Scaling Out For Extreme Scale Corpus Data

Matthew Coole, Paul Rayson and John Mariani
School of Computing and Communications
Lancaster University
Lancaster, Lancashire, UK
m.coole@lancaster.ac.uk, p.rayson@lancaster.ac.uk, j.mariani@lancaster.ac.uk

Abstract—Much of the previous work in Big Data has
focussed on numerical sources of information. However, with
the ‘narrative turn’ in many disciplines gathering pace and
commercial organisations beginning to realise the value of their
textual assets, natural language data is fast catching up as an
exploitable source of information for decision making. With
vast quantities of unstructured textual data on the web, in social
media, and in newly digitised historical document archives,
the 5Vs (Volume, Velocity, Variety, Value and Veracity) apply
equally well, if not more so, to big textual data.

Corpus linguistics, the computer-aided study of large collec-
tions of naturally occurring language data, has been dealing
with big data for fifty years. Corpus linguistics methods
impose complex requirements on the retrieval, annotation and
analysis of text in terms of displaying narrow contexts for
each occurrence of a word or linguistic feature being studied
and counting co-occurrences with other words or features to
determine significant patterns in language. This, coupled with
the distribution of language features in accordance with Zipf’s
Law, poses complex challenges for data models and corpus
software dealing with extreme scale language data. A related
issue is the non-random nature of language and the ‘burstiness’
of word occurrences, or what we might put in Big Data terms
as a sixth ‘V’ called Viscosity.

We report experiments to examine and compare the capabili-
ties of two No-SQL databases in clustered configurations for the
indexing, retrieval and analysis of billion-word corpora, since
this size is the current state-of-the-art in corpus linguistics.
We find that modern DBMSs (Database Management Systems)
are capable of handling this extreme scale corpus data set for
simple queries but are limited when querying for more frequent
words or more complex queries.

Keywords-corpora, scaling, No-SQL, linguistics, distribution,
corpus data

1. INTRODUCTION

Corpora and corpus linguistic techniques are utilised for
many purposes. From lexicography and sociolinguistic stud-
ies to language learning and cyber-security, the applications
of corpora are vast. This motivates the need for corpus
methods and software that can allow researchers to construct,
query and analyse these corpora. Such tools will inevitably
revolve around a database used to store and query collec-
tions of texts. Historically, DBMSs (Database Management
Systems) have relied on SQL (Structured Query Language)
as an interface. However recent developments in computing
driven by the Big Data trend have given rise to a new
wave of databases collectively known as No-SQL. With the

scale of corpora of interest to corpus linguists moving from
millions to billions of words, traditional SQL DBMSs can
no longer meet the needs of such extreme scale corpora.
The DBMSs encompassed by No-SQL, many of which
were developed with big data in mind, provide a promising
alternative to build upon. Presented here is an exploration
and comparison of the capabilities of two No-SQL DBMSs
as applied to corpus storage and retrieval. We also examine
how performance is affected by scaling out. The paper
concludes with an outline of further work to analyse how
these systems work with a view to designing a truly scalable
modern corpus database solution.

Corpus linguistics methods first came to prominence in
the 1960s as a means of quantitatively analysing natural
language. One of the very early examples is the Brown
Corpus [1]. This consisted of a collection of written text
from American English in a wide array of categories such
as novels, newspaper articles, religious texts etc. The word
count for the corpus totalled 1,014,000. By today’s standards
a 1 million record database would not necessarily seem too
large. However the size of corpora did not remain static.
In the early 1990s the British National Corpus (BNC) [2]
was released containing 100 million words. As well as the
raw text, the BNC also contained further annotation of
the text such as lemmas and part-of-speech tags for each
word, further expanding the storage needs and scope for
complex queries required by corpora. This growth in the
size of corpora has continued into the 21st century with
modern corpora now in the order of billions and 10s of
billions of words. The Hansard corpus, a transcription of
parliamentary speeches the British House of Commons and
Lords, consists of over one billion words in seven million
files and is an example of the extreme scale found in many
corpora used today. Early English Books Online (EEBO) is
another example of a corpus built from sets of historical
texts that takes the word count into the billions. Although
many corpus linguists also make use of much smaller
specialist corpora the need for database systems to store
and query corpora at extreme scale is becoming ever more
important. In addition to the size issue, corpus linguistics
methods such as concordances, frequency lists, keywords,
n-grams and collocations have very specific requirements
that are typically not well served by the relational model, so



reconsidering standard models is very timely.

Modern database systems in recent years have followed
two general rules for scaling - scale vertically (scale up)
or scale horizontally (scale out) [3]. Scaling vertically is
perhaps looked on as the simpler solution — if your database
server needs to handle more data, more client requests
per second etc. simply migrate your database to a more
powerful server with more memory, storage, CPU-power
etc. Of course scaling up is limited by the hardware that is
available - if you have the biggest possible server with fastest
CPU, and cannot fit in any more memory or disk storage you
have reached the limit of vertical scaling. This is why many
companies operating large distributed databases today (such
as Google, Wikipedia and Amazon) have chosen to adopt
horizontal scaling by adding more servers to distribute the
work load. This scaling out has been an integral part of the
big data trend. Most recent distributions of popular relational
Database Management Systems (DBMSs) such as MySQL
and Oracle now have the facility to scale out. Many No-
SQL DBMSs such as MongoDB, Cassandra etc. were in
fact designed from inception with scaling out in mind. It is
clear that any corpus retrieval software system will need to
be able to scale out if it is to handle the huge amounts of
data that are found in modern corpora.

The remaining sections of this paper outline an initial
study into how two modern DBMSs can handle corpus data
when scaled out. The background examines the kind of
queries that corpus linguists typically use when working with
corpora and therefore the types of queries any DBMS used
for storing corpora will need to handle. The setup sections
describes how the two DBMSs were deployed and the
mechanisms used to query them. This section also discusses
how problems due to the difference in the DBMSs were
overcome in order to conduct a valid and fair comparison
between them. The results sections presents a summary of
the data found during testing and analyses the differences
between the two DBMSs as well as the benefits each one
achieved through scaling out. The conclusion discusses the
work in the context of corpus linguistics as well as big data
and outlines the implications this study has for further work
in the field of developing a scalable corpus database.

II. BACKGROUND

Linguists utilise various different corpus techniques to
analyse the language in a given corpus. One of the most
common is a concordance analysis. A concordance analysis
tends to focus on a keyword or phrase and a set of concor-
dance lines are built from the words that occur immediately
prior and following the keyword. This is commonly know as
a keyword in context (KWIC) search. Corpus linguists can
utilise this technique to look for typical patterns of usage for
a word they are interested in such as in a study conducted on
the portrayal of Muslims in the British Press [4]. Of course
to draw any meaningful conclusions from such an analysis

it is necessary to build a sufficient number of concordance
lines and support a range of sorting operations on the centre
word or the immediate context to the left and/or right. For
very common words a relatively small corpus will usually be
sufficient to generate enough examples but as the keywords,
phrases and other higher-level patterns or features that the
linguist is interested in examining become more uncommon
it is necessary to construct larger and larger corpora in
order to build a sufficient number of concordance lines for
any analysis to be valid. This is a major factor driving the
increase in corpora size.

When looking at corpora of ever increasing size certain
patterns in the data hold. Zipf’s law when applied to corpora
describes how the nth most frequent word’s frequency is
roughly proportional to 1/n [5]. As a result many corpora
follow the pattern of the most frequent words (typically
“the”, “a”, “of” etc.) accounting for a large proportion of
the total words in the corpus. For example the word “the”
accounts for approximately 6% of all words in the BNC
according to Rayson et al. [6]. Zipf’s law further shows that
typically half the words occurring in a corpus will occur only
once. For any database looking to store and query a large
corpus this means when searching for most words there will
in fact be very few results to retrieve and only with the most
common words will there be an extremely large set of results
to retrieve, compile and sort.

Many existing corpus tools exist for querying corpora.
AntConc [7] is one of the most popular that allows users
to query the corpora from the raw files. Whilst popular,
AntConc’s versatility means it is not as efficient with larger
corpora. IntelliText [8] provides a web interface to a selec-
tion of pre-loaded corpora that have already been indexed.
The system allows access to some reasonable sized corpora
such as the BNC. As described above the system suffers a
pitfall incurred by Zipf’s law when searching for particularly
common words but is very efficient in the general case; to
remedy this, limits on the number of results returned are
applied. Brigham Young’s system (BYU) [9] provides an
interface built upon a relational database that gives access
to several extreme scale corpora such as the corpus of global
web-based english (GloWbE) and the wikipedia corpus.
BYU’s interface provides a means to generate concordance
lines or KWICs as well as a means to sort them in a number
of meaningful ways such as lexically on one word left of the
search term. As with IntelliText, BYU also limits the number
of returned results - a common pattern with corpus systems.
Systems based on the IMS Open Corpus Workbench such as
CQPweb [16] currently have a hard upper limit (2.1 billion
tokens) on the size of corpora that they can index.

Whilst traditional software tools used by corpus linguists
may not be built specifically for big data and extreme scale
corpora there are various examples of where the big data
trend has collided with the world of corpus linguistics.
Projects such as Google Books [10], an attempt to con-



solidate a vast amount of historical published texts into a
corpus like structure is an example of this. Such projects
have in part lead to a research field of culturomics. Various
examples of studies conducted in this emerging field include
[12] and [13], although these efforts have been criticised
by linguists for having no suitable corpus design and noisy
OCRed underlying data leading to skewed results, as well
as the lack of awareness of large quantities of preceding
research in the corpus linguistics field [11]. Various web
derived datasets have also emerged such as Google’s n-gram
web dataset (part of the Google Books project) that are very
firmly in the range of extreme scale corpora. Twitter has in
recent years provided a strong way of building large scale
corpora for various studies, examples of harvesting tweets
and their meta data can be found in many recent language
studies [14][15]. Clearly the big data trend is leading more
and more to take notice of the power that corpus linguistics
methods have to offer and many outside the realms of corpus
linguistics are looking to utilise corpora-like big data sets.

Modern database systems that claim to handle big data
will almost always require some form of clustering in order
to achieve scaling. Whilst vertical scaling may be a feasible
solution for moving from a medium size database to one
two or three times the size, when your data set increases by
several orders of magnitude vertical scaling is not enough
and horizontal scaling must be considered. As well as
the increased capacity for handling large amounts of data,
horizontal scaling also allows for replication and therefore
data redundancy which is essential when maintaining a
large database. Whilst traditional relational DBMSs are all
now capable of supporting horizontal scaling it is in the
No-SQL movement of databases that the truly interesting
systems designed from the ground up specifically to handle
this kind of horizontal scaling exist. Cassandra is a clear
example of this design philosophy as even when running
Cassandra in a stand alone server the system still treats itself
as a degenerate cluster of a single node. Cassandra unlike
many others treats all nodes within a cluster equally with
no need for separate configuration nodes or management
nodes. MySQL and MongoDB, despite having clustering
capabilities, still require at least one load balancing node
and one configuration node.

III. EXPERIMENTAL SETUP

To test the capabilities of modern DBMSs, two such sys-
tems were deployed into various clustered configurations and
loaded with an extremely large corpus dataset. The DBMSs
tested were MongoDB and Cassandra. Each database was
deployed onto the Amazon Web Servies (AWS) EC2 plat-
form using m4.xlarge instances (4 vCPUs, 16GB Memory,
100GB EBS Volume -500 provisioned IOPS). Each database
was deployed in 4, 8 and 16 node configuration so that the
scalability of each DBMS when storing corpus data could be
examined. The corpus dataset loaded into the databases was

Low Frequency | Medium Frequency | High Frequency
gauntly weeny it
croquet kilometers 1

patronym plebs is

ratpayers appraiser a

thugutt earldoms in
ogies candlemas and
fecias laudations that
gacious coachmakers to

unspared heinkel of

moyland conegate the

Table 1

KEYWORD FREQUENCIES

the Hansard corpus described above. Each database was then
queried for particular keywords. The keywords that made
up the queries were derived from pre-generated word lists
(each keyword query was run 5 times and an average taken).
To gather an accurate reflection of each DBMSs capabilities
queries were split into three groups; High frequency - the top
10 most commonly occurring words in the corpus. Medium
frequency - 10 randomly selected words from the 60% range
of words. Low frequency - 10 randomly selected words from
the bottom 50% of words in the corpus.

A. MongoDB

A minimal cluster configuration for MongoDB requires 3
components; a central query processor front end server, 3
configuration servers and a data node (shard). In practise
many of these components can run on the same server.
For testing the central query processor (mongos instance)
plus the 3 configuration servers were deployed to a single
AWS instance. Each data node was then deployed to its
own separate AWS instance. This was deemed acceptable
as keeping the configuration servers separate would be the
best practice to ensure some redundancy in the cluster but
this was only a test environment. Having the mongos server
on the same AWS was also deemed acceptable as the tests
are not designed to stress the database in terms of a high
number of queries per second but rather how the database
handles a large amount of corpus data. Three configurations
were tested with 4, 8 and 16 data nodes.

The schema followed for MongoDB was for each word
in the corpus to be inserted as a BSON (Binary Javascript
Object Notation) document as described in Listing 1. The
JSON document below describes the BSON documents
inserted into MongoDB (note that the form of the word is
not lemmatised in these tests);

The “docid” field is utilised as the shard key to ensure not
only that the data is distributed evenly between the shards
in the cluster but also to ensure when querying to build a
concordance line for an occurrence of a word, one data node
should be able to return all the BSON documents necessary
to build the concordance line. A text index is defined in
MongoDB on the searchableform field to search for word



instances. A hashed index is automatically built on the docid
field to distribute the data but this index is also used when
performing a ranged query to build concordance lines.

In MongoDB, data distribution is handled by selecting a
shard key from within the data field. This key will be used
to determine which data node the BSON document should
reside on. Initially the source document ID was selected
as the field for the shard key - this would ensure that all
words from the same original source document would be
present on the same data node - thus making it easier to
build a concordance line as for each individual line all the
word BSON documents could be gathered from the same
node. During initial testing however it became clear that
due to the incremental nature of the source document IDs
using this field as a shard key lead to slower parse times as
the MongoDB cluster was consistently shuffling data around
between the nodes to ensure that the data was distributed
evenly. To remedy this an artificial shard key was created.
This shard key was a randomly generated number between
a group of pre-defined ranges. Key range chunks were setup
prior to parsing on the MongoDB cluster to define which
range of keys to handle. Each alternate BSON document
was then assigned a random value in this range when parsed
to ensure during the initial insertion of the data the writes
were distributed evenly across the cluster.

{

//unique automatically generated id
_id: ObjectId("5553324ca7986c0c3d6b3a97"),
//word as it originally appeared
originalform: The v
//word trimmed of white space and forced to
lower case
searchableform the o
//1id of the source document the word appeared
in
docid: S6CV0196P0-00481 ,
//position within the source document
pos: 103

Listing 1. JSON word entry in MongoDB

B. Cassandra

Cassandra can be configured into a cluster almost as easily
as a standalone server can. Since it is designed with distri-
bution in mind and makes use of several p2p architecture
principles such as seeding and the equality of nodes each
node need only be configured to point to a single commonly
known set of nodes (seed nodes) from which configuration
about the cluster is retrieved. As before Cassandra was
deployed in 4, 8 and 16 node configuration onto AWS
instances. During testing an additional seed was added per 4
nodes. Meaning the 4 node configuration contained 1 seed,
the 8 node configuration 2 seeds etc. The seeds are of course
nodes themselves and behave in just the same way as the rest
of the configuration except they also provide management
information to the rest of the cluster.

Although it is considered a No-SQL database Cassandra’s
query language CQL bares many similarities to SQL and
simple commands and queries will often look identical
between the two query languages. The schema used again
followed a simple one word per record form and is described
in listing 2.

CREATE TABLE hansard.words (

doc text,
pos int,
s_f text,
o_f text,
PRIMARY KEY (doc, pos)
)i

Listing 2. Cassandra CQL Schema definition

Similar to MongoDB the schema stores 4 values per
record. ”doc” the original source document, ’pos” the words
position in the source document, ’s_f” the searchable form
of the word (lower-case, removed punctuation), “o_f” the
word as it originally appeared in the text. The primary
key used is a composition of the source document and the
position of the word in the source document - guaranteeing
its uniqueness. A secondary index is then built on the ”’s_f”
column to allow for keyword searches.

Cassandra allows for insertion to be performed and
targeted at each node. This allows multiple large batch
insertions to take place on different nodes. Cassandra uses
its SSTable loader tool to import large quantities of data
quickly. Prior to insertion the Hansard corpus was converted
from its original XML to this SSTable format to allow for
quicker insertion into the database.

IV. RESULTS & DISCUSSION
A. MongoDB

Fig. 1 shows the average query times retrieved using
MongoDB for the sample tokens listed above for 4, 8 & 16
node cluster configurations. As would be expected based on
other work around big data and the concept of scaling out the
average query time improves significantly as the number of
nodes in the cluster doubles - further parallelizing the index
look up and retrieval tasks. The graph also illustrates how,
despite the queries limiting the number of results returned to
20, the query time actually increases with the frequency of
the word in the corpus. This implies that the text index used
by MongoDB requires a significant amount of time to read
the inverted file entry when it has performed the look up -
if the entry in the index is larger because the word being
looked up contains significantly more occurrences then the
query response time will be significantly impacted.

Interestingly the raw numbers illustrated a pattern
whereby the first test run of each query for high frequency
words would be significantly slower (by an order of magni-
tude) than subsequent queries for the same word. This served
to push up the average query times reported in Fig. 1. This
pattern is likely the result of the text index being too large



-
E
v
E
= 300000 «4nodes
b
é 4 8 nodes
14 16 Nodes
< 200000
*
*
-
100000 . ¥
*e "
IAA -k
0
o 50000000 100000000 150000000
‘Word Frequency
Figure 1. MongoDB Query Times

to contain wholly in memory meaning that when the text
index is first searched it is read from disk and subsequently
the entry for the word is then cached in memory. It is still
however important to consider the figures whilst including
this initial slow query as when working with big data sets
such as Hansard it is likely indexes will not fit entirely into
memory and will be read from disk.

A further anomaly observed in these results is the longer
query time for the most frequent word “’the” when querying
on an 8 node cluster. Whilst typically this could be heralded
simply as an outlier the method of gathering these numbers
through the average of several tests runs suggests this is not
the case. Furthermore the point raised above of the initial
high query time for the first query in the run could have
contributed to push the average query time higher than that
of a 4 node cluster for the same word however the raw results
consistently showed longer query times across all test runs
for the word the”.

The results of the low and medium frequency words are
difficult to see in Fig. 1 and are presented expanded in Fig.
2. For the case of low frequency words that occur only once
in the corpus it seems that increasing the number of nodes
in the distributed setup has no clear effect on the retrieval
time. This can also be seen looking at the retrieval times
for medium frequency words with no obvious performance
improvements gained by increasing the number of nodes
in the cluster. Whilst for low frequency words occurring
only once this might not be too interesting as a corpus
linguist would likely need an even larger corpus to perform
a meaningful concordance analysis with these words - the
medium frequency words do have enough results for some
kind of concordance analysis to be performed which shows
that at this range of word (i.e. a minimum level for a
concordance analysis) on this scale of corpus there is little to
no benefit of large cluster setups with dozens of machines.

Low Freq.

0o 5.0 100 150 200 250 30.0
Avg. Query Time (ms)

16 Nodes m & Nodes m4 Nodes

Figure 2. MongoDB Avg. Query Times (medium & low frequency words)

These results also further indicate the idea of a strong
correlation between query times and index entry size -
clearly when the index entry size is small enough very
little variation can be seen in query time even if this index
is distributed and the look up is taking place in parallel.
This further supports the need for better indexing techniques
to be developed for large text indexes which cannot fit
into memory to allow for simple queries to be fulfilled
more readily. For simple queries such as those utilized in
these experiments a strategy of index entry paging and lazy
loading could be utilized.

B. Cassandra

The results for Cassandra are immediately interesting as
the raw figures seem to illustrate little to no correlation
between the word frequency and the query time for the
simple query being performed by our tests. Unlike with
MongoDB where as the frequency of the word increased
so to did the typical query time (suggesting increased time
required to read the index as discussed above) Cassandra
appears to demonstrate minimal overhead to reading large
index entries for highly frequent words. In exploratory
testing it appeared that Cassandra is far more influenced by
the total number of results which are returned, indicating that
it is capable of reading its index in a far more efficient way
than MongoDB. This means that for simple queries such as
those performed during testing which limit the results set to
just 20, Cassandra was able to return results with far more
consistent times across all frequency ranges than MongoDB.

Figure 3 shows the average query times for each word
group listed above (low, medium & high frequency). From
these results it is clear to see that for the scale of the
Hansard corpus on the AWS infrastructure used there was
a noticeable increase in performance between a 4 node and
8 node cluster configuration. However there was negligible
difference seen between results between the 8 and 16 node



configurations suggesting that at this data scale there would
be little to no benefit of scaling out such a configuration any
further - albeit for these relatively simple corpus queries. It
should be noted that some queries were marginally faster
on the 8 node configuration than the 16 node configuration,
although the difference in many cases was less than 1ms so
may be explained by any cluster management information
shared on the network between the nodes at the time of the
tests.

Examining the raw results for Cassandra it also becomes
clear that there is no initial index read period as noted in
the discussion of MongoDB’s results above. Perhaps due
to Cassandra’s seemingly better handling of indexes for
these simple queries it is not burdened by the need to load
the index entry into memory from disk and therefore the
significantly longer query response time seen on the first
query for each word in MongoDB is not seen at all when
querying Cassandra. This would mean that in any system put
in place in the real world for say a corpus search tool users
would not experience significantly slower response times for
a search on a keyword that has not been searched for before
- or recently enough for its index entry to still remain in
memory as in the case of MongoDB.

Low Freq.

Med. Freg.

High Freq.

0.0 5.0 100 150 200 25.0 300 350
Avg. Query Time (ms)

16 Modes m & Nodes m4 Modes

Figure 3. Cassandra Avg. Query Times

C. BYU & CQPweb

To put these results into context they were compared to
query and processing times of existing corpus data systems,
specifically BYU and CQPweb. Both systems now incorpo-
rate the Hansard corpus. Figures from CQPweb show that
CWB takes over a day to build an index for the Hansard
corpus which is significantly longer than MongoDB which
in the configurations examined here took less than an hour.
Query results from BYU also demonstrated comparable
query response times for low and medium frequency words
which would be expected as the experimental setup in this
paper loosely follows the database pattern employed by
BYU. For these simpler queries BYU could not match

the query times of any Cassandra cluster configurations.
However BYU did appear to outperform MongoDB for
higher frequency words such as “in” for all but the 16
node cluster configuration (3956ms) giving marginally better
query response times (5254ms) than the 8 node configuration
(7243ms) and significantly better times than the 4 nodes
configuration (99844ms).

V. CONCLUSIONS

The results for MongoDB and Cassandra illustrate that
data scaling through clustering is a feasible solution to ex-
treme scale corpus data sets. However they also demonstrate
the limitations of some indexing strategies used by modern
DBMSs and help to clarify the issues that must be addressed
by any database or system wishing to manage extreme scale
text corpora. It can also be concluded that if the motivation
for utilizing a larger corpus is to broaden the base for a
concordance analysis (i.e. to have a corpus with enough
word occurrences for a valid analysis) then existing DBMSs
such as those explored in this paper are viable solutions for
performing KWIC searches when the word frequency is in
the lower two thirds of the Zipf scale for the corpus. Here
we have considered one of the major methods in corpus
linguistics (concordancing) but we can expect that other
methods (n-grams and collocations in particular, alongside
annotated corpora) will place an even heavier burden on
retrieval software and existing database designs.

From the results seen in this paper it is clear that Cassan-
dra can outperform MongoDB for data at this scale when
dealing with queries with a limited results range. However
it is likely that due to limiting the number of results in the
queries here that different results may be expected for more
difficult to process queries. More difficult to process queries
may include sorting the results that are retrieved - in such
a case it can be assumed that it would be necessary to read
the entire index entry for a keyword search and then sort
the records even if the final results were then limited again.
In these circumstances it is felt less disparity would exist
between the two databases examined here.

As a result of the findings of this paper further work will
be undertaken to explore corpus database patterns and how
they can be applied to distributed setups similar to those used
in this papers experimental tests. In particular the approaches
taken towards index look up will be explored to ascertain
what properties make certain indexing strategies more or less
efficient for certain types of corpus queries. It is hoped that
this further work will better define patterns that can build
a truly scalable corpus database that can efficiently query
extreme scale corpus datasets.

REFERENCES

[1] Francis, W.Nelson (1964). ”A standard sample of present-day
English for use with digital computers.”



(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

Leech, Geoffrey. ”100 million words of English: the British
National Corpus (BNC).” Language Research 28.1 (1992):
1-13.

Cattell, Rick. ”Scalable SQL and NoSQL data stores.” ACM
SIGMOD Record 39.4 (2011): 12-27.

Baker, Paul, Costas Gabrielatos, and Tony McEnery. ”Sketch-
ing Muslims: A corpus driven analysis of representations
around the word Muslimin the British press 19982009.”
Applied Linguistics 34.3 (2013): 255-278.

Manning, Christopher D., and Hinrich Schtze. Foundations of
statistical natural language processing. MIT press, 1999.

Leech, G., P. Rayson, and A. Wilson. "Word frequencies
in written and spoken English.” Harlow, England: Longman
(2001).

Anthony, Laurence. ”AntConc: A learner and classroom
friendly, multi-platform corpus analysis toolkit.” Proceedings
of IWLeL (2004): 7-13.

IntelliText, Centre for Translation Studies (CTS), University
of Leeds, http://corpus.leeds.ac.uk/

Corpus BYU, Mark Davies, BYU, http://corpus.byu.edu/

Google Books, Google Inc., https://books.google.co.uk/

[11]

[12]

[13]

[14]

[15]

[16]

Hardie, Andrew. ”Big Data in Language studies: from cargo
cult science to phantom revolution.” Proceedings of 7th
International Conference on Corpus Linguistics (CILC2015).

Hand, Eric. ”Culturomics: Word play.” Nature News 474.7352
(2011): 436-440.

Leetaru, Kalev. ”Culturomics 2.0: Forecasting large-scale
human behavior using global news media tone in time and
space.” First Monday 16.9 (2011).

Page, Ruth. “The linguistics of self-branding and micro-
celebrity in Twitter: The role of hashtags.” Discourse &
Communication 6.2 (2012): 181-201.

Gonzlez-Ibnez, Roberto, Smaranda Muresan, and Nina Wa-
cholder. “Identifying sarcasm in Twitter: a closer look.”
Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technolo-
gies: short papers-Volume 2. Association for Computational
Linguistics, 2011.

Hardie, Andrew. "CQPweb — combining power, flexibility and
usability in a corpus analysis tool.” International Journal of
Corpus Linguistics 17.3 (2012): 380-409.



