0483.330 1.137 1.384 7.305 43.35715.7869.146 2.495 1.416 1.235 5.351 1.723 1.367 1.173 1.126 3.039 1.088 13.744
Vertica 0 13.00768927.2334098.93665320.16783720.92998243.52610131.52689318.73158415.78384515.0841597.7416410.3548839.0573978.58478810.31774810.0449955.995795

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Outp
ut

Giraph
Vertica

PageRank (total of 10 iterations)

LiveJournal Twitter

GraphLab 41.44 493.511

Giraph 126.82 1040.81

Vertica 62.23063 643.535

Ti
m

e
(s

ec
on

ds
)

0

300

600

900

1,200

LiveJournal Twitter

643.5

62.2

1040.8

126.8

493.5

41.4

GraphLab
Giraph
Vertica

PageRank (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Giraph 143.52966.650103.60083.30887.06781.50185.20883.54879.21281.44585.85615.747
Vertica 0 7.163878100.72478276.58791877.87374777.55075576.98139676.45138576.79525278.10283376.881002 0

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

Giraph
Vertica

Bi-edges: 1867.98 sec

Shortest Path (per superstep for Twitter)-1

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 Outp
ut

Giraph 147.58261.60862.57118.63110.8112.158 1.451 1.264 1.37 1.439 1.293 1.189 5.824 1.068 1.034 1.091 1.144 1.014 0.946 0.957 1.048 1.087 1.017 1.097 1.039 0.97 1.021 1.038 1.056 0.987 1.007 0.968 1.007 1.007 0.99 0.987 1.021 1.021 0.964 1.182 1.131 1.03 0.945 0.925 1.062 1.038 1.032 0.954 1.006 1.042 1.024 0.887 1.118 0.988 0.984 0.956 1.024 1.026 0.92 0.92 1.082 1.028 1.048 1.044 0.962 0.979 1.036 0.946 1.004 0.966 0.951 1.009 0.96 0.919 1.096 1.019 5.503
Vertica 5.66030188.86565477.75300770.8516362.43566620.9996218.72108811.35781411.1949259.8650985.38888

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Outp
ut

Giraph
Vertica

PageRank (Twitter)

Load / Store Iterations

GraphLab 374.811 118.7

Giraph 159.28 837.40

Vertica 0.00000 725.113

Ti
m

e
(s

ec
on

ds
)

0

350

700

1050

1400

GraphLab Giraph Vertica

Load / Store
Iterations

Shortest Paths (Twitter)

Load / Store Iterations

GraphLab 366.607 25.5

Giraph 161.79 101.46

Vertica 0.00000 277.025

Connected Components (Twitter)

Load / Store Iterations

GraphLab 370.709 91.923

Giraph 153.09 233.44

Vertica 0.00000 373.094

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store
Iterations

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store
Iterations

(b) Shortest Path

Connected Component

LiveJournal Twitter

GraphLab 42.209 462.632

Giraph 82.0425 437.904

Vertica 62.039497 377.965

LineRank (per iteration)

LiveJournal Twitter

Giraph

Vertica 60.6500052 1453.418775

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

378.0

62.0

437.9

82.0

462.6

42.2

GraphLab
Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

200

400

600

800

Untitled 1 Untitled 2

Giraph
Vertica

PageRank (3 iterations)

LiveJournal Twitter

Giraph 91.3016666
6666667

553.67333
333333333

Vertica 18.6986666
6666667

193.0605

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

Untitled 1 Untitled 2

193.1

18.7

553.7

91.3

Giraph
Vertica

Shortest Path-1

LiveJournal Twitter

GraphLab 30.253 392.107

Giraph 66.560 303.889

Vertica 39.732901 279.364689

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

279.4

39.7

303.9

66.6

392.1

30.3

GraphLab
Giraph
Vertica

Shortest Path (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Outp
ut

Giraph 148.0483.330 1.137 1.384 7.305 43.35715.7869.146 2.495 1.416 1.235 5.351 1.723 1.367 1.173 1.126 3.039 1.088 13.744
Vertica 0 13.00768927.2334098.93665320.16783720.92998243.52610131.52689318.73158415.78384515.0841597.7416410.3548839.0573978.58478810.31774810.0449955.995795

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Outp
ut

Giraph
Vertica

PageRank (total of 10 iterations)

LiveJournal Twitter

GraphLab 41.44 493.511

Giraph 126.82 1040.81

Vertica 62.23063 643.535

Ti
m

e
(s

ec
on

ds
)

0

300

600

900

1,200

LiveJournal Twitter

643.5

62.2

1040.8

126.8

493.5

41.4

GraphLab
Giraph
Vertica

PageRank (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Giraph 143.52966.650103.60083.30887.06781.50185.20883.54879.21281.44585.85615.747
Vertica 0 7.163878100.72478276.58791877.87374777.55075576.98139676.45138576.79525278.10283376.881002 0

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

Giraph
Vertica

Bi-edges: 1867.98 sec

Shortest Path (per superstep for Twitter)-1

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 Outp
ut

Giraph 147.58261.60862.57118.63110.8112.158 1.451 1.264 1.37 1.439 1.293 1.189 5.824 1.068 1.034 1.091 1.144 1.014 0.946 0.957 1.048 1.087 1.017 1.097 1.039 0.97 1.021 1.038 1.056 0.987 1.007 0.968 1.007 1.007 0.99 0.987 1.021 1.021 0.964 1.182 1.131 1.03 0.945 0.925 1.062 1.038 1.032 0.954 1.006 1.042 1.024 0.887 1.118 0.988 0.984 0.956 1.024 1.026 0.92 0.92 1.082 1.028 1.048 1.044 0.962 0.979 1.036 0.946 1.004 0.966 0.951 1.009 0.96 0.919 1.096 1.019 5.503
Vertica 5.66030188.86565477.75300770.8516362.43566620.9996218.72108811.35781411.1949259.8650985.38888

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Outp
ut

Giraph
Vertica

PageRank (Twitter)

Load / Store Iterations

GraphLab 374.811 118.7

Giraph 159.28 837.40

Vertica 0.00000 725.113

Ti
m

e
(s

ec
on

ds
)

0

350

700

1050

1400

GraphLab Giraph Vertica

Load / Store
Iterations

Shortest Paths (Twitter)

Load / Store Iterations

GraphLab 366.607 25.5

Giraph 161.79 101.46

Vertica 0.00000 277.025

Connected Components (Twitter)

Load / Store Iterations

GraphLab 370.709 91.923

Giraph 153.09 233.44

Vertica 0.00000 373.094

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store
Iterations

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store
Iterations

(c) Connected Components

Figure 9: Per-iteration runtime of typical vertex-centric Analysis on Twitter graph.

Connected Component

LiveJournal Twitter

GraphLab 42.209 462.632

Giraph 82.0425 437.904

Vertica 62.039497 377.965

LineRank (per iteration)

LiveJournal Twitter

Giraph

Vertica 60.6500052 1453.418775

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

378.0

62.0

437.9

82.0

462.6

42.2

GraphLab
Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

200

400

600

800

Untitled 1 Untitled 2

Giraph
Vertica

PageRank (3 iterations)

LiveJournal Twitter

Giraph 91.3016666
6666667

553.67333
333333333

Vertica 18.6986666
6666667

193.0605

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

Untitled 1 Untitled 2

193.1

18.7

553.7

91.3

Giraph
Vertica

Shortest Path-1

LiveJournal Twitter

GraphLab 30.253 392.107

Giraph 66.560 303.889

Vertica 39.732901 279.364689

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

279.4

39.7

303.9

66.6

392.1

30.3

GraphLab
Giraph
Vertica

Shortest Path (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Outp
ut

Giraph 148.0483.330 1.137 1.384 7.305 43.35715.7869.146 2.495 1.416 1.235 5.351 1.723 1.367 1.173 1.126 3.039 1.088 13.744
Vertica 0 13.00768927.2334098.93665320.16783720.92998243.52610131.52689318.73158415.78384515.0841597.7416410.3548839.0573978.58478810.31774810.0449955.995795

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Outp
ut

Giraph
Vertica

PageRank (total of 10 iterations)

LiveJournal Twitter

GraphLab 41.44 493.511

Giraph 126.82 1040.81

Vertica 62.23063 643.535

Ti
m

e
(s

ec
on

ds
)

0

300

600

900

1,200

LiveJournal Twitter

643.5

62.2

1040.8

126.8

493.5

41.4

GraphLab
Giraph
Vertica

PageRank (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Giraph 143.52966.650103.60083.30887.06781.50185.20883.54879.21281.44585.85615.747
Vertica 0 7.163878100.72478276.58791877.87374777.55075576.98139676.45138576.79525278.10283376.881002 0

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

Giraph
Vertica

Bi-edges: 1867.98 sec

Shortest Path (per superstep for Twitter)-1

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 Outp
ut

Giraph 147.58261.60862.57118.63110.8112.158 1.451 1.264 1.37 1.439 1.293 1.189 5.824 1.068 1.034 1.091 1.144 1.014 0.946 0.957 1.048 1.087 1.017 1.097 1.039 0.97 1.021 1.038 1.056 0.987 1.007 0.968 1.007 1.007 0.99 0.987 1.021 1.021 0.964 1.182 1.131 1.03 0.945 0.925 1.062 1.038 1.032 0.954 1.006 1.042 1.024 0.887 1.118 0.988 0.984 0.956 1.024 1.026 0.92 0.92 1.082 1.028 1.048 1.044 0.962 0.979 1.036 0.946 1.004 0.966 0.951 1.009 0.96 0.919 1.096 1.019 5.503
Vertica 5.66030188.86565477.75300770.8516362.43566620.9996218.72108811.35781411.1949259.8650985.38888

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Outp
ut

Giraph
Vertica

PageRank (Twitter)

Load / Store Iterations

GraphLab 374.811 118.7

Giraph 159.28 837.40

Vertica 0.00000 725.113

Ti
m

e
(s

ec
on

ds
)

0

350

700

1050

1400

GraphLab Giraph Vertica

Load / Store Time
Algorithm Time

Shortest Paths (Twitter)

Load / Store Iterations

GraphLab 366.607 25.5

Giraph 161.79 101.46

Vertica 0.00000 277.025

Connected Components (Twitter)

Load / Store Iterations

GraphLab 370.709 91.923

Giraph 153.09 233.44

Vertica 0.00000 373.094

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store Time
Algorithm Time

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store Time
Algorithm Time

(a) PageRank

Connected Component

LiveJournal Twitter

GraphLab 42.209 462.632

Giraph 82.0425 437.904

Vertica 62.039497 377.965

LineRank (per iteration)

LiveJournal Twitter

Giraph

Vertica 60.6500052 1453.418775

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

378.0

62.0

437.9

82.0

462.6

42.2

GraphLab
Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

200

400

600

800

Untitled 1 Untitled 2

Giraph
Vertica

PageRank (3 iterations)

LiveJournal Twitter

Giraph 91.3016666
6666667

553.67333
333333333

Vertica 18.6986666
6666667

193.0605

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

Untitled 1 Untitled 2

193.1

18.7

553.7

91.3

Giraph
Vertica

Shortest Path-1

LiveJournal Twitter

GraphLab 30.253 392.107

Giraph 66.560 303.889

Vertica 39.732901 279.364689

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

279.4

39.7

303.9

66.6

392.1

30.3

GraphLab
Giraph
Vertica

Shortest Path (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Outp
ut

Giraph 148.0483.330 1.137 1.384 7.305 43.35715.7869.146 2.495 1.416 1.235 5.351 1.723 1.367 1.173 1.126 3.039 1.088 13.744
Vertica 0 13.00768927.2334098.93665320.16783720.92998243.52610131.52689318.73158415.78384515.0841597.7416410.3548839.0573978.58478810.31774810.0449955.995795

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Outp
ut

Giraph
Vertica

PageRank (total of 10 iterations)

LiveJournal Twitter

GraphLab 41.44 493.511

Giraph 126.82 1040.81

Vertica 62.23063 643.535

Ti
m

e
(s

ec
on

ds
)

0

300

600

900

1,200

LiveJournal Twitter

643.5

62.2

1040.8

126.8

493.5

41.4

GraphLab
Giraph
Vertica

PageRank (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Giraph 143.52966.650103.60083.30887.06781.50185.20883.54879.21281.44585.85615.747
Vertica 0 7.163878100.72478276.58791877.87374777.55075576.98139676.45138576.79525278.10283376.881002 0

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

Giraph
Vertica

Bi-edges: 1867.98 sec

Shortest Path (per superstep for Twitter)-1

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 Outp
ut

Giraph 147.58261.60862.57118.63110.8112.158 1.451 1.264 1.37 1.439 1.293 1.189 5.824 1.068 1.034 1.091 1.144 1.014 0.946 0.957 1.048 1.087 1.017 1.097 1.039 0.97 1.021 1.038 1.056 0.987 1.007 0.968 1.007 1.007 0.99 0.987 1.021 1.021 0.964 1.182 1.131 1.03 0.945 0.925 1.062 1.038 1.032 0.954 1.006 1.042 1.024 0.887 1.118 0.988 0.984 0.956 1.024 1.026 0.92 0.92 1.082 1.028 1.048 1.044 0.962 0.979 1.036 0.946 1.004 0.966 0.951 1.009 0.96 0.919 1.096 1.019 5.503
Vertica 5.66030188.86565477.75300770.8516362.43566620.9996218.72108811.35781411.1949259.8650985.38888

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Outp
ut

Giraph
Vertica

PageRank (Twitter)

Load / Store Iterations

GraphLab 374.811 118.7

Giraph 159.28 837.40

Vertica 0.00000 725.113

Ti
m

e
(s

ec
on

ds
)

0

350

700

1050

1400

GraphLab Giraph Vertica

Load / Store Time
Algorithm Time

Shortest Paths (Twitter)

Load / Store Iterations

GraphLab 366.607 25.5

Giraph 161.79 101.46

Vertica 0.00000 277.025

Connected Components (Twitter)

Load / Store Iterations

GraphLab 370.709 91.923

Giraph 153.09 233.44

Vertica 0.00000 373.094

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store Time
Algorithm Time

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store Time
Algorithm Time

(b) Shortest Path

Connected Component

LiveJournal Twitter

GraphLab 42.209 462.632

Giraph 82.0425 437.904

Vertica 62.039497 377.965

LineRank (per iteration)

LiveJournal Twitter

Giraph

Vertica 60.6500052 1453.418775

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

378.0

62.0

437.9

82.0

462.6

42.2

GraphLab
Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

200

400

600

800

Untitled 1 Untitled 2

Giraph
Vertica

PageRank (3 iterations)

LiveJournal Twitter

Giraph 91.3016666
6666667

553.67333
333333333

Vertica 18.6986666
6666667

193.0605

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

Untitled 1 Untitled 2

193.1

18.7

553.7

91.3

Giraph
Vertica

Shortest Path-1

LiveJournal Twitter

GraphLab 30.253 392.107

Giraph 66.560 303.889

Vertica 39.732901 279.364689

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

LiveJournal Twitter

279.4

39.7

303.9

66.6

392.1

30.3

GraphLab
Giraph
Vertica

Shortest Path (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Outp
ut

Giraph 148.0483.330 1.137 1.384 7.305 43.35715.7869.146 2.495 1.416 1.235 5.351 1.723 1.367 1.173 1.126 3.039 1.088 13.744
Vertica 0 13.00768927.2334098.93665320.16783720.92998243.52610131.52689318.73158415.78384515.0841597.7416410.3548839.0573978.58478810.31774810.0449955.995795

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Outp
ut

Giraph
Vertica

PageRank (total of 10 iterations)

LiveJournal Twitter

GraphLab 41.44 493.511

Giraph 126.82 1040.81

Vertica 62.23063 643.535

Ti
m

e
(s

ec
on

ds
)

0

300

600

900

1,200

LiveJournal Twitter

643.5

62.2

1040.8

126.8

493.5

41.4

GraphLab
Giraph
Vertica

PageRank (per superstep for Twitter)

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Giraph 143.52966.650103.60083.30887.06781.50185.20883.54879.21281.44585.85615.747
Vertica 0 7.163878100.72478276.58791877.87374777.55075576.98139676.45138576.79525278.10283376.881002 0

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

Giraph
Vertica

Bi-edges: 1867.98 sec

Shortest Path (per superstep for Twitter)-1

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 Outp
ut

Giraph 147.58261.60862.57118.63110.8112.158 1.451 1.264 1.37 1.439 1.293 1.189 5.824 1.068 1.034 1.091 1.144 1.014 0.946 0.957 1.048 1.087 1.017 1.097 1.039 0.97 1.021 1.038 1.056 0.987 1.007 0.968 1.007 1.007 0.99 0.987 1.021 1.021 0.964 1.182 1.131 1.03 0.945 0.925 1.062 1.038 1.032 0.954 1.006 1.042 1.024 0.887 1.118 0.988 0.984 0.956 1.024 1.026 0.92 0.92 1.082 1.028 1.048 1.044 0.962 0.979 1.036 0.946 1.004 0.966 0.951 1.009 0.96 0.919 1.096 1.019 5.503
Vertica 5.66030188.86565477.75300770.8516362.43566620.9996218.72108811.35781411.1949259.8650985.38888

Ti
m

e
(s

ec
on

ds
)

0

40

80

120

160

Inp
ut 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Outp
ut

Giraph
Vertica

PageRank (Twitter)

Load / Store Iterations

GraphLab 374.811 118.7

Giraph 159.28 837.40

Vertica 0.00000 725.113

Ti
m

e
(s

ec
on

ds
)

0

350

700

1050

1400

GraphLab Giraph Vertica

Load / Store Time
Algorithm Time

Shortest Paths (Twitter)

Load / Store Iterations

GraphLab 366.607 25.5

Giraph 161.79 101.46

Vertica 0.00000 277.025

Connected Components (Twitter)

Load / Store Iterations

GraphLab 370.709 91.923

Giraph 153.09 233.44

Vertica 0.00000 373.094

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store Time
Algorithm Time

Ti
m

e
(s

ec
on

ds
)

0

150

300

450

600

GraphLab Giraph Vertica

Load / Store Time
Algorithm Time

(c) Connected Components

Figure 10: Cost breakdown of typical vertex-centric Analysis on Twitter graph.

Single Source Shortest Path (SSSP). We implemented SSSP on
Vertica using the query shown in Listing 4, i.e. we incrementally
compute the distances and replace the old vertex table with the new
one, unless the number of updates is less than 5000, in which case
we update the vertex table in-place.
Connected Components. We implemented the HCC algorithm [15]
in Vertica (this is the same algorithm used in Giraph). HCC assigns
each node to a component identifier. We initialize the vertex values
with their ids and in each iteration the vertex updates are computed
(similar to SSSP) as follows:
CREATE TABLE v_update_prime AS
SELECT v1.id, MIN(v2.value) AS value
FROM v_update AS v2, edge AS e, vertex AS v1
WHERE v2.id=e.from_node AND v1.id=e.to_node
GROUP BY v1.id, v1.value
HAVING MIN(v2.value) < v1.value;

As in shortest paths, we apply these updates either in-place or by
replacing the vertex table, depending upon the number of updates.
Additionally, we apply two optimizations: (1) we do not perform
incremental computation at first; rather, we update all vertices in
the first few iterations, i.e. we use the entire vertex table instead of
v update in the above query, (2) since the component ids can be

propagated in either edge direction, we propagate them in opposite
directions over alternate iterations, i.e. we change the join condition
in the above query to: v2.id=e.to node AND v1.id=e.from node.
These optimizations help to significantly speed up the convergence
of the algorithm, since component ids can be propagated quickly
on either edge directions.

Figures 8(a), 8(b), and 8(c) show the query runtime of PageRank
(10 iterations), SSSP, and Connected Components on GraphLab,
Giraph, and Vertica over directed graphs using 4 machines. We can
see that Vertica outperforms Giraph and is comparable to GraphLab
on these three queries, both on the smaller LiveJournal graph as
well as the billion edge Twitter graph. The reason is that these
queries are full scan-oriented join queries for which Vertica is heav-
ily optimized. A reader might also think that our SQL implemen-
tations are thoroughly hand crafted, which is actually true. In fact,
one of our goals in this paper is to show that if developers really
care about the graph algorithms they can tune them quite a bit in the
SQL engines. In Section 4.3, we evaluate our more general shared
memory implementation to run arbitrary vertex-centric UDFs.

Note that the advantage of Vertica varies across benchmarks. For
example, on the Twitter graph, Vertica has 40% improvement over

8

Disk I/O: bytes read

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Total

Graph
Lab

24.38 24.38
Giraph 24.80

2477
24.8024776279926

Vertica 0 0.079
7363

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0 8.61710928473622

Re
ad

 IO
 (G

B)

0

5

10

15

20

25

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

GraphLab
Giraph
Vertica

Disk I/O: bytes written

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Total

Graph
Lab

0.6659667968750.665966796875
Giraph 1.162708334624771.16270833462477
Vertica 0 3.103332966566091.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372050 13.2923016399145

W
rit

e
IO

 (G
B)

0

1

2

3

4

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

GraphLab
Giraph
Vertica

Total I/O

Read Write

GraphLab 24.38 0.665966796875

Giraph 24.80247762799261.16270833462477

Vertica 8.6171092847362213.2923016399145

Ac
cu

m
ul

at
ed

 IO
 (G

B)

0

6

12

18

24

30

Read Write

GraphLab
Giraph
Vertica

Table 1

Vertica Giraph GraphLab

0.618931 1.18717 0.682426

2.66477 1.53716 0.828197

2.85276 1.74782 1.11526

3.32222 3.06425 1.26548

3.24784 8.87862 1.55106

4.00165 13.0163 1.6863

4.0029 14.843 2.01369

4.00306 16.0345 2.15664

4.00327 16.1241 2.45057

4.00346 16.3522 2.6035

3.37668 16.5131 2.874

4.25254 17.0164 2.99626

4.05005 17.2526 3.25139

4.5032 17.3312 3.36543

4.48816 18.159 3.68496

4.47684 18.5232 3.84452

4.47672 18.8235 4.15305

4.51923 19.0535 4.28076

4.07025 20.2701 4.54293

5.07447 22.3931 4.66988

4.71683 24.3588 4.83318

4.82393 25.4106 4.96341

4.81039 25.4114 5.22519

4.79879 25.4134 5.32691

4.93113 25.456 5.62209

4.91565 27.2292 5.75922

4.37033 28.1097 6.0388

4.13215 28.1108 6.1818

4.87063 28.4687 6.46082

4.8595 28.7771 6.61161

4.84404 28.5011 6.90736

4.83248 28.2838 7.05424

4.82265 27.8964 7.35824

4.19115 27.9215 7.49028

5.19909 28.08 7.78964

4.84802 28.5727 7.90083

4.95004 29.1925 8.14

4.93834 28.9236 8.2793

4.92286 28.6739 8.45631

4.91106 28.5522 8.49706

4.91751 28.5977 8.58068

4.46943 28.6479 8.68507

5.08484 28.5422 9.78622

4.96843 28.5967 10.0203

4.95331 28.6151 11.2029

4.94164 28.7323 11.4627

4.93005 28.8031 11.9849

4.92014 28.8068 12.248

4.10617 28.7496 12.7786

4.94611 28.7518 13.0435

4.74366 28.8059 13.5779

4.97414 28.9044 13.8435

4.95887 28.8631 14.3689

4.94749 28.9279 14.6326

4.9362 29.0655 15.158

4.93922 29.2825 15.4254

4.28719 29.249 18.626

5.18806 29.2818 21.6047

4.9771 29.2003 21.6047

4.96585 29.1622 25.0819

4.95027 29.1624 29.8613

4.93867 29.2714 31.7696

4.9347 29.2715 33.0667

3.93609 29.5734 33.181

4.47414 29.574 30.4928

4.49083 29.6699 30.4928

4.95993 29.561 30.4937

4.94867 29.5922 30.4941

4.93323 29.5922 30.4943

4.92178 29.865 30.4944

4.93016 30.3174 30.4944

4.19854 30.4258 30.4944

5.19421 30.7612 30.4944

4.9726 30.762 30.4942

4.9749 30.6475 30.4965

4.96305 30.5348 30.4963

4.95487 30.4303 30.4968

4.94587 30.4304 30.4972

4.95371 30.2695 30.497

3.7276 30.2696 30.4972

3.71587 30.2701 30.4974

3.70415 30.3379 30.4971

3.68854 30.3959 30.4975

3.67682 30.502 30.4975

3.6651 30.5026 30.4974

3.64947 30.5026 30.4975

3.63769 30.7121 30.4975

3.62598 30.9973 24.9625

3.6105 30.9969 24.9625

3.60392 30.997 24.9625

3.59292 30.997 24.9625

3.57729 30.9968 24.9625

3.56559 30.9972 24.9625

3.54997 30.9972 24.9625

3.53824 31.1218 24.9625

3.52655 31.1604 24.9625

3.51093 31.2126 24.9625

3.49921 31.2128 24.9625

3.48748 31.2129 24.9625

3.47186 31.1609 24.9625

3.46014 31.0451 24.9625

3.44842 31.0212 24.9625

3.43279 31.0919 24.966

3.42107 31.027 24.9657

3.40546 30.9331 24.9653

3.39374 30.6771 24.9612

3.38201 30.6791 24.9657

3.36639 30.6791 24.9657

3.35468 30.6791 24.9653

3.34296 30.6791 24.9612

M
em

or
y

Fo
ot

pr
in

t
(G

B)

0

8

16

24

32

40

48
Vertica

M
em

or
y

Fo
ot

pr
in

t (
G

B)

0

8

16

24

32

40

48
Giraph

M
em

or
y

Fo
ot

pr
in

t (
G

B)

0

8

16

24

32

40

48
GraphLab

(a) GraphLab

Disk I/O: bytes read

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Total

Graph
Lab

24.38 24.38
Giraph 24.80

2477
24.8024776279926

Vertica 0 0.079
7363

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0 8.61710928473622

Re
ad

 IO
 (G

B)

0

5

10

15

20

25

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

GraphLab
Giraph
Vertica

Disk I/O: bytes written

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Total

Graph
Lab

0.6659667968750.665966796875
Giraph 1.162708334624771.16270833462477
Vertica 0 3.103332966566091.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372050 13.2923016399145

W
rit

e
IO

 (G
B)

0

1

2

3

4

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

GraphLab
Giraph
Vertica

Total I/O

Read Write

GraphLab 24.38 0.665966796875

Giraph 24.80247762799261.16270833462477

Vertica 8.6171092847362213.2923016399145

Ac
cu

m
ul

at
ed

 IO
 (G

B)

0

6

12

18

24

30

Read Write

GraphLab
Giraph
Vertica

Table 1

Vertica Giraph GraphLab

0.618931 1.18717 0.682426

2.66477 1.53716 0.828197

2.85276 1.74782 1.11526

3.32222 3.06425 1.26548

3.24784 8.87862 1.55106

4.00165 13.0163 1.6863

4.0029 14.843 2.01369

4.00306 16.0345 2.15664

4.00327 16.1241 2.45057

4.00346 16.3522 2.6035

3.37668 16.5131 2.874

4.25254 17.0164 2.99626

4.05005 17.2526 3.25139

4.5032 17.3312 3.36543

4.48816 18.159 3.68496

4.47684 18.5232 3.84452

4.47672 18.8235 4.15305

4.51923 19.0535 4.28076

4.07025 20.2701 4.54293

5.07447 22.3931 4.66988

4.71683 24.3588 4.83318

4.82393 25.4106 4.96341

4.81039 25.4114 5.22519

4.79879 25.4134 5.32691

4.93113 25.456 5.62209

4.91565 27.2292 5.75922

4.37033 28.1097 6.0388

4.13215 28.1108 6.1818

4.87063 28.4687 6.46082

4.8595 28.7771 6.61161

4.84404 28.5011 6.90736

4.83248 28.2838 7.05424

4.82265 27.8964 7.35824

4.19115 27.9215 7.49028

5.19909 28.08 7.78964

4.84802 28.5727 7.90083

4.95004 29.1925 8.14

4.93834 28.9236 8.2793

4.92286 28.6739 8.45631

4.91106 28.5522 8.49706

4.91751 28.5977 8.58068

4.46943 28.6479 8.68507

5.08484 28.5422 9.78622

4.96843 28.5967 10.0203

4.95331 28.6151 11.2029

4.94164 28.7323 11.4627

4.93005 28.8031 11.9849

4.92014 28.8068 12.248

4.10617 28.7496 12.7786

4.94611 28.7518 13.0435

4.74366 28.8059 13.5779

4.97414 28.9044 13.8435

4.95887 28.8631 14.3689

4.94749 28.9279 14.6326

4.9362 29.0655 15.158

4.93922 29.2825 15.4254

4.28719 29.249 18.626

5.18806 29.2818 21.6047

4.9771 29.2003 21.6047

4.96585 29.1622 25.0819

4.95027 29.1624 29.8613

4.93867 29.2714 31.7696

4.9347 29.2715 33.0667

3.93609 29.5734 33.181

4.47414 29.574 30.4928

4.49083 29.6699 30.4928

4.95993 29.561 30.4937

4.94867 29.5922 30.4941

4.93323 29.5922 30.4943

4.92178 29.865 30.4944

4.93016 30.3174 30.4944

4.19854 30.4258 30.4944

5.19421 30.7612 30.4944

4.9726 30.762 30.4942

4.9749 30.6475 30.4965

4.96305 30.5348 30.4963

4.95487 30.4303 30.4968

4.94587 30.4304 30.4972

4.95371 30.2695 30.497

3.7276 30.2696 30.4972

3.71587 30.2701 30.4974

3.70415 30.3379 30.4971

3.68854 30.3959 30.4975

3.67682 30.502 30.4975

3.6651 30.5026 30.4974

3.64947 30.5026 30.4975

3.63769 30.7121 30.4975

3.62598 30.9973 24.9625

3.6105 30.9969 24.9625

3.60392 30.997 24.9625

3.59292 30.997 24.9625

3.57729 30.9968 24.9625

3.56559 30.9972 24.9625

3.54997 30.9972 24.9625

3.53824 31.1218 24.9625

3.52655 31.1604 24.9625

3.51093 31.2126 24.9625

3.49921 31.2128 24.9625

3.48748 31.2129 24.9625

3.47186 31.1609 24.9625

3.46014 31.0451 24.9625

3.44842 31.0212 24.9625

3.43279 31.0919 24.966

3.42107 31.027 24.9657

3.40546 30.9331 24.9653

3.39374 30.6771 24.9612

3.38201 30.6791 24.9657

3.36639 30.6791 24.9657

3.35468 30.6791 24.9653

3.34296 30.6791 24.9612

M
em

or
y

Fo
ot

pr
in

t
(G

B)

0

8

16

24

32

40

48
Vertica

M
em

or
y

Fo
ot

pr
in

t (
G

B)

0

8

16

24

32

40

48
Giraph

M
em

or
y

Fo
ot

pr
in

t (
G

B)

0

8

16

24

32

40

48
GraphLab

(b) Giraph

Disk I/O: bytes read

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Total

Graph
Lab

24.38 24.38
Giraph 24.80

2477
24.8024776279926

Vertica 0 0.079
7363

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0 8.61710928473622

Re
ad

 IO
 (G

B)

0

5

10

15

20

25

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

GraphLab
Giraph
Vertica

Disk I/O: bytes written

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Total

Graph
Lab

0.6659667968750.665966796875
Giraph 1.162708334624771.16270833462477
Vertica 0 3.103332966566091.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372050 13.2923016399145

W
rit

e
IO

 (G
B)

0

1

2

3

4

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

GraphLab
Giraph
Vertica

Total I/O

Read Write

GraphLab 24.38 0.665966796875

Giraph 24.80247762799261.16270833462477

Vertica 8.6171092847362213.2923016399145

Ac
cu

m
ul

at
ed

 IO
 (G

B)

0

6

12

18

24

30

Read Write

GraphLab
Giraph
Vertica

Table 1

Vertica Giraph GraphLab

0.618931 1.18717 0.682426

2.66477 1.53716 0.828197

2.85276 1.74782 1.11526

3.32222 3.06425 1.26548

3.24784 8.87862 1.55106

4.00165 13.0163 1.6863

4.0029 14.843 2.01369

4.00306 16.0345 2.15664

4.00327 16.1241 2.45057

4.00346 16.3522 2.6035

3.37668 16.5131 2.874

4.25254 17.0164 2.99626

4.05005 17.2526 3.25139

4.5032 17.3312 3.36543

4.48816 18.159 3.68496

4.47684 18.5232 3.84452

4.47672 18.8235 4.15305

4.51923 19.0535 4.28076

4.07025 20.2701 4.54293

5.07447 22.3931 4.66988

4.71683 24.3588 4.83318

4.82393 25.4106 4.96341

4.81039 25.4114 5.22519

4.79879 25.4134 5.32691

4.93113 25.456 5.62209

4.91565 27.2292 5.75922

4.37033 28.1097 6.0388

4.13215 28.1108 6.1818

4.87063 28.4687 6.46082

4.8595 28.7771 6.61161

4.84404 28.5011 6.90736

4.83248 28.2838 7.05424

4.82265 27.8964 7.35824

4.19115 27.9215 7.49028

5.19909 28.08 7.78964

4.84802 28.5727 7.90083

4.95004 29.1925 8.14

4.93834 28.9236 8.2793

4.92286 28.6739 8.45631

4.91106 28.5522 8.49706

4.91751 28.5977 8.58068

4.46943 28.6479 8.68507

5.08484 28.5422 9.78622

4.96843 28.5967 10.0203

4.95331 28.6151 11.2029

4.94164 28.7323 11.4627

4.93005 28.8031 11.9849

4.92014 28.8068 12.248

4.10617 28.7496 12.7786

4.94611 28.7518 13.0435

4.74366 28.8059 13.5779

4.97414 28.9044 13.8435

4.95887 28.8631 14.3689

4.94749 28.9279 14.6326

4.9362 29.0655 15.158

4.93922 29.2825 15.4254

4.28719 29.249 18.626

5.18806 29.2818 21.6047

4.9771 29.2003 21.6047

4.96585 29.1622 25.0819

4.95027 29.1624 29.8613

4.93867 29.2714 31.7696

4.9347 29.2715 33.0667

3.93609 29.5734 33.181

4.47414 29.574 30.4928

4.49083 29.6699 30.4928

4.95993 29.561 30.4937

4.94867 29.5922 30.4941

4.93323 29.5922 30.4943

4.92178 29.865 30.4944

4.93016 30.3174 30.4944

4.19854 30.4258 30.4944

5.19421 30.7612 30.4944

4.9726 30.762 30.4942

4.9749 30.6475 30.4965

4.96305 30.5348 30.4963

4.95487 30.4303 30.4968

4.94587 30.4304 30.4972

4.95371 30.2695 30.497

3.7276 30.2696 30.4972

3.71587 30.2701 30.4974

3.70415 30.3379 30.4971

3.68854 30.3959 30.4975

3.67682 30.502 30.4975

3.6651 30.5026 30.4974

3.64947 30.5026 30.4975

3.63769 30.7121 30.4975

3.62598 30.9973 24.9625

3.6105 30.9969 24.9625

3.60392 30.997 24.9625

3.59292 30.997 24.9625

3.57729 30.9968 24.9625

3.56559 30.9972 24.9625

3.54997 30.9972 24.9625

3.53824 31.1218 24.9625

3.52655 31.1604 24.9625

3.51093 31.2126 24.9625

3.49921 31.2128 24.9625

3.48748 31.2129 24.9625

3.47186 31.1609 24.9625

3.46014 31.0451 24.9625

3.44842 31.0212 24.9625

3.43279 31.0919 24.966

3.42107 31.027 24.9657

3.40546 30.9331 24.9653

3.39374 30.6771 24.9612

3.38201 30.6791 24.9657

3.36639 30.6791 24.9657

3.35468 30.6791 24.9653

3.34296 30.6791 24.9612

M
em

or
y

Fo
ot

pr
in

t
(G

B)

0

8

16

24

32

40

48
Vertica

M
em

or
y

Fo
ot

pr
in

t (
G

B)

0

8

16

24

32

40

48
Giraph

M
em

or
y

Fo
ot

pr
in

t (
G

B)

0

8

16

24

32

40

48
GraphLab

(c) Vertica

Figure 11: The Memory Footprint of Different Systems.

Disk I/O: bytes read

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Total

Graph
Lab

24.38 24.38
Giraph 24.80

2477
24.8024776279926

Vertica 0 0.079
7363

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0 8.61710928473622

Re
ad

 IO
 (G

B)

0

5

10

15

20

25

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

GraphLab
Giraph
Vertica

Disk I/O: bytes written

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Total

Graph
Lab

0.6659667968750.665966796875
Giraph 1.162708334624771.16270833462477
Vertica 0 3.103332966566091.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372050 13.2923016399145

W
rit

e
IO

 (G
B)

0

1

2

3

4

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

GraphLab
Giraph
Vertica

Total I/O

Read Write

GraphLab 24.38 0.665966796875

Giraph 24.80247762799261.16270833462477

Vertica 8.6171092847362213.2923016399145

Ac
cu

m
ul

at
ed

 IO
 (G

B)

0

6

12

18

24

30

Read Write

GraphLab
Giraph
Vertica

Table 1

Vertica Giraph GraphLab

0.618931 1.18717 0.682426

2.66477 1.53716 0.828197

2.85276 1.74782 1.11526

3.32222 3.06425 1.26548

3.24784 8.87862 1.55106

4.00165 13.0163 1.6863

4.0029 14.843 2.01369

4.00306 16.0345 2.15664

4.00327 16.1241 2.45057

4.00346 16.3522 2.6035

3.37668 16.5131 2.874

4.25254 17.0164 2.99626

4.05005 17.2526 3.25139

4.5032 17.3312 3.36543

4.48816 18.159 3.68496

4.47684 18.5232 3.84452

4.47672 18.8235 4.15305

4.51923 19.0535 4.28076

4.07025 20.2701 4.54293

5.07447 22.3931 4.66988

4.71683 24.3588 4.83318

4.82393 25.4106 4.96341

4.81039 25.4114 5.22519

4.79879 25.4134 5.32691

4.93113 25.456 5.62209

4.91565 27.2292 5.75922

4.37033 28.1097 6.0388

4.13215 28.1108 6.1818

4.87063 28.4687 6.46082

4.8595 28.7771 6.61161

4.84404 28.5011 6.90736

4.83248 28.2838 7.05424

4.82265 27.8964 7.35824

4.19115 27.9215 7.49028

5.19909 28.08 7.78964

4.84802 28.5727 7.90083

4.95004 29.1925 8.14

4.93834 28.9236 8.2793

4.92286 28.6739 8.45631

4.91106 28.5522 8.49706

4.91751 28.5977 8.58068

4.46943 28.6479 8.68507

5.08484 28.5422 9.78622

4.96843 28.5967 10.0203

4.95331 28.6151 11.2029

4.94164 28.7323 11.4627

4.93005 28.8031 11.9849

4.92014 28.8068 12.248

4.10617 28.7496 12.7786

4.94611 28.7518 13.0435

4.74366 28.8059 13.5779

4.97414 28.9044 13.8435

4.95887 28.8631 14.3689

4.94749 28.9279 14.6326

4.9362 29.0655 15.158

4.93922 29.2825 15.4254

4.28719 29.249 18.626

5.18806 29.2818 21.6047

4.9771 29.2003 21.6047

4.96585 29.1622 25.0819

4.95027 29.1624 29.8613

4.93867 29.2714 31.7696

4.9347 29.2715 33.0667

3.93609 29.5734 33.181

4.47414 29.574 30.4928

4.49083 29.6699 30.4928

4.95993 29.561 30.4937

4.94867 29.5922 30.4941

4.93323 29.5922 30.4943

4.92178 29.865 30.4944

4.93016 30.3174 30.4944

4.19854 30.4258 30.4944

5.19421 30.7612 30.4944

4.9726 30.762 30.4942

4.9749 30.6475 30.4965

4.96305 30.5348 30.4963

4.95487 30.4303 30.4968

4.94587 30.4304 30.4972

4.95371 30.2695 30.497

3.7276 30.2696 30.4972

3.71587 30.2701 30.4974

3.70415 30.3379 30.4971

3.68854 30.3959 30.4975

3.67682 30.502 30.4975

3.6651 30.5026 30.4974

3.64947 30.5026 30.4975

3.63769 30.7121 30.4975

3.62598 30.9973 24.9625

3.6105 30.9969 24.9625

3.60392 30.997 24.9625

3.59292 30.997 24.9625

3.57729 30.9968 24.9625

3.56559 30.9972 24.9625

3.54997 30.9972 24.9625

3.53824 31.1218 24.9625

3.52655 31.1604 24.9625

3.51093 31.2126 24.9625

3.49921 31.2128 24.9625

3.48748 31.2129 24.9625

3.47186 31.1609 24.9625

3.46014 31.0451 24.9625

3.44842 31.0212 24.9625

3.43279 31.0919 24.966

3.42107 31.027 24.9657

3.40546 30.9331 24.9653

3.39374 30.6771 24.9612

3.38201 30.6791 24.9657

3.36639 30.6791 24.9657

3.35468 30.6791 24.9653

3.34296 30.6791 24.9612

M
em

or
y

Fo
ot

pr
in

t
(G

B)

0

8

16

24

32

40

48
Vertica

M
em

or
y

Fo
ot

pr
in

t (
G

B)

0

8

16

24

32

40

48
Giraph

M
em

or
y

Fo
ot

pr
in

t (
G

B)

0

8

16

24

32

40

48
GraphLab

(a) Input IO

Disk I/O: bytes read

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Total

Graph
Lab

24.38 24.38
Giraph 24.80

2477
24.8024776279926

Vertica 0 0.079
7363

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0 8.61710928473622

Re
ad

 IO
 (G

B)

0

5

10

15

20

25

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

GraphLab
Giraph
Vertica

Disk I/O: bytes written

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Total

Graph
Lab

0.6659667968750.665966796875
Giraph 1.162708334624771.16270833462477
Vertica 0 3.103332966566091.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372050 13.2923016399145

W
rit

e
IO

 (G
B)

0

1

2

3

4

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

GraphLab
Giraph
Vertica

Total I/O

Read Write

GraphLab 24.38 0.665966796875

Giraph 24.80247762799261.16270833462477

Vertica 8.6171092847362213.2923016399145

Ac
cu

m
ul

at
ed

 IO
 (G

B)

0

6

12

18

24

30

Read Write

GraphLab
Giraph
Vertica

Table 1

Vertica Giraph GraphLab

0.618931 1.18717 0.682426

2.66477 1.53716 0.828197

2.85276 1.74782 1.11526

3.32222 3.06425 1.26548

3.24784 8.87862 1.55106

4.00165 13.0163 1.6863

4.0029 14.843 2.01369

4.00306 16.0345 2.15664

4.00327 16.1241 2.45057

4.00346 16.3522 2.6035

3.37668 16.5131 2.874

4.25254 17.0164 2.99626

4.05005 17.2526 3.25139

4.5032 17.3312 3.36543

4.48816 18.159 3.68496

4.47684 18.5232 3.84452

4.47672 18.8235 4.15305

4.51923 19.0535 4.28076

4.07025 20.2701 4.54293

5.07447 22.3931 4.66988

4.71683 24.3588 4.83318

4.82393 25.4106 4.96341

4.81039 25.4114 5.22519

4.79879 25.4134 5.32691

4.93113 25.456 5.62209

4.91565 27.2292 5.75922

4.37033 28.1097 6.0388

4.13215 28.1108 6.1818

4.87063 28.4687 6.46082

4.8595 28.7771 6.61161

4.84404 28.5011 6.90736

4.83248 28.2838 7.05424

4.82265 27.8964 7.35824

4.19115 27.9215 7.49028

5.19909 28.08 7.78964

4.84802 28.5727 7.90083

4.95004 29.1925 8.14

4.93834 28.9236 8.2793

4.92286 28.6739 8.45631

4.91106 28.5522 8.49706

4.91751 28.5977 8.58068

4.46943 28.6479 8.68507

5.08484 28.5422 9.78622

4.96843 28.5967 10.0203

4.95331 28.6151 11.2029

4.94164 28.7323 11.4627

4.93005 28.8031 11.9849

4.92014 28.8068 12.248

4.10617 28.7496 12.7786

4.94611 28.7518 13.0435

4.74366 28.8059 13.5779

4.97414 28.9044 13.8435

4.95887 28.8631 14.3689

4.94749 28.9279 14.6326

4.9362 29.0655 15.158

4.93922 29.2825 15.4254

4.28719 29.249 18.626

5.18806 29.2818 21.6047

4.9771 29.2003 21.6047

4.96585 29.1622 25.0819

4.95027 29.1624 29.8613

4.93867 29.2714 31.7696

4.9347 29.2715 33.0667

3.93609 29.5734 33.181

4.47414 29.574 30.4928

4.49083 29.6699 30.4928

4.95993 29.561 30.4937

4.94867 29.5922 30.4941

4.93323 29.5922 30.4943

4.92178 29.865 30.4944

4.93016 30.3174 30.4944

4.19854 30.4258 30.4944

5.19421 30.7612 30.4944

4.9726 30.762 30.4942

4.9749 30.6475 30.4965

4.96305 30.5348 30.4963

4.95487 30.4303 30.4968

4.94587 30.4304 30.4972

4.95371 30.2695 30.497

3.7276 30.2696 30.4972

3.71587 30.2701 30.4974

3.70415 30.3379 30.4971

3.68854 30.3959 30.4975

3.67682 30.502 30.4975

3.6651 30.5026 30.4974

3.64947 30.5026 30.4975

3.63769 30.7121 30.4975

3.62598 30.9973 24.9625

3.6105 30.9969 24.9625

3.60392 30.997 24.9625

3.59292 30.997 24.9625

3.57729 30.9968 24.9625

3.56559 30.9972 24.9625

3.54997 30.9972 24.9625

3.53824 31.1218 24.9625

3.52655 31.1604 24.9625

3.51093 31.2126 24.9625

3.49921 31.2128 24.9625

3.48748 31.2129 24.9625

3.47186 31.1609 24.9625

3.46014 31.0451 24.9625

3.44842 31.0212 24.9625

3.43279 31.0919 24.966

3.42107 31.027 24.9657

3.40546 30.9331 24.9653

3.39374 30.6771 24.9612

3.38201 30.6791 24.9657

3.36639 30.6791 24.9657

3.35468 30.6791 24.9653

3.34296 30.6791 24.9612

M
em

or
y

Fo
ot

pr
in

t
(G

B)

0

8

16

24

32

40

48
Vertica

M
em

or
y

Fo
ot

pr
in

t (
G

B)

0

8

16

24

32

40

48
Giraph

M
em

or
y

Fo
ot

pr
in

t (
G

B)

0

8

16

24

32

40

48
GraphLab

(b) Output IO

Disk I/O: bytes read

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Total

Graph
Lab

24.38 24.38
Giraph 24.80

2477
24.8024776279926

Vertica 0 0.079
7363

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0.948
5969

0 8.61710928473622

Re
ad

 IO
 (G

B)

0

5

10

15

20

25

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

GraphLab
Giraph
Vertica

Disk I/O: bytes written

Input 1 2 3 4 5 6 7 8 9 10 Outp
ut

Total

Graph
Lab

0.6659667968750.665966796875
Giraph 1.162708334624771.16270833462477
Vertica 0 3.103332966566091.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372051.132107630372050 13.2923016399145

W
rit

e
IO

 (G
B)

0

1

2

3

4

Inp
ut 1 2 3 4 5 6 7 8 9 10

Outp
ut

GraphLab
Giraph
Vertica

Total I/O

Read Write

GraphLab 24.38 0.665966796875

Giraph 24.80247762799261.16270833462477

Vertica 8.6171092847362213.2923016399145

Ac
cu

m
ul

at
ed

 IO
 (G

B)

0

6

12

18

24

30

Read Write

GraphLab
Giraph
Vertica

Table 1

Vertica Giraph GraphLab

0.618931 1.18717 0.682426

2.66477 1.53716 0.828197

2.85276 1.74782 1.11526

3.32222 3.06425 1.26548

3.24784 8.87862 1.55106

4.00165 13.0163 1.6863

4.0029 14.843 2.01369

4.00306 16.0345 2.15664

4.00327 16.1241 2.45057

4.00346 16.3522 2.6035

3.37668 16.5131 2.874

4.25254 17.0164 2.99626

4.05005 17.2526 3.25139

4.5032 17.3312 3.36543

4.48816 18.159 3.68496

4.47684 18.5232 3.84452

4.47672 18.8235 4.15305

4.51923 19.0535 4.28076

4.07025 20.2701 4.54293

5.07447 22.3931 4.66988

4.71683 24.3588 4.83318

4.82393 25.4106 4.96341

4.81039 25.4114 5.22519

4.79879 25.4134 5.32691

4.93113 25.456 5.62209

4.91565 27.2292 5.75922

4.37033 28.1097 6.0388

4.13215 28.1108 6.1818

4.87063 28.4687 6.46082

4.8595 28.7771 6.61161

4.84404 28.5011 6.90736

4.83248 28.2838 7.05424

4.82265 27.8964 7.35824

4.19115 27.9215 7.49028

5.19909 28.08 7.78964

4.84802 28.5727 7.90083

4.95004 29.1925 8.14

4.93834 28.9236 8.2793

4.92286 28.6739 8.45631

4.91106 28.5522 8.49706

4.91751 28.5977 8.58068

4.46943 28.6479 8.68507

5.08484 28.5422 9.78622

4.96843 28.5967 10.0203

4.95331 28.6151 11.2029

4.94164 28.7323 11.4627

4.93005 28.8031 11.9849

4.92014 28.8068 12.248

4.10617 28.7496 12.7786

4.94611 28.7518 13.0435

4.74366 28.8059 13.5779

4.97414 28.9044 13.8435

4.95887 28.8631 14.3689

4.94749 28.9279 14.6326

4.9362 29.0655 15.158

4.93922 29.2825 15.4254

4.28719 29.249 18.626

5.18806 29.2818 21.6047

4.9771 29.2003 21.6047

4.96585 29.1622 25.0819

4.95027 29.1624 29.8613

4.93867 29.2714 31.7696

4.9347 29.2715 33.0667

3.93609 29.5734 33.181

4.47414 29.574 30.4928

4.49083 29.6699 30.4928

4.95993 29.561 30.4937

4.94867 29.5922 30.4941

4.93323 29.5922 30.4943

4.92178 29.865 30.4944

4.93016 30.3174 30.4944

4.19854 30.4258 30.4944

5.19421 30.7612 30.4944

4.9726 30.762 30.4942

4.9749 30.6475 30.4965

4.96305 30.5348 30.4963

4.95487 30.4303 30.4968

4.94587 30.4304 30.4972

4.95371 30.2695 30.497

3.7276 30.2696 30.4972

3.71587 30.2701 30.4974

3.70415 30.3379 30.4971

3.68854 30.3959 30.4975

3.67682 30.502 30.4975

3.6651 30.5026 30.4974

3.64947 30.5026 30.4975

3.63769 30.7121 30.4975

3.62598 30.9973 24.9625

3.6105 30.9969 24.9625

3.60392 30.997 24.9625

3.59292 30.997 24.9625

3.57729 30.9968 24.9625

3.56559 30.9972 24.9625

3.54997 30.9972 24.9625

3.53824 31.1218 24.9625

3.52655 31.1604 24.9625

3.51093 31.2126 24.9625

3.49921 31.2128 24.9625

3.48748 31.2129 24.9625

3.47186 31.1609 24.9625

3.46014 31.0451 24.9625

3.44842 31.0212 24.9625

3.43279 31.0919 24.966

3.42107 31.027 24.9657

3.40546 30.9331 24.9653

3.39374 30.6771 24.9612

3.38201 30.6791 24.9657

3.36639 30.6791 24.9657

3.35468 30.6791 24.9653

3.34296 30.6791 24.9612

M
em

or
y

Fo
ot

pr
in

t
(G

B)

0

8

16

24

32

40

48
Vertica

M
em

or
y

Fo
ot

pr
in

t (
G

B)

0

8

16

24

32

40

48
Giraph

M
em

or
y

Fo
ot

pr
in

t (
G

B)

0

8

16

24

32

40

48
GraphLab

(c) Total IO

Figure 12: The IO Footprint of Different Systems.

Giraph for PageRank, but only 8% improvement for SSSP. To in-
vestigate this, consider the per-iteration runtime of these two al-
gorithms, as shown in Figures 9(a) and 9(b)3. For PageRank, the
iteration runtimes remain relatively unchanged since all vertices are
updated in each iteration. For SSSP, the iteration runtime peaks to a
maximum since the number of updated vertices first increases and
then decreases. From Figures 9(a) and 9(b), we can see that Giraph
incurs very high runtime for the input iteration, which is the cost
to load the raw data and transform it into internal graph representa-
tion. Vertica has no such input step. Both Vertica and Giraph have
similar runtime for iterations having a large number of vertex up-
dates, e.g. PageRank iterations or the peak iteration in SSSP, due to
a full scan over the dataset. However, Giraph has better runtimes
for iterations with fewer vertex updates, e.g. the non-peak iterations
of SSSP, due to its in-memory graph representation. Figure 9(c)
shows the per-iteration runtimes of Vertica and Giraph for Con-
nected Components. We can see that by propagating component
ids in either edge direction, Vertica converges significantly faster.

Finally, Figures 10(a), 10(b), and 10(c) show the runtime break-
down of the GraphLab, Giraph, and Vertica on the Twitter graph.
We can see that the total runtime of GraphLab is dominated by the
load/store costs. In fact, the analysis time for SSSP in GraphLab is
just 25 seconds, a very small fraction of the overall cost. In con-
trast, the runtimes of Giraph are dominated by the analysis time.
Vertica, on the other hand, pipelines the data from disk and there-
fore there is no distinct load/store phase. However, efficient data
storage and retrieval makes Vertica competitive in terms of the to-
tal runtime.

4.2 Resource Consumption
We now study the resource consumption, i.e., the memory foot-

print and disk I/O, of Vertica, Giraph, and GraphLab. Figures 11(a),

3The toolkit implementation in GraphLab doesn’t produce the per-
iteration runtime.

11(b), and 11(c) show the per-node memory consumption of GraphLab,
Giraph, and Vertica when running PageRank on the Twitter graph
using 4 machines. We can see that out of the total 48GB memory
per node, both GraphLab and Giraph has a peak memory usage of
close to 32GB, i.e., 66% of the total memory. In contrast, Vertica
has a peak usage of only 5.2GB, i.e. 11% of total memory. Thus,
Vertica has a much smaller memory footprint.

The picture changes completely if we look at the disk I/O. Fig-
ures 12(a) and 12(b) show the number of bytes read and written to
disk by GraphLab, Giraph, and Vertica in each PageRank iteration
over the Twitter graph. We can see that GraphLab and Giraph have
high read I/O in the input step and no disk reads thereafter, whereas
Vertica has no upfront read but incurs disk reads in each iteration.
Likewise, Vertica incurs high write I/O in each iteration, whereas
GraphLab and Giraph incur writes only in the output step. Thus, in
total, while Vertica incurs less read I/O than Giraph (due to better
encoding and compression), it incurs much more write I/O (due to
materializing the output of each iteration to disk).

This expensive I/O for writing the iteration output is also true
when running vertex functions as table UDFs. To illustrate this,
Figure 13(a) shows the cost breakdown when running PageRank as
table UDFs. We can see that writing intermediate output (shown in
red) is the major cost in the query runtime.

4.3 In-memory Graph Analysis
To test whether we can avoid the expensive intermediate I/O in

Vertica, we implemented the shared memory UDFs as described in
Section 3.4.2. Figure 13(b) shows the runtime of the shared mem-
ory table UDF, on the Twitter-small graph. We can see that the
shared memory implementation is about 7.5 times faster than the
disk-based table UDF and even more than 2 times faster than the
SQL implementation. Finally, Figure 13(c) shows the cost break-
down of the shared memory table UDF. We can see that the system
spends most of the time inside the UDF and there is no per-iteration
output cost. Thus, we see that developers can indeed sacrifice mem-

9

Table 2

Giraph Vertica
(UDF)

Vertica
(SQL)

Vertica (UDF,
Shared Memory)

PageRank 46.956666666666710.92925766666673.313333333333331.45955966666667

Shortest Path 43.666666666666710.646985 2.956350333333331.38871466666667

Ti
m

e
(s

ec
on

ds
)

0
2
4
6
8

10
12
14
16
18
20

PageRank Shortest Path

1.391.46
2.963.31

10.6510.93

Vertica (UDF + Disk)
Vertica (SQL + Disk)
Vertica (UDF + Shared Memory)

Twitter-small dataset

Table 4

PageRank

Table Scan +
Union

4466.924

UDF I/O 2168.054

UDF Compute 988.823

Intermediate
Output

5861.264

Updates 2091.897

Ti
m

e
(M

illi
-s

ec
on

ds
)

0

4000

8000

12000

16000

Total

2,092

5,861

989
2,168

4,467

Table Scan + Union
UDF I/O
UDF Compute
Intermediate Output
Updates

Table 5

PageRank

Reading Input 193.119744

Compute UDF 144.243712

Message Sorting 73.51936

Synchronizations 279.91296

Final Output 11.714048

Remaining 32.021504

0

175

350

525

700

Inside UDF

12
280

74
144

193

Reading Input
Compute UDF
Message Sorting
Synchronizations
Final Output
Remaining

Table 6

PageRank

Outside UDF 569.66484266667

Inside UDF 702.509824

Ti
m

e
(M

illi
se

co
nd

s)

0

700

1400

Total

702.5

569.7

Outside UDF
Inside UDF

PageRank (10 iterations)

GraphLab Vertica

Load Time 49.07 15.385

Algorithm Time 11.5 14.244

Total Time 60.570 29.629

Shortest Paths

GraphLab Vertica

Load Time 50.714 14.849

Algorithm Time 1.4 1.649

Total Time 52.114 16.498

Connected Components

GraphLab Vertica

Load Time 49 16.505

Algorithm Time 6.641 7.032

Total Time 55.641 23.537

0

14

28

42

56

70

GraphLab Vertica

14.2

11.5

15.4

49.1

Load Time
Algorithm Time

0

12

24

36

48

60

GraphLab Vertica

1.6

1.4

14.8

50.7
Load Time
Algorithm Time

0

12

24

36

48

60

GraphLab Vertica

7.0

6.6

16.5

49.0

Load Time
Algorithm Time

Load Time

GraphLab Vertica

PageRank 49.07 15.385

Shortest Paths 50.714 14.849

Connected
Components

49 16.505

Algorithm Time

GraphLab Vertica

PageRank 11.5 14.244

Shortest Paths 1.4 1.649

Connected
Components

6.641 7.032

0

20

40

60

80

PageRank Shortest Paths Connected Components

GraphLab
Vertica

0

4

8

12

16

PageRank Shortest Paths Connected Components

GraphLab
Vertica

(a) Cost Breakdown

Table 2

Giraph Vertica
(UDF)

Vertica
(SQL)

Vertica (UDF,
Shared Memory)

PageRank 46.956666666666710.92925766666673.313333333333331.45955966666667

Shortest Path 43.666666666666710.646985 2.956350333333331.38871466666667

Ti
m

e
(s

ec
on

ds
)

0
2
4
6
8

10
12
14
16
18
20

PageRank Shortest Path

1.391.46
2.963.31

10.6510.93

Vertica (UDF + Disk)
Vertica (SQL + Disk)
Vertica (UDF + Shared Memory)

Twitter-small dataset

Table 4

PageRank

Table Scan +
Union

4466.924

UDF I/O 2168.054

UDF Compute 988.823

Intermediate
Output

5861.264

Updates 2091.897

Ti
m

e
(M

illi
-s

ec
on

ds
)

0

4000

8000

12000

16000

Total

2,092

5,861

989
2,168

4,467

Table Scan + Union
UDF I/O
UDF Compute
Intermediate Output
Updates

Table 5

PageRank

Reading Input 193.119744

Compute UDF 144.243712

Message Sorting 73.51936

Synchronizations 279.91296

Final Output 11.714048

Remaining 32.021504

0

175

350

525

700

Inside UDF

12
280

74
144

193

Reading Input
Compute UDF
Message Sorting
Synchronizations
Final Output
Remaining

Table 6

PageRank

Outside UDF 569.66484266667

Inside UDF 702.509824

Ti
m

e
(M

illi
se

co
nd

s)

0

700

1400

Total

702.5

569.7

Outside UDF
Inside UDF

PageRank (10 iterations)

GraphLab Vertica

Load Time 49.07 15.385

Algorithm Time 11.5 14.244

Total Time 60.570 29.629

Shortest Paths

GraphLab Vertica

Load Time 50.714 14.849

Algorithm Time 1.4 1.649

Total Time 52.114 16.498

Connected Components

GraphLab Vertica

Load Time 49 16.505

Algorithm Time 6.641 7.032

Total Time 55.641 23.537

0

14

28

42

56

70

GraphLab Vertica

14.2

11.5

15.4

49.1

Load Time
Algorithm Time

0

12

24

36

48

60

GraphLab Vertica

1.6

1.4

14.8

50.7
Load Time
Algorithm Time

0

12

24

36

48

60

GraphLab Vertica

7.0

6.6

16.5

49.0

Load Time
Algorithm Time

Load Time

GraphLab Vertica

PageRank 49.07 15.385

Shortest Paths 50.714 14.849

Connected
Components

49 16.505

Algorithm Time

GraphLab Vertica

PageRank 11.5 14.244

Shortest Paths 1.4 1.649

Connected
Components

6.641 7.032

0

20

40

60

80

PageRank Shortest Paths Connected Components

GraphLab
Vertica

0

4

8

12

16

PageRank Shortest Paths Connected Components

GraphLab
Vertica

(b) Vertex analysis using shared memory

Table 2

Giraph Vertica
(UDF)

Vertica
(SQL)

Vertica (UDF,
Shared Memory)

PageRank 46.956666666666710.92925766666673.313333333333331.45955966666667

Shortest Path 43.666666666666710.646985 2.956350333333331.38871466666667

Ti
m

e
(s

ec
on

ds
)

0
2
4
6
8

10
12
14
16
18
20

PageRank Shortest Path

1.391.46
2.963.31

10.6510.93

Vertica (UDF + Disk)
Vertica (SQL + Disk)
Vertica (UDF + Shared Memory)

Twitter-small dataset

Table 4

PageRank

Table Scan +
Union

4466.924

UDF I/O 2168.054

UDF Compute 988.823

Intermediate
Output

5861.264

Updates 2091.897
Ti

m
e

(M
illi

-s
ec

on
ds

)

0

4000

8000

12000

16000

Total

2,092

5,861

989
2,168

4,467

Table Scan + Union
UDF I/O
UDF Compute
Intermediate Output
Updates

Table 5

PageRank

Reading Input 193.119744

Compute UDF 144.243712

Message Sorting 73.51936

Synchronizations 279.91296

Final Output 11.714048

Remaining 32.021504

0

175

350

525

700

Inside UDF

12
280

74
144

193

Reading Input
Compute UDF
Message Sorting
Synchronizations
Final Output
Remaining

Table 6

PageRank

Outside UDF 569.66484266667

Inside UDF 702.509824

Ti
m

e
(M

illi
se

co
nd

s)

0

700

1400

Total

702.5

569.7

Outside UDF
Inside UDF

PageRank (10 iterations)

GraphLab Vertica

Load Time 49.07 15.385

Algorithm Time 11.5 14.244

Total Time 60.570 29.629

Shortest Paths

GraphLab Vertica

Load Time 50.714 14.849

Algorithm Time 1.4 1.649

Total Time 52.114 16.498

Connected Components

GraphLab Vertica

Load Time 49 16.505

Algorithm Time 6.641 7.032

Total Time 55.641 23.537

0

14

28

42

56

70

GraphLab Vertica

14.2

11.5

15.4

49.1

Load Time
Algorithm Time

0

12

24

36

48

60

GraphLab Vertica

1.6

1.4

14.8

50.7
Load Time
Algorithm Time

0

12

24

36

48

60

GraphLab Vertica

7.0

6.6

16.5

49.0

Load Time
Algorithm Time

Load Time

GraphLab Vertica

PageRank 49.07 15.385

Shortest Paths 50.714 14.849

Connected
Components

49 16.505

Algorithm Time

GraphLab Vertica

PageRank 11.5 14.244

Shortest Paths 1.4 1.649

Connected
Components

6.641 7.032

0

20

40

60

80

PageRank Shortest Paths Connected Components

GraphLab
Vertica

0

4

8

12

16

PageRank Shortest Paths Connected Components

GraphLab
Vertica

(c) Shared memory cost breakdown

Figure 13: Analyzing Resource Consumption and Improving I/O Performance in Vertica.

Table 2

Giraph Vertica
(UDF)

Vertica
(SQL)

Vertica (UDF,
Shared Memory)

PageRank 46.956666666666710.92925766666673.313333333333331.45955966666667

Shortest Path 43.666666666666710.646985 2.956350333333331.38871466666667

Ti
m

e
(s

ec
on

ds
)

0
2
4
6
8

10
12
14
16
18
20

PageRank Shortest Path

1.391.46
2.963.31

10.6510.93

Vertica (UDF + Disk)
Vertica (SQL + Disk)
Vertica (UDF + Shared Memory)

Twitter-small dataset

Table 4

PageRank

Table Scan +
Union

4466.924

UDF I/O 2168.054

UDF Compute 988.823

Intermediate
Output

5861.264

Updates 2091.897

Ti
m

e
(M

illi
-s

ec
on

ds
)

0

4000

8000

12000

16000

Total

2,092

5,861

989
2,168

4,467

Table Scan + Union
UDF I/O
UDF Compute
Intermediate Output
Updates

Table 5

PageRank

Reading Input 193.119744

Compute UDF 144.243712

Message Sorting 73.51936

Synchronizations 279.91296

Final Output 11.714048

Remaining 32.021504

0

175

350

525

700

Inside UDF

12
280

74
144

193

Reading Input
Compute UDF
Message Sorting
Synchronizations
Final Output
Remaining

Table 6

PageRank

Outside UDF 569.66484266667

Inside UDF 702.509824

Ti
m

e
(M

illi
se

co
nd

s)

0

700

1400

Total

702.5

569.7

Outside UDF
Inside UDF

PageRank (10 iterations)

GraphLab Vertica

Load Time 49.07 15.385

Algorithm Time 11.5 14.244

Total Time 60.570 29.629

Shortest Paths

GraphLab Vertica

Load Time 50.714 14.849

Algorithm Time 1.4 1.649

Total Time 52.114 16.498

Connected Components

GraphLab Vertica

Load Time 49 16.505

Algorithm Time 6.641 7.032

Total Time 55.641 23.537

Ti
m

e
(s

ec
on

ds
)

0

14

28

42

56

70

GraphLab Vertica

14.2

11.5

15.4

49.1

Load/Store Time
Algorithm Time

Ti
m

e
(s

ec
on

ds
)

0

12

24

36

48

60

GraphLab Vertica

1.6

1.4

14.8

50.7 Load/Store Time
Algorithm Time

Ti
m

e
(s

ec
on

ds
)

0

12

24

36

48

60

GraphLab Vertica

7.0

6.6

16.5

49.0
Load/Store Time
Algorithm Time

Load Time

GraphLab Vertica

PageRank 49.07 15.385

Shortest Paths 50.714 14.849

Connected
Components

49 16.505

Algorithm Time

GraphLab Vertica

PageRank 11.5 14.244

Shortest Paths 1.4 1.649

Connected
Components

6.641 7.032

0

20

40

60

80

PageRank Shortest Paths Connected Components

GraphLab
Vertica

0

4

8

12

16

PageRank Shortest Paths Connected Components

GraphLab
Vertica

Shortest Paths (Twitter Graph)

GraphLab Vertica

Load Time 290.923

Algorithm Time 44.207

Total Time 335.130

(a) PageRank

Table 2

Giraph Vertica
(UDF)

Vertica
(SQL)

Vertica (UDF,
Shared Memory)

PageRank 46.956666666666710.92925766666673.313333333333331.45955966666667

Shortest Path 43.666666666666710.646985 2.956350333333331.38871466666667

Ti
m

e
(s

ec
on

ds
)

0
2
4
6
8

10
12
14
16
18
20

PageRank Shortest Path

1.391.46
2.963.31

10.6510.93

Vertica (UDF + Disk)
Vertica (SQL + Disk)
Vertica (UDF + Shared Memory)

Twitter-small dataset

Table 4

PageRank

Table Scan +
Union

4466.924

UDF I/O 2168.054

UDF Compute 988.823

Intermediate
Output

5861.264

Updates 2091.897

Ti
m

e
(M

illi
-s

ec
on

ds
)

0

4000

8000

12000

16000

Total

2,092

5,861

989
2,168

4,467

Table Scan + Union
UDF I/O
UDF Compute
Intermediate Output
Updates

Table 5

PageRank

Reading Input 193.119744

Compute UDF 144.243712

Message Sorting 73.51936

Synchronizations 279.91296

Final Output 11.714048

Remaining 32.021504

0

175

350

525

700

Inside UDF

12
280

74
144

193

Reading Input
Compute UDF
Message Sorting
Synchronizations
Final Output
Remaining

Table 6

PageRank

Outside UDF 569.66484266667

Inside UDF 702.509824

Ti
m

e
(M

illi
se

co
nd

s)

0

700

1400

Total

702.5

569.7

Outside UDF
Inside UDF

PageRank (10 iterations)

GraphLab Vertica

Load Time 49.07 15.385

Algorithm Time 11.5 14.244

Total Time 60.570 29.629

Shortest Paths

GraphLab Vertica

Load Time 50.714 14.849

Algorithm Time 1.4 1.649

Total Time 52.114 16.498

Connected Components

GraphLab Vertica

Load Time 49 16.505

Algorithm Time 6.641 7.032

Total Time 55.641 23.537

Ti
m

e
(s

ec
on

ds
)

0

14

28

42

56

70

GraphLab Vertica

14.2

11.5

15.4

49.1

Load/Store Time
Algorithm Time

Ti
m

e
(s

ec
on

ds
)

0

12

24

36

48

60

GraphLab Vertica

1.6

1.4

14.8

50.7 Load/Store Time
Algorithm Time

Ti
m

e
(s

ec
on

ds
)

0

12

24

36

48

60

GraphLab Vertica

7.0

6.6

16.5

49.0
Load/Store Time
Algorithm Time

Load Time

GraphLab Vertica

PageRank 49.07 15.385

Shortest Paths 50.714 14.849

Connected
Components

49 16.505

Algorithm Time

GraphLab Vertica

PageRank 11.5 14.244

Shortest Paths 1.4 1.649

Connected
Components

6.641 7.032

0

20

40

60

80

PageRank Shortest Paths Connected Components

GraphLab
Vertica

0

4

8

12

16

PageRank Shortest Paths Connected Components

GraphLab
Vertica

Shortest Paths (Twitter Graph)

GraphLab Vertica

Load Time 290.923

Algorithm Time 44.207

Total Time 335.130

(b) Shortest Path

Table 2

Giraph Vertica
(UDF)

Vertica
(SQL)

Vertica (UDF,
Shared Memory)

PageRank 46.956666666666710.92925766666673.313333333333331.45955966666667

Shortest Path 43.666666666666710.646985 2.956350333333331.38871466666667

Ti
m

e
(s

ec
on

ds
)

0
2
4
6
8

10
12
14
16
18
20

PageRank Shortest Path

1.391.46
2.963.31

10.6510.93

Vertica (UDF + Disk)
Vertica (SQL + Disk)
Vertica (UDF + Shared Memory)

Twitter-small dataset

Table 4

PageRank

Table Scan +
Union

4466.924

UDF I/O 2168.054

UDF Compute 988.823

Intermediate
Output

5861.264

Updates 2091.897

Ti
m

e
(M

illi
-s

ec
on

ds
)

0

4000

8000

12000

16000

Total

2,092

5,861

989
2,168

4,467

Table Scan + Union
UDF I/O
UDF Compute
Intermediate Output
Updates

Table 5

PageRank

Reading Input 193.119744

Compute UDF 144.243712

Message Sorting 73.51936

Synchronizations 279.91296

Final Output 11.714048

Remaining 32.021504

0

175

350

525

700

Inside UDF

12
280

74
144

193

Reading Input
Compute UDF
Message Sorting
Synchronizations
Final Output
Remaining

Table 6

PageRank

Outside UDF 569.66484266667

Inside UDF 702.509824

Ti
m

e
(M

illi
se

co
nd

s)

0

700

1400

Total

702.5

569.7

Outside UDF
Inside UDF

PageRank (10 iterations)

GraphLab Vertica

Load Time 49.07 15.385

Algorithm Time 11.5 14.244

Total Time 60.570 29.629

Shortest Paths

GraphLab Vertica

Load Time 50.714 14.849

Algorithm Time 1.4 1.649

Total Time 52.114 16.498

Connected Components

GraphLab Vertica

Load Time 49 16.505

Algorithm Time 6.641 7.032

Total Time 55.641 23.537

Ti
m

e
(s

ec
on

ds
)

0

14

28

42

56

70

GraphLab Vertica

14.2

11.5

15.4

49.1

Load/Store Time
Algorithm Time

Ti
m

e
(s

ec
on

ds
)

0

12

24

36

48

60

GraphLab Vertica

1.6

1.4

14.8

50.7 Load/Store Time
Algorithm Time

Ti
m

e
(s

ec
on

ds
)

0

12

24

36

48

60

GraphLab Vertica

7.0

6.6

16.5

49.0
Load/Store Time
Algorithm Time

Load Time

GraphLab Vertica

PageRank 49.07 15.385

Shortest Paths 50.714 14.849

Connected
Components

49 16.505

Algorithm Time

GraphLab Vertica

PageRank 11.5 14.244

Shortest Paths 1.4 1.649

Connected
Components

6.641 7.032

0

20

40

60

80

PageRank Shortest Paths Connected Components

GraphLab
Vertica

0

4

8

12

16

PageRank Shortest Paths Connected Components

GraphLab
Vertica

Shortest Paths (Twitter Graph)

GraphLab Vertica

Load Time 290.923

Algorithm Time 44.207

Total Time 335.130

(c) Connected Components

Figure 14: In-memory Vertex-centric Graph Processing.

ory footprint for better I/O performance in Vertica.
We also tested the shared memory Vertica extension with the

larger graphs and compared it with GraphLab on a single node.
Figures 14(a), 14(b), and 14(c) show the result on the LiveJour-
nal graph. We can see that the actual graph analysis time (Algo-
rithm Time) of GraphLab and Vertica are very similar now. How-
ever, GraphLab still suffers from the expensive loading time while
Vertica benefits from more efficient data storage. As a result, the
performance gap between GraphLab and Vertica widens. We also
scaled SSSP to the billion edge Twitter graph on the shared memory
Vertica extension (single node). The single node algorithm run-
time in this case is 44.2 seconds, which is just 1.7 times that of
GraphLab on 4 nodes4. Thus, we see that we can extend Vertica to
exhibit similar performance characteristics as main-memory graph
engines.

Finally, note that on Vertica, the shared memory runtimes are
better than the SQL runtimes (Figures 8(a), 8(b), and 8(c)) by 2.1
times on PageRank, 2.4 times on SSSP, and 2.6 times on connected
components. This is is largely due to the fact that the shared mem-
ory system is able to avoid expensive disk I/O after each iteration.

4.4 Mixed Graph & Relational Analyses
Finally, we consider situations when users want to combine graph

analysis with relational analysis. We extended the graph datasets in
our experiment with the following metadata. For each node, we
added 24 uniformly distributed integer attributes with cardinality
varying from 2 to 109, 8 skewed (zipfian) integer attributes with
varying skewness, 18 floating point attributes with varying value
ranges, and 10 string attributes with varying size and cardinality.
For each edge, we added three additional attributes: the weight, the
creation timestamp, and an edge type (friend, family, or classmate),
chosen uniformly at random. These attributes are meant to model
additional relational metadata that would be associated with prop-

4Single node GraphLab runs out of memory on the Twitter graph.

erties of users in a social media context, or web pages in a search
engine. The total size of the Twitter graph with this metadata is 66
GB. We consider the following end-to-end graph analysis:
(i) Sub-graph Projection & Selection. In this analysis, we ex-
tract the graph before performing the graph analysis. This includes
projecting out just the node ids and discarding all other attributes
as well as extracting a subgraph of filtered nodes (e.g., attribute 6
= 4) connected by edges of type ‘Family’. We run PageRank and
SSSP over such an extracted subgraph.
(ii) Graph Analysis Aggregation. In this analysis, we gather the
distributions of PageRank (density of nodes by their importance)
and distance values (density of neighbors by their distance). This
includes computing equi-width histograms after running PageRank
and SSSP respectively.
(iii) Graph Joins. Finally, we combine the output of PageRank and
Shortest Paths to emit those nodes which are either very near (path
distance less than a given threshold) or are relatively very important
(PageRank greater than a given threshold).

Vertica is well suited for the relational operators in the above
three analysis. We compare against Giraph, which allows users
to provide custom input/output formats that could be used to per-
form the projection and selection. We write additional MapReduce
jobs for the aggregation and join. Figures 15(a) to 15(c) show the
result on the Twitter dataset over 4 nodes. We can see that the per-
formance difference between Vertica and Giraph is much higher
now. For example, Vertica is 17 times faster on PageRank and 4
times faster on SSSP, as compared to 1.6 and 1.08 earlier, when
combining these analysis with sub-graph selection. Performance
on Vertica could be further improved by creating sort orders on the
selection attributes. These massive performance differences are be-
cause Vertica is highly optimized to perform selections and exploit
late materialization to access the remaining attributes of only the
qualifying records. In contrast, Giraph incurs a complete sequen-
tial scan of data and cannot exploit the fact that part of the analy-

10

Projection

PageRank ShortestP
ath

Giraph 226.643333
33333333

146.96333
333333333

Vertica 28.2986666
6666667

54.802866
66666667

Selection

PageRank ShortestP
ath

Giraph 954.552 405.449

Vertica 55.579 101.298

Aggregation

PageRank ShortestP
ath

Giraph 1089.646 349.878

Vertica 643.927126 279.781814

Join

PageRank + Shortest Path

Giraph 1435.882

Vertica 926.993418

Ti
m

e
(s

ec
on

ds
)

0

75

150

225

300

PageRank ShortestPath

Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

250

500

750

1000

PageRank ShortestPath

Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

275

550

825

1100

PageRank ShortestPath

Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

400

800

1200

1600

PageRank

Giraph
Vertica

PageRank + DM

Projection Selection Aggregati
on

Join

Giraph 226.643333
33333333

191.32 287.90466
666666666

430.13466
666666666

Vertica 28.2986666
6666667

11.126666
66666667

30.659333
33333333

84.168523
33333333

ShortestPath + DM

Projection Selection Aggregati
on

Join

Giraph 146.963333
33333333

139.71666
666666667

186.82166
666666666

430.13466
666666666

Vertica 54.8028666
6666667

6.4967903333333354.035053 84.168523
33333333

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

Relational Operators
Projection Selection Aggregation Join

84.2
54.0

6.5

54.8

430.1

186.8
139.7147.0

Giraph Vertica

(a) Subgraph Projection & Selection

Projection

PageRank ShortestP
ath

Giraph 226.643333
33333333

146.96333
333333333

Vertica 28.2986666
6666667

54.802866
66666667

Selection

PageRank ShortestP
ath

Giraph 954.552 405.449

Vertica 55.579 101.298

Aggregation

PageRank ShortestP
ath

Giraph 1089.646 349.878

Vertica 643.927126 279.781814

Join

PageRank + Shortest Path

Giraph 1435.882

Vertica 926.993418

Ti
m

e
(s

ec
on

ds
)

0

75

150

225

300

PageRank ShortestPath

Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

250

500

750

1000

PageRank ShortestPath

Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

275

550

825

1100

PageRank ShortestPath

Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

400

800

1200

1600

PageRank

Giraph
Vertica

PageRank + DM

Projection Selection Aggregati
on

Join

Giraph 226.643333
33333333

191.32 287.90466
666666666

430.13466
666666666

Vertica 28.2986666
6666667

11.126666
66666667

30.659333
33333333

84.168523
33333333

ShortestPath + DM

Projection Selection Aggregati
on

Join

Giraph 146.963333
33333333

139.71666
666666667

186.82166
666666666

430.13466
666666666

Vertica 54.8028666
6666667

6.4967903333333354.035053 84.168523
33333333

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

Relational Operators
Projection Selection Aggregation Join

84.2
54.0

6.5

54.8

430.1

186.8
139.7147.0

Giraph Vertica

(b) Graph Analysis Aggregation

Projection

PageRank ShortestP
ath

Giraph 226.643333
33333333

146.96333
333333333

Vertica 28.2986666
6666667

54.802866
66666667

Selection

PageRank ShortestP
ath

Giraph 954.552 405.449

Vertica 55.579 101.298

Aggregation

PageRank ShortestP
ath

Giraph 1089.646 349.878

Vertica 643.927126 279.781814

Join

PageRank + Shortest Path

Giraph 1435.882

Vertica 926.993418

Ti
m

e
(s

ec
on

ds
)

0

75

150

225

300

PageRank ShortestPath

Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

250

500

750

1000

PageRank ShortestPath

Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

275

550

825

1100

PageRank ShortestPath

Giraph
Vertica

Ti
m

e
(s

ec
on

ds
)

0

400

800

1200

1600

PageRank + Shortest Path

Giraph
Vertica

PageRank + DM

Projection Selection Aggregati
on

Join

Giraph 226.643333
33333333

191.32 287.90466
666666666

430.13466
666666666

Vertica 28.2986666
6666667

11.126666
66666667

30.659333
33333333

84.168523
33333333

ShortestPath + DM

Projection Selection Aggregati
on

Join

Giraph 146.963333
33333333

139.71666
666666667

186.82166
666666666

430.13466
666666666

Vertica 54.8028666
6666667

6.4967903333333354.035053 84.168523
33333333

Ti
m

e
(s

ec
on

ds
)

0

125

250

375

500

Relational Operators
Projection Selection Aggregation Join

84.2
54.0

6.5

54.8

430.1

186.8
139.7147.0

Giraph Vertica

(c) Graph Join

Figure 15: Mixed graph and relational analysis.

sis is relational in nature. Rather, developers are required to stitch
Giraph programs with programs in another data processing engine
such as Hadoop MapReduce or Spark. Similar results are obtained
on aggregation and join queries.

In summary, several data management operations, such as pro-
jection, selection, aggregation, and join, fit naturally with graph
operations. To perform these operations efficiently, we need sev-
eral features from relational databases, including efficient layouts,
indexes, and statistics, in the graph management system. Column-
oriented databases are already well equipped with these techniques,
whereas native graphs stores lack optimized implementations of
them. As a result Vertica excels on benchmarks that include a mix
of relational and graph operations.

4.5 Beyond Vertex-centric Analyses
Let us now look at more advanced graph analytics. Consider the

following two 1-hop neighborhood graph queries.
(i) Strong Overlap. Find all pairs of nodes having a large number
of common neighbors, between them. For simplicity, we define
overlap as the number of common neighbors. However, we could
easily extend the algorithm to include other definitions of overlap.
Such an analysis to find the strongly overlapping nodes in a graph
could be useful in detecting similar entities. To implement such
a query using SQL we do a self-join on the edge table followed
by a group by on the two leaf nodes and a count of the number of
common neighbors between them. Finally, all those pairs of nodes
which have less than the threshold number of common neighbors
are filtered.
SELECT e1.from_node as n1,e2.from_node as n2, count(*)
FROM edge e1
JOIN edge e2 ON e1.to_node=e2.to_node
AND e1.from_node<e2.from_node
GROUP BY e1.from_node,e2.from_node
HAVING count(*) > THRESHOLD

(ii) Weak Ties. Find all nodes that act as a bridge between two oth-
erwise disconnected node-pairs. The goal is to find all such weak
ties which connect at least a threshold number of node pairs. This
is a slightly more complicated query because we need to test for
disconnection between node pairs. Using SQL, this could be im-
plemented as a three-way join, with the second join being a left
join, and counting all cases when the third edge does not exist.
SELECT e1.to_node AS Id,
sum(CASE WHEN e3.to_node IS NULL THEN 1 ELSE 0 END)/2 AS C
FROM edge e1
JOIN edge e2 ON e1.to_node=e2.from_node
AND e1.from_node<>e2.to_node
LEFT JOIN edge e3 ON e2.to_node=e3.from_node
AND e1.from_node=e3.to_node
GROUP BY e1.to_node
HAVING C > THRESHOLD

While the above queries are straightforward to implement and
run on Vertica, they are tedious to implement in vertex-centric graph

Query Dataset Vertica Giraph

Strong Overlap Youtube 259.56 230.01
LiveJournal-undir 381.05 out of memory

Weak Ties Youtube 746.14 out of memory
LiveJournal-undir 1,475.99 out of memory

Table 3: 1-hop Neighborhood Analysis.

processing systems. For instance, in Giraph, each vertex needs to
broadcast its neighborhood in the first superstep in order to access
the 1-hop neighborhood. Thereafter, we perform the actual analysis
in the subsequent supersteps. Unfortunately, this results in repli-
cating the graph several times in memory. As an optimization in
Giraph, we can reduce the number of messages by sending mes-
sages only to those neighbors with a higher node id. In addition,
we can reduce the size of messages by sending only the ids which
are smaller than the id of the receiving vertex. Still, passing neigh-
borhoods as messages is not natural in the vertex-centric model and
incurs the overhead of serializing and deserializing the nodes ids.

Table 3 shows the performance of Vertica and Giraph over the
two 1-hop neighborhood analyses running on 4 nodes. We can see
that Giraph runs out of memory when scaling to larger graphs (even
after allocating 12GB to each of the 4 workers on each of the 4
nodes). This is because the graphs are quite dense and sending
the entire 1-hop neighborhood results in memory usage proportion
to the graph size times the average out-degree of a node. Vertica,
on the other hand, does not suffer from such issues and works for
larger graphs as well.

In summary, while Giraph is good for typical graph algorithms
such as PageRank and Shortest Paths, it is hard to program and
poor in performance for advanced graph analytics such as finding
nodes with strong overlap. Vertica, on the other hand is quite facile
at such analysis and allows programmers to perform a wide range
of analytics, and also yield significantly better performance.

5. RELATED WORK
Existing graph data management systems address two classes of

query workloads: (i) low latency online graph query processing,
e.g. social network transactions, and (ii) offline graph analytics,
e.g. PageRank computation. Typical examples of systems for on-
line graph processing include RDF stores (such as Jena [16] and
AllegeroGraph [17]) and key value stores (such as Neo4j [18] and
HypergraphDB [19]). Some recent graph processing systems wrap
around relational databases to provide efficient online query pro-
cessing. These include TAO [20] from Facebook and FlockDB [21]
from Twitter, both of which wrap around MySQL to build a dis-
tributed and scalable graph processing system. Thus, low latency
online graph query processing can be mapped to traditional online
processing in relational databases.

Graph analytics, on the other hand, is seen as completely dif-
ferent from traditional data analytics, typically due to its scale and

11

iterative nature. As a result a plethora of graph processing systems
have been recently proposed. These include vertex-centric systems,
e.g. Pregel [1], Giraph [2], GraphLab [3] and its extensions [22,
23, 24], GPS [10], Trinity [4], GRACE [11, 25], Pregelix [5];
neighborhood-centric systems, e.g. Giraph++ [26], NScale [27, 28];
datalog-based systems, e.g. Socialite [29, 30], GrDB [31, 32]; SPARQL-
based systems, e.g. G-SPARQL [33]; and matrix-oriented systems,
e.g. Pegasus [15]. Some recent works have also looked at specific
graph analysis using relational databases. Examples include trian-
gle counting [7], shortest paths [34, 6], subgraph pattern match-
ing [8], and social network analysis [35, 36]. Others have looked
at the utility of combining graph analysis with relational opera-
tors [37, 38].

In this work, we have a particular emphasis on the question as
to whether, in general relational databases and Vertica in partic-
ular can provide a performant, easy-to-use engine on which graph
analytics can be layered, as opposed to looking at specific analyses.

6. LESSONS LEARNED & CONCLUSION
Graph analytics is emerging as an important application area,

with several graph data management systems having been recently
proposed. These systems, however, require users to switch to yet
another data management system. This paper demonstrates that ef-
ficient and scalable graph analytics is possible within Vertica rela-
tional database system. We implemented a variety of graph analy-
ses on Vertica as well as two popular vertex-centric graph analytics
system. Our results show that Vertica has comparable end-to-end
runtime performance, without requiring the use of a purpose-built
graph engine. In addition, we showed that using table UDFs, devel-
opers can trade memory footprint for reduced disk I/O and improve
the performance of iterative queries even further. In summary, the
key takeaways from our analysis and evaluation in this paper are:
Graph analytics can be expressed and tuned in RDBMSs. Re-
lational databases are general purpose data processing systems and
graph operations can be expressed as relational operators in a re-
lational database. Furthermore, relational databases can be effec-
tively tuned to offer good performance on graph queries, yielding
performance that is competitve with dedicated graph stores.
Column-oriented databases excel at graph analytics. We showed
that column-oriented databases like Vertica can have comparable or
better performance than popular graph processing systems (specif-
ically, Giraph) on a variety of graph analytics. This is because
these queries typically involves full scans, joins, and aggregates
over large tables, for which Vertica is heavily optimized. These op-
timizations include efficient physical data representation (columnar
layout, compression, sorting, segmentation), pipelined query exe-
cution, and an optimizer to automatically pick the best physical
plan.
The RDBMS advantage: Graph + Relational Analysis. Apart
from outperforming graph processing systems on graph analysis,
the real advantage of relational databases is the ability to com-
bine graph analysis with relational analysis. This is because graph
analysis is typically accompanied by relational analysis, either as a
preparatory step or as a final reporting step. Such relational anal-
ysis is either impossible or highly inefficient in graph processing
systems, while is natural to express in relational databases.
Some graph queries are difficult to express in vertex-centric
graph systems. We showed that the vertex-centric programming
model is a poor fit for several complex graph analyses. In particu-
lar, it is very difficult to program and run graph analysis involving
1-hop neighborhoods on vertex-centric systems. This is because
the scope of vertex-centric computations is restricted to a vertex
and its immediate neighbors. In contrast, RDBMSs do not have

such limitations and can efficiently execute 1-hop neighborhood
computations.
RDBMSs are a box full of goodies. Relational databases come
with many features that are not present (yet) in the next generation
of graph processing systems. These include update handling, trans-
actions, checkpointing and recovery, fault tolerance, durability, in-
tegrity constraints, type checking, ACID etc. Current-generation
graph processing systems simply do not come with this rich set of
features. One might think of stitching multiple systems together
and coordinating between them to achieve these features, e.g. us-
ing HBase for transactions and Giraph for analytics, but then we
have the additional overhead of stitching these systems together.
Of course, with time, graph-engines may evolve these features, but
our results suggest that these graph systems should be layered on
RDBMS, not built outside of them, which would enable them to
inherit these features for free without giving up performance. Fur-
thermore, in many scenarios, the raw data for the graphs is main-
tained in a relational database in the first place. In such situations,
it would make sense to be able to perform graph analytics within
the same data management system.
7. REFERENCES
[1] G. Malewicz, M. H. Austern et al., “Pregel: A System for

Large-Scale Graph Processing,” SIGMOD, 2010.
[2] “Apache Giraph,” http://giraph.apache.org.
[3] Y. Low, J. Gonzalez et al., “Distributed GraphLab: A Framework for

Machine Learning and Data Mining in the Cloud,” PVLDB, 2012.
[4] B. Shao, H. Wang, and Y. Li, “Trinity: A Distributed Graph Engine

on a Memory Cloud,” SIGMOD, 2013.
[5] “Pregelix,” http://hyracks.org/projects/pregelix.
[6] A. Welc, R. Raman et al., “Graph Analysis Do We Have to Reinvent

the Wheel?” GRADES, 2013.
[7] “Counting Triangles with Vertica,”

vertica.com/2011/09/21/counting-triangles.
[8] J. Huang, K. Venkatraman, and D. J. Abadi, “Query Optimization of

Distributed Pattern Matching,” ICDE, 2014.
[9] A. Jindal, “Benchmarking Graph Databases,” http://istc-bigdata.org

/index.php/benchmarking-graph-databases, 2013.
[10] S. Salihoglu et al., “GPS: A Graph Processing System,” SSDBM,

2013.
[11] G. Wang, W. Xie et al., “Asynchronous Large-Scale Graph

Processing Made Easy,” CIDR, 2013.
[12] J. Dittrich and al., “Hadoop++: Making a Yellow Elephant Run Like

a Cheetah (Without It Even Noticing),” PVLDB, vol. 3, no. 1, 2010.
[13] “Physical Design Automation in Vertica,” www.vertica.com

/2014/07/21/
physical-design-automation-in-the-hp-vertica-analytic-database.

[14] A. Lamb, M. Fuller et al., “The Vertica Analytic Database: C-store 7
Years Later,” PVLDB, vol. 5, no. 12, 2012.

[15] U. Kang et al., “PEGASUS: A Peta-Scale Graph Mining System -
Implementation and Observations,” ICDM, 2009.

[16] “Apache Jena,” http://jena.apache.org.
[17] “AllegroGraph,” http://franz.com/agraph/allegrograph.
[18] “Neo4j,” http://www.neo4j.org.
[19] “HyperGraphDB,” http://www.hypergraphdb.org.
[20] N. Bronson, Z. Amsden et al., “TAO: Facebook’s Distributed Data

Store for the Social Graph,” USENIX ATC, 2013.
[21] “FlockDB,” http://github.com/twitter/flockdb.
[22] J. E. Gonzalez, Y. Low et al., “PowerGraph: Distributed

Graph-Parallel Computation on Natural Graphs,” OSDI, 2012.
[23] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-Scale

Graph Computation on Just a PC,” OSDI, 2012.
[24] C. Xie, R. Chen et al., “SYNC or ASYNC: Time to Fuse for

Distributed Graph-parallel Computation,” PPoPP, 2014.
[25] W. Xie, G. Wang et al., “Fast Iterative Graph Computation with

Block Updates,” PVLDB, vol. 6, no. 14, pp. 2014–2025, 2013.
[26] Y. Tian, A. Balmin et al., “From ”Think Like a Vertex” to ”Think

Like a Graph”,” PVLDB, vol. 7, no. 3, pp. 193–204, 2013.

12

http://giraph.apache.org
http://hyracks.org/projects/pregelix
vertica.com/2011/09/21/counting-triangles
www.vertica.com
/2014/07/21/physical-design-automation-in-the-hp-vertica-analytic-database
/2014/07/21/physical-design-automation-in-the-hp-vertica-analytic-database
http://jena.apache.org
http://franz.com/agraph/allegrograph
http://www.neo4j.org
http://www.hypergraphdb.org
http://github.com/twitter/flockdb

[27] A. Quamar, A. Deshpande, and J. Lin, “NScale:
Neighborhood-centric Large-Scale Graph Analytics in the Cloud,”
arxiv.org/abs/1405.1499.

[28] ——, “NScale: Neighborhood-centric Analytics on Large Graphs,”
VLDB, 2014.

[29] M. S. Lam, S. Guo, and J. Seo, “SociaLite: Datalog Extensions for
Efficient Social Network Analysis,” ICDE, 2013.

[30] J. Seo, J. Park et al., “Distributed SociaLite: A Datalog-Based
Language for Large-Scale Graph Analysis,” VLDB, 2013.

[31] W. E. Moustafa, H. Miao et al., “A System for Declarative and
Interactive Analysis of Noisy Information Networks,” SIGMOD,
2013.

[32] W. E. Moustafa, G. Namata et al., “Declarative Analysis of Noisy
Information Networks,” GDM, 2011.

[33] S. Sakr, S. Elnikety, and Y. He, “G-SPARQL: A Hybrid Engine for
Querying Large Attributed Graphs,” CIKM, 2012.

[34] J. Gao, R. Jin et al., “Relational Approach for Shortest Path
Discovery over Large Graphs,” PVLDB, vol. 5, no. 4, 2011.

[35] S. Lawande, L. Shrinivas et al., “Scalable Social Graph Analytics
Using the Vertica Analytic Platform,” BIRTE, 2011.

[36] R. Angles, A. Prat-Pérez et al., “Benchmarking Database Systems
for Social Network Applications,” GRADES, 2013.

[37] R. S. Xin, J. E. Gonzalez et al., “GraphX: A Resilient Distributed
Graph System on Spark,” GRADES, 2013.

[38] A. Jindal, P. Rawlani, and S. Madden, “Vertexica: Your Relational
Friend for Graph Analytics!” VLDB, 2014.

13

arxiv.org/abs/1405.1499

	1 Introduction
	1.1 Why Relational Databases?
	1.2 Why Column Stores?

	2 Background
	2.1 Vertex-centric Model
	2.2 Giraph Execution Pipeline
	2.3 Logical Query Plan

	3 Graph Analytics using Vertica
	3.1 Translation to SQL
	3.1.1 Eliminating the message table
	3.1.2 Translating the vertex compute functions

	3.2 Query Optimizations
	3.2.1 Update Vs Replace
	3.2.2 Incremental Evaluation
	3.2.3 Join Elimination

	3.3 Query Execution
	3.3.1 Physical Design
	3.3.2 Join Optimizations
	3.3.3 Query Pipelining
	3.3.4 Intra-query Parallelism
	3.3.5 Example SSSP Query Execution on Vertica

	3.4 Extending Vertica
	3.4.1 Running Unmodified Vertex Programs
	3.4.2 Avoiding Intermediate Disk I/Os

	4 Experiments
	4.1 Typical Vertex-centric Analysis
	4.2 Resource Consumption
	4.3 In-memory Graph Analysis
	4.4 Mixed Graph & Relational Analyses
	4.5 Beyond Vertex-centric Analyses

	5 Related Work
	6 Lessons Learned & Conclusion
	7 References

