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Abstract—The number of linked data sources and the size
of the linked open data graph keep growing every day. As
a consequence, semantic RDF services are more and more
confronted with various ”big data” problems. Query processing
in the presence of inferences is one them. For instance, to
complete the answer set of SPARQL queries, RDF database
systems evaluate semantic RDFS relationships (subPropertyOf,
subClassOf) through time-consuming query rewriting algorithms
or space-consuming data materialization solutions. To reduce the
memory footprint and ease the exchange of large datasets, these
systems generally apply a dictionary approach for compressing
triple data sizes by replacing resource identifiers (IRIs), blank
nodes and literals with integer values. In this article, we present a
structured resource identification scheme using a clever encoding
of concepts and property hierarchies for efficiently evaluating the
main common RDFS entailment rules while minimizing triple
materialization and query rewriting. We will show how this
encoding can be computed by a scalable parallel algorithm and
directly be implemented over the Apache Spark framework. The
efficiency of our encoding scheme is emphasized by an evaluation
conducted over both synthetic and real world datasets.

I. INTRODUCTION

The Resource Description Framework (RDF) data model
is the W3C standard for representing metadata in the Web
of Data and the Semantic Web. This format is used to form
very large graphs, such as those found in Linked Data sources
and Linked Open Data (LOD), which range in hundreds of
millions to billions of RDF triples. With such workloads,
RDF database systems are now facing ”big data” problems.
In this work, we focus on issues related to SPARQL query
processing over large RDF data with rich semantics. One
aspect that differentiates RDF data, and Knowledge bases
(KB) in general, from standard relational and NoSQL sys-
tems, e.g., graph databases such as Neo4J and Titan, is the
ability to reason over the represented information using asso-
ciated knowledge. Such knowledge, contained in ontologies,
is generally expressed using RDF Schema (RDFS) or Web
Ontology Language (OWL) W3C recommendations. From a
query processing point of view, to achieve completeness of
result sets, RDF query processors have to integrate information
that is inferred using these ontologies. We can distinguish two
main approaches to support this kind of inference. The first
approach consists of materializing all derivable triples in the
RDF store before evaluating queries. The second approach
consists of rewriting each submitted query into an extended

query including semantic relationships from the ontologies.
Both methods have advantages and drawbacks.

On one hand, materialization implies a possibly long loading
time due to running reasoning services during a data pre-
processing phase. This generally drastically increases the size
of the stored data and imposes specific dynamic inference
strategies when data is updated. The advantage is that it ensures
good query performance.

On the other hand, query rewriting avoids costly data pre-
processing, storage extension and complex update strategies
but induces slow query response times since all the reasoning
tasks are part of a complex query pre-processing step.

In the worst case the computational complexity associated to
data materialization and query rewriting processing are expo-
nential in the size of the original data and query respectively.
Some existing techniques [11] propose polynomial solutions
in specific situations. We now provide an example to make
these two approaches more concrete.

Example 1: We consider a simple example based on the
following extract of the LUBM ontology [8]. The concept
hierarchy (TBox, short for Terminological Box) is limited to
the following axioms:

(1) Professor v FacultyMember
(2) ∃teaches.> v FacultyMember
where v denotes the subsumption relationship, i.e., a

Professor is a subconcept of FacultyMember. The domain
of the property teaches is the concept FacultyMember. The
ABox (short for Assertional Box), is a set of facts and consists
of the following RDF triples:

(3) bernd type Professor. (4) hubert teaches course1.
The SPARQL query aiming to retrieve all FacultyMember

instances is expressed as follows:
SELECT ?x WHERE {?x type FacultyMember}
The complete and correct answer set with respect to the

TBox contains both bernd and hubert but without any in-
ference, the query would return an empty result set since
none of the instances, i.e., bernd, hubert or course1, are
explicitly typed with the concept FacultyMember. In the
materialization approach the ABox would be extended to
contain the following triples:

(5) bernd type FacultyMember.
(6) hubert type FacultyMember.
where (5) is deduced from (1) and (3) while (6) is derived

from (2) and (4).

ar
X

iv
:1

51
0.

03
40

9v
1 

 [
cs

.D
B

] 
 1

2 
O

ct
 2

01
5



2

A complete and sound answer set can be retrieved with the
following reformulated query:
SELECT ?x WHERE {{?x type FacultyMember.}

UNION {?x teaches ?y.}UNION {?x type Professor.}}
In this article, we present the LiteMat data encoding and

SPARQL query evaluation approach which aims at finding an
efficient trade-off between materialization and query rewriting
that provides complete answer sets considering the RDFS
entailment regime. The LiteMat approach builds on a semantic-
aware RDF data encoding which allows to reduce the amount
of materialized information with minimal query reformulation
and processing cost. The approach is based on a clever
encoding of the ontology elements of the KB and only requires
some functions to check whether a variable binding belongs
to a numerical interval. We will demonstrate that LiteMat can
reduce the number of triples of an original dataset.

Most RDF stores, e.g. [10], adopt an encoding approach to
compress RDF triples. This is motivated by the fact that com-
ponents of RDF triples, i.e., subjects, predicates and objects,
mainly correspond to Internationalized Resource Identifiers
(IRI) or literals. They correspond to long strings of characters
and the number of their occurrence can be quite important
in real world cases. Thus replacing them with integer values
permits to obtain a much more compact representation of a set
of triples. Blank nodes are encoded using a similar approach.

Most RDF systems use dictionary-based encoding for long
IRI resource identifiers but do not consider semantic aspects
when attributing integer values to RDF entities (see [5] for
more details on this topic). That is, they do not consider the
ontology at this processing stage. As a result, no distinctions
are made between an instance or concept/predicate IRI. Our
solution uses that distinction and is based on a clever encoding
of the TBox which is implied in the encoding of the ABox.

Given the size of currently available RDF datasets, this
encoding step can result in a performance bottleneck. To speed
up this processing, a parallel computation may be necessary.
Once the encoding is performed, two operations are needed
to handle an encoded dataset: locate and extract. The locate
operation takes as input a string (IRI, blank node identifier
or literal) and provides the corresponding id. The extract
operation is provided with an id and returns a string value.
These operations generally handle key/value pairs.

The main contributions of this paper are to propose an
encoding algorithm for the TBox, to present a generic scalable
algorithm for the encoding of ABoxes, to provide a lite materi-
alization strategy together with its query processor supporting
SPARQL’s RDFS entailment regime. Finally, to tackle very
large graphs, we evaluate our implementation over the Apache
Spark framework using synthetic and real world use cases.

II. BACKGROUND KNOWLEDGE

A. RDF, SPARQL, RDFS entailment regime
RDF is a schema-free data model that supports the de-

scription of data on the Web. It is usually considered as
the cornerstone of the Semantic Web and the Web of Data.
Assuming disjoint infinite sets U (RDF IRI references), B
(blank nodes) and L (literals), a triple (s,p,o) ∈ (U ∪ B) × U ×

(U ∪ B ∪ L) is called an RDF triple with s, p and o respectively
being the subject, predicate and object. We now also assume
that V is an infinite set of variables and that it is disjoint
with U, B and L. We can recursively define a SPARQL1 triple
pattern as follows: (i) a triple tp ∈ (U ∪ V) × (U ∪ V) ×
(U ∪ V ∪ L) is a SPARQL triple pattern, (ii) if tp1 and tp2
are triple patterns, then (tp1.tp2) represents a group of triple
patterns that must all match, (tp1 OPTIONAL tp2) where tp2
is a set of patterns that may extend the solution induced by
tp1, and (tp1 UNION tp2), denoting pattern alternatives, are
triple patterns and (iii) if tp is a triple pattern and C is a built-
in condition then the expression (tp FILTER C) is a triple
pattern that enables to restrict the solutions of a triple pattern
match according to the expression C. The SPARQL syntax
follows the select-from-where approach of SQL queries. The
SELECT clause specifies the variables appearing in the result
set of the query.

The SPARQL 1.1 W3C recommendation specifies various
entailment regimes which define the evaluation of SPARQL
triple patterns by means of subgraph matching. In this work
we are interested in the RDFS entailment regime. It is based
on the set of reasoning rules of the RDFS language2. We
concentrate on property and class subsumption, domain and
range of properties. They have been selected due to their
support of the most frequent RDFS inferences.

B. Apache Spark
Apache Spark [15] is a cluster computing framework based

on a shared nothing architecture. Just like Apache Hadoop,
Spark enables parallel computations on unreliable machines
and automatically handles locality-aware scheduling, fault tol-
erance and load balancing. While both systems are based on
a data flow computation model, Spark is more efficient than
Hadoop for applications requiring to reuse working datasets
across multiple parallel operations. This efficiency is due
to Spark’s Resilient Distributed Dataset (RDD) [14], a dis-
tributed, lineage supported fault tolerant memory abstraction
that enables one to perform in-memory computations (when
Hadoop is mainly disk-based). The Spark API also eases
the programming task by integrating functions which are not
natively supported in Hadoop, e.g., join, filter. The design and
implementation of Spark started at UC Berkeley’s AMPLab
and at the time of writing this paper, it is considered to be the
Apache project with the most committers.

III. KNOWLEDGE BASE ENCODING

The encoding principle of our approach is similar to the
ones encountered in most RDF Stores. A first phase creates a
dictionary corresponding to a bijective function mapping long
terms (IRI, blank node identifier, literal) to short identifiers
(integer). The dictionary is then managed using the locate and
extract operations previously introduced.

The originality of our approach is that we distinguish the
TBox encoding from the ABox one. For the former, we

1http://www.w3.org/TR/rdf-sparql-query/
2http://www.w3.org/TR/rdf11-mt/
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propose a semantic-aware encoding which supports the lite
materialization approach. While this phase is performed on a
single machine of the cluster, the ABox encoding is computed
in parallel using Spark. The values we assign for entities of the
TBox and ABox can overlap, i.e., the same value can be given
to an individual, a property and a concept. This does not cause
any problems in our system due to context awareness at query
processing time. For instance, we know that each identifier
at the second position of an RDF triple is necessarily a
property and that objects associated to an rdf:type property
are necessarily concepts. All other identifiers in the ABox
correspond to individuals.

A. TBox encoding
1) Principle: Our TBox encoding principle applies to both

the concept and property hierarchies, which we denote as
entities in the following. The idea is to assign an integer value
to each entity such that for a sub-entity B of an entity A
(B v A), B’s assigned identifier (idB) is comprised in an
interval that can be easily and automatically compute from
A’s identifier (idA). That is idB ∈ ]idA, idA + ε[ where
ε depends on the number of direct sub-entities of the entity
A. This encoding scheme applies recursively to the complete
entity hierarchy.

This encoding scheme covers both the
rdfs:subClassOf and rdfs:subPropertyOf
associated entailments. To support inference rules related to
rdfs:domain and rdfs:range, we define two additional
data structures, one for each RDFS property, consisting of a
key/value pair. The key corresponds to the property identifier
and the value contains the set of this property’s domain (resp.
range) concept identifiers.

2) Implementation: In order to grasp accurate entity hierar-
chies, we use an OWL reasoner to infer concept classifications.
This implies that we are representing hierarchies that are not
limited to the interpretation of the RDFS language. Neverthe-
less, based on this representation, we only consider the RDFS
entailment regime, e.g., currently our system is not able to
handle inference rules related to transitive properties.

HermiT [9], the OWL reasoner we are using for the encod-
ing, does not support a distributed computing approach. We
thus generate the encoding of a TBox on a single machine.
The algorithm represents entity identifiers as vectors of bits
and consists of two phases. In the first phase, a top-down
navigation of the inferred entity hierarchy, e.g., for concepts,
is adopted. Intuitively, we start from the owl:Thing concept
down to all subconcepts. Given an entity A, we first compute
the number N of direct sub-entities. These sub-entities will be
encoded over dlog2(N+1)e bits. This is performed recursively
until all entities in the TBox are assigned to an identifier. It
is guaranteed at the end of this first phase that, for 2 entities
A and B with B v A, the prefix of idB matches with the
encoding idA.

At the end of this first step, all entities have been given a
prefix value. Table I presents an extract of the encoding of the
LUBM ontology. For instance, in LUBM, the Schedule and
AssociateProfessor are respectively given identifiers

Encoding Concept label
0 000 0000000000 Thing
0 001 0000000000 Schedule
0 010 0000000000 Organization
0 011 0000000000 Publication
0 100 0000000000 Person
0 100 0100000000 TeachingAssistant
0 100 1000000000 Student
...
0 100 1110010011 AssociateProfessor
...
0 101 0000000000 Work

TABLE I. EXTRACT OF THE LUBM CONCEPT ENCODING

’0001’ and ’01001110010011’. Given that owl:Thing is
always assigned the value 0, we can see that its 5 direct
subconcepts (Schedule, Organization, Publication,
Person and Work) are encoded over 3 bits. Moreover,
AssociateProfessor shares the prefix ’0100’ with its
indirect Person ancestor. In order to support our interval
operations over identifiers, we need to represent these bit
vectors over the same number of bits. The total number of bits
corresponds to the encoding of the longest entity identifer, i.e.,
14 bits for the AssociateProfessor or any of its siblings.
Note that encodings for DBPedia and Wikidata’s concept
hierarchies required respectively 27 and 102 bits, justifying
the use of vector bits for the latter. This second step handles
the identifier completion by appending ’0’ on rightmost bits.

B. ABox encoding
1) Principle: The encoding of the ABox is more straight-

forward than the TBox encoding since it does not require an
external software component, i.e., a reasoner. The idea is to
provide a unique integer identifier to all ABox entries that
have not been assigned an identifier during the TBox encoding.
Since we are not giving any ’meaning’ to these values,
the encoding can be performed in parallel. This presents a
particular advantage due to the size of the ABox which can
be orders of magnitude larger than the TBox.

2) Implementation: For the ABOX encoding we will benefit
from the Spark framework by storing most of the processed
datasets, i.e., the portion corresponding to the ABox, in main-
memory and by taking advantage of a rich API of operators
including join, union, duplicate elimination. In a first stage,
the dataset is uploaded from the Hadoop Distributed File
System (HDFS) and partitioned across the cluster. The system
identifies the subject/object and possible property terms which
are not covered by the TBox encoding. Then each distinct entry
is assigned an identifier in a distributed manner. Intuitively,
we create an array that contains the number of subjects and
objects contained in each partition. These values are summed
up so that each partition can be associated with a disjoint
identifier interval. Then each partition provides identifiers to all
its members ranging over the partition’s identifier interval. This
set of subject/object (resp. properties) is then unioned with the
concept (resp. property) encoding emanating from the TBox.

Given these two maps, the original string-based dataset is
encoded via some join operations whose execution can be
optimized by replicating the maps over the cluster nodes, i.e.,
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storing the maps in the main-memory of all executors of the
cluster and thus preventing network communications. In our
evaluation, the property map is broadcasted while for some
cases, e.g., Wikidata (Table II), broadcasting the concept map
would be counterproductive due to its large memory footprint.

IV. LITE MATERIALIZATION

Our TBox encoding scheme provides the nice property
of retaining only the most specific concept in the hierarchy
while still being able to perform some subsumption inferences.
In this context, our LiteMat approach aims to minimize the
amount of types assigned to each instance in the dataset.
This may be useful since some real world datasets are known
to have several types for a given instance, e.g., an average
of 8 different types are provided on DBPedia individuals.
The information stored in our TBox encoding data structures
enables to perform this materialization.

The parallel algorithm proceeds in 2 steps. In the first step,
for each individual I , the system gathers all explicit and
implicit types where the former correspond to types already
stored in the original datasets and the latter correspond to
the ones that can be derived from the domain and range of
RDFS properties involved in I’s assertions. This set of types
is henceforth denoted as candidate concepts. For instance, in
Example 1, the domain of teaches enables to attribute the
FacultyMember type to the hubert instance.

In Figure 1, we represent a set of such concepts in the
context of their subsumption hierarchies. Each node represents
a TBox concept with the black ones being the candidate
concepts and the white ones being their super concepts. The
plain lines represent subsumption hierarchies with the lower
node always being the subconcept. To minimize the number of
types for a given instance, the system needs to retain only the
Most Specific Concepts (MSC) in each subsumption branch of
candidate concepts. This corresponds to identifying the nodes
going through the dashed line in Figure 1. Note that during
this identification process, we are not considering the complete
concept hierarchy but only the candidate concepts and the
transitive closure of their super concepts.

Our system performs this operation in one pass using our
TBox encoding data structures. Intuitively, set of candidate
concepts of an instance I is ordered in descending order on the
values of their identifiers. This is motivated by our encoding
scheme which ensures that a subconcept has a greater value
than its super concept. The first concept in that list is stored
in the MSC set and subsequent candidates are checked for
insertion in the MSC set. A candidate is inserted in the MSC
set if none of the concepts in the MSC set belongs to its
subsumption interval.

A concept’s ’subsumption interval’ is computed using the
concept id and 3 meta data corresponding to its total encoding
length (codeLength), the position at which this concept encod-
ing starts in the bit vector (start) and the length of its encoding
(localLength). Given these information, the following bound
function returns the upper bound of a concept.

def bound(id : String, start: Int,
localLength: Int, codeLength: Int)

Fig. 1. Candidate concepts in their hierarchy

: (String) = {
val shift = codeLength -

(start+localLength)
val prefix = id >> shift
val upperBound = (prefix+1) << shift
return upperBound

}

In Figure 1, the concept A is not retained in the MSC
set since B is more specific. Consider the following setting:
A and B have respective identifiers: 20 (00010100) and 22
(00010110), the encoding length is 8 bits, the encoding of
A starts at bit 3 and is encoded using 3 bits. Then the
subsumption interval of A is [20, 24[. This justifies that A is
not in the final MSC since B with an identifier of 22 belongs
to that interval.

We finally would like to highlight that the lite materialization
may also have the positive effect of diminishing the original
dataset by removing some unnecessary concepts (one of our
experimentation highlights such a situation on the Wikidata
real world dataset).

V. QUERY PROCESSING

This section details our evaluation method of conjunctive
SPARQL queries using the encoding scheme described in Sec-
tion III. This method guarantees the completeness of the query
result. It considers the RDFS class and property hierarchies,
i.e., considers all triples that match a graph pattern accord-
ing to these hierarchies. More precisely, the triple matching
procedure takes into account the following semantic inference
rules:
• a triple (s, p, o) matches the triple pattern (?x, prop, ?y)

if p is a sub-property of prop (by definition p is a
subproperty of itself).

• a triple (a, rdf:type, b) matches the triple pattern (x,
rdf:type, c) if b is a subtype of c (by definition, b is
a subconcept of itself).

These rules can be efficiently evaluated by the semantic-
aware encoding described in Sec. III. It allows the query
processor to compare straightforwardly the values of p and
prop (and respectively the values of b and c), based on the
encoded values and the previously defined bound function



5

(Sec. IV):

p is a subpropertyof prop⇔ prop ≤ p < bound(prop) (1)

b is a subtype of c⇔ c ≤ b < bound(c) (2)

Note that we implement subproperty and subtype matching
as a single comparison operation without testing every existing
subproperty and subtype. This obviously saves computation
cost.

Our query plan generation method targets the Apache Spark
distributed and parallel computing platform for processing
queries. As explained in Sec. II-B, Spark provides efficient
methods to manipulate distributed datasets in parallel. We use
the following Spark operations applied to datasets:
• dataset.filter(predicate): select the subset of the dataset

that satisfies a predicate.
• dataset.map(function): apply a function on each element

of the dataset.
• dataset.join(dataset): join two datasets using an equality

predicate. It requires that the structure of the elements
in each dataset is a pair. For instance (a,b) join (c,d)
produces a result if a=c.

It has been showed in [13] that these operations are sufficient to
express any conjunctive query. With this in mind, we describe
the translation of conjunctive SPARQL query into an algebraic
expression.

Locate step. In a typical use case, a SPARQL engine calls
the locate function to transform the constants of a triple pattern
into numerical values. In our case, we translate every term
(property, type and literal) of the query into its corresponding
encoded value.

Example 2: The execution of the locate function over
Query #4 in A would yield the following triple patterns:
?x 0 1044643840. ?y 0 335544320.
?x 1145044992 ?y.

Matching step. We translate each query triple, into a filter
operation that implements the matching. For clarity, we detail
below the resulting algebraic expression written in (simplified)
Scala programming language. The name triples denotes the
dataset.
(?x, prop, ?y) is translated into

triples.filter( (s,p,o) =>
prop <= p && p < bound(prop) )

(?x, rdf:type, c) is translated into

triples.filter( (s,p,o) =>
p == type && c <= o && o < bound(c) )

Conjunction step. We translate the conjunction of two triple
patterns into a join expression. We denote t1 (resp. t2) the
expression resulting from the translation of the first (resp. the
second) triple pattern
(?x, prop1, ?y) . (?y, prop2, ?z) is translated into

t1.map( (s,p,o) => (o, (s,p)).
join(t2.map( (s,p,o) => (s, (p,o)))

The map function allows to specify on which variable the
equality join must apply. Our translation method supports

all the join cases: subject-subject, subject-object, and object-
object. We handle several conjunctions by successively apply-
ing that translation on each pattern. Note that the finding an
optimal join ordering for triple patterns is beyond the scope
of this article.

Extract step. The last query processing step consists of
calling the extract function to translate the result set (so far
expressed with numerical values) into an end-user understand-
able form, i.e., IRIs, literals and possibly blank node identifiers.

VI. EVALUATION

A. Computational environment
The evaluation was conducted on a cluster consisting of

15 DELL PowerEdge R410 running a Debian GNU/Linux
distribution with a 3.16.0-4-amd64 kernel version. Each ma-
chine has 64GB of DDR3 RAM, two Intel Xeon E5645
processors. Each processor is constituted of 6 cores running
at 2.40GHz and allowing to run two threads in parallel (hyper
threading). Hence, the number of virtual cores amounts to 24.
Concerning storage, each machine is equipped with a 900GB
7200rpm SATA disk. The machines are connected via a 1GB/s
Ethernet network adapter. We used Spark version 1.4.1 and
implemented all experiments in Scala, using version 2.10.4.
The Spark configuration of our evaluation enables to run our
prototype on a subset of the cluster corresponding to 300 cores
and 50GB of RAM per machine.

B. Datasets and queries
We have selected 2 synthetic and 2 real world knowledge

bases. The synthetic datasets correspond to instances of the
LeHigh University Benchmark, a well-established Semantic
Web set of tools composed of an ontology, a set of queries and
a data generator. The knowledge bases have respectively been
configured with 1000 and 10000 universities, resp. denoted
LUBM1K and LUBM10K. The real world datasets correspond
to open source DBPedia and Wikidata RDF dumps.

In table II, we present the main characteristics of the
associated ontologies. Concerning DBPedia and Wikidata, the
ontologies respectively correspond to DBPedia 20143 and the
union of wikidata-taxonomy and wikidata-properties4. We can
observe that they differ in terms of their size (from 15KB to
78MB), number of concepts (from 43 to over 210K), properties
(from around 30 to over 3K) and number of axioms related
to property domain and range (from none to around 2K). The
main characteristics of the ABoxes are reported in the first two
columns of Table III.

For the query processing evaluation, we choose a subset of
the LUBM benchmark queries that allow us to highlight the
benefits of our LiteMat approach.

C. Results
In this section, we compare the encoding and query per-

formance of our solution with a baseline solution based on a
full materialization using a standard TBOX-unaware dictionary
encoding.

3http://oldwiki.dbpedia.org/Downloads2014
4http://tools.wmflabs.org/wikidata-exports/rdf/exports/20140526/
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Ontology Size #Concepts #Prop. (Obj.+Datatype) #Domain axioms #Range axioms Total time in sec.
LUBM 15KB 43 32 (25+7) 21 18 0.7

DBPedia 2.3MB 814 3,035 (1,310+1,725) 1,076 997 3.7
Wikidata 78MB 213,958 353 (255+98) 0 0 122

TABLE II. MAIN FEATURES AND ENCODING TIME OF THE EVALUATED ONTOLOGIES

Dataset #Triples ∗106 SAE time (sec.) SAE throughput (triples/sec.) OBE time (sec.) OBE throughput (triples/sec.)
LUBM1K 133.5 280.5 476,199 113.6 1,157,486

LUBM10K 1,334.7 3,746.5 356,248 1,755.8 759,378
DBPedia 79.1 282.2 280 943 128 617,050
Wikidata 242.1 1,334.8 181,394 477.2 507,386

TABLE III. COMPARISON OF THE STANDARD ABOX ENCODING (SAE) WITH THE ONTOLOGY-BASED ENCODING (OBE)

1) Encoding efficiency: In order to evaluate LiteMat’s en-
coding strategy, we present the performances of both our
TBox and ABox encoding. To evaluate the ABox encoding,
we compare the standard ABox-only encoding (denoted SAE)
which ignores any TBox knowledge, versus our ontology-
based encoding solution (denoted OBE). SAE is completely
computed in parallel over Spark. OBE is composed of an
ontology encoding (implemented in Java and using the HermiT
reasoner and the OWLAPI) and an ABox encoding (which runs
over Spark in a manner quite similar to SAE) steps.

The rightmost column of Table II presents the duration of the
ontology encoding, i.e., processing the concept and property
hierarchies as well as the structures for the domain and range
RDFS properties, for the three ontologies under test. We report
relatively fast execution times for all ontologies (up to 122
seconds for the largest ontology containing more than 200K
concepts and over 300 properties).

We also report the encoding duration and throughput (i.e.,
the number of RDF triple statements encoded per second) of
the two encoding solutions in Table III. Note that the reported
times for OBE includes the TBox encoding time (Table II).
First we observe that both OBE and SAE solutions yield high
throughput compared to the state-of-the-art solution reported
in [12], thanks to our highly parallel implementation of the
two solutions over the Spark platform.

Second, we observe that the OBE is up to 2.8 times faster
than the SAE. In fact, for SAE, all individuals, concepts and
properties have to be encoded. While for OBE, concepts and
properties have already been encoded and are just uploaded
for ABox encoding. The duration difference between the two
approaches is explained by the high number of rdf:type triples
in most RDF datasets.

Moreover, for OBE, the size of the ontology unsurprisingly
impacts the duration: although LUBM1K is 1.6 times larger
than the DBPedia dataset, its encoding time is 12% shorter.

Finally, we observe rather promising scalability of our
OBE solution for growing datasets: the throughput is only
decreasing by 35% when the LUBM dataset size is ten times
larger (ranging from 133M to 1.3B triples).

2) Evaluation of materialization strategies: In this section,
we compare our LiteMat materialization approach with a stan-
dard full materialization solution. The results are respectively
reported in Tables IV and V. First, for small dataset the
duration is about the same, we observe a difference for larger

KBs where the full materialization is much longer (between
1.5 and 2 times longer). Second, for LUBM, the dataset size
remains almost the same. Indeed, the number of extra triples
added during domain/range inference is slightly the same as
the number of triples removed when retaining only the most-
specific concepts. Third, Considering the full materialization,
unsurprisingly, the relative increase of the dataset size is
ranging from 13% for DBPedia and up to almost 58% for
Wikidata. This increase in size is directly related to the depth
of ontology entity hierarchies, e.g., the DBPedia and Wikidata
have several concept branches of depth larger than 6.

3) Query processing benefits: We conduct experiments to
quantify the benefits of LiteMat on querying large RDF
databases. We implement all the queries (detailed in Ap-
pendix A) in Scala using the translation method proposed
in Sec. V. We execute queries Q1 to Q4 on the LiteMat
and on the full materialization of the LUBM10K dataset. For
baseline comparison, we also execute the rewritten queries
Q′1 to Q′4 on the original LUBM10K dataset. We first check
for query completeness: each query consistently returns the
same result set on the lite, full, and original dataset. Then,
we report on Table VI the response times of Qi queries for
LiteMat and or full materialization, and of Q′i queries for the
no materialization database.

We observe that our solution (LiteMat) outperforms the
baseline approach (no mat.) from 11% (for Q3) up to 28%
(for Q1). This benefit is rather impressive considering that we
implement the baseline approach in an optimized way using a
conjunction of “OR” subqueries instead of a costly union of
conjunctive subqueries.

On the opposite, we observe that query Q4 containing 3
triple patterns, performs slower than its rewriting, because
in this particular case, the rewriting consists of the union
of an empty subquery (indeed, the original dataset does not
contain any triple with the Chair concept) and another simple
subquery having only 2 triple patterns. However, this is not a
limitation of our approach since one can always simplify the
query before executing it on the LiteMat database.

As expected, full materialization yields relatively poor per-
formances because of the overhead implied by accessing a
larger database. The results show that LiteMat allows for fast
query processing (thanks to the encoding) and the ability to
store most of processed data in main-memory (a property due
the Spark framework).
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Dataset Duration (sec.) Added triples (%) Deleted triples (%) throughput (triples/sec.)
LUBM1K 172.7 0 0 466,552

LUBM10K 1,755.8 0 0 307,139
DBPedia 29.2 0 0 478,129
Wikidata 859.2 0 0.04 77,240

TABLE IV. ONTOLOGY-BASED ENCODING WITH LITE MATERIALIZATION

Dataset Duration (sec.) Added triples (%) throughput (triples/sec.)
LUBM1K 176.6 38.15 460,917
LUBM10K 3,136.8 38.2 272,796
DBPedia 57 13.6 356,348
Wikidata 1,482 57.9 123,571

TABLE V. ONTOLOGY-BASED ENCODING WITH FULL MATERIALIZATION

Query Lite mat. Full mat. No mat.
Q1 15.6 20.2 21.8
Q2 15.6 17.2 21.6
Q3 72.2 99.2 81.4
Q4 50.2 79.8 27.2

TABLE VI. QUERY TIMES (IN SEC.) FOR LITE/FULL/NO MATERIALIZATION

VII. RELATED WORKS

The first set of related works concerns semantic-aware RDF
data encoding. Most existing works in this field have been
influenced by [1] which proposes to encode subsumption
hierarchies with numeral values. This method proposes to
encode the nodes of a tree in such a way that all the numerical
values associated to subnodes of a supernode all range within
an interval that can be computed from the supernode value.
Although the work of [1] is essentially focusing on the
hierarchies themselves, the approach was extended in [11],
with the so-called semantic index technique, to Ontology-
Based Query Answering (OBQA) for the RDFS fragment of
DL-Lite [3]. This later work is not providing any algorithmic
details and does not consider the parallel computation of
the dictionaries and of the dataset transformation. The work
in WaterFowl [6] also influenced the LiteMat project. Both
systems are adopting a binary encoding of the elements of the
TBox. In WaterFowl, this was mainly motivated by the use of
Wavelet tree data structures whose nodes are composed of bit
vectors, to store encoded RDF datasets. Rather than focusing
on identifier intervals at query answering time, WaterFowl uses
a binary prefix encoding scheme to navigate in wavelet trees.
Like the two other systems in this section, WaterFowl does not
scale for large datasets due to the lack of a parallel computing
approach.

Another set of related works concerns the distributed en-
coding of RDF datasets. The most recognized systems in this
field are either using a dedicated computing environment [7],
the Map Reduce model [12] or a parallel language running over
a shared nothing architecture [4]. The approach presented in
[7] uses a shared memory Cray XMT multi-million dollars
machine to perform parallel hashing based on the linear
probing scheme. The evaluation emphasizes that the method
is efficient due to main-memory storage and performances
are linear with the number of used cores. Nevertheless, the
algorithm is specific to the shared memory architecture of the
machine. The work of [12] computes RDF encodings on top of

the Hadoop framework using a standard cluster of commodity
hardware (which was it the case of the aforementioned system).
The approach uses a sampling approach to encode the most
popular terms which are cached in main memory. The encoding
is performed through a set of map and reduce functions
which can imply costly network communications. Moreover,
the use of Hadoop’s MapReduce implies I/O contention due
to the intensive use of disk accesses. Finally, [4] proposes an
implementation using the X10 parallel programming language
consisting of 3 steps: fragmentation of the data in equal-
size chunks (based on terms hash value), encoding of these
entries of these chunks are computed locally on each node
of the cluster, much like our ABox encoding. Note that none
of these distributed encoding approaches make a distinction
between the TBox and the ABox. Hence, their semantic-
unaware encoding is not able to support inference optimization.
Moreover, our Spark-based implementation has the advantages
of being easier to develop for and maintain due to its user-
friendly, rich set of APIs.

VIII. CONCLUSION

In this paper, we have presented LiteMat, a data encoding
scheme and query evaluation approach for the SPARQL query
language. The main contribution of the system is an efficient
and complete RDF query answering solution respecting the
SPARQL’s RDFS entailment regime. By taking the most of
our clever TBox encoding, we are able to reduce the amount
of materialized data and to limit the effort of query reformula-
tion. Conducted evaluations emphasized the efficiency of the
approach in terms of date storage size as well as encoding and
query processing performances. Moreover, except for the TBox
encoding, all processing steps of our system are implemented
over the parallel computing framework Apache Spark, and thus
produce high triple statements per second processing rates.

We consider that there is plenty of room for improvement
and optimization for our system. For instance, some future
works will concentrate on query optimization using some
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heuristics and statistics which can be computed during the
ABox encoding time. We are also planning to support a
more expressive entailment regime at query run-time, e.g.,
RDFS+ [2] which provides to specify properties characteris-
tics (inverse, symmetric and transitive) and equality between
individuals, classes and properties.
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APPENDIX

Following are the SPARQL queries executed over both the
LUBM1K and LUBM10K of our experimentation.

A. Query Q1: Inferences over the concept hierarchy
SELECT ?x WHERE { ?x rdf:type Professor.}

and its rewriting Q′1:

SELECT ?x WHERE {{ ?x rdf:type Professor.}
UNION { ?x rdf:type AssistantProfessor.}
UNION { ?x rdf:type AssociateProfessor.}
UNION { ?x rdf:type Chair.}
UNION { ?x rdf:type Dean.}
UNION { ?x rdf:type Faculty.}
UNION { ?x rdf:type VisitingProfessor.}
UNION { ?x rdf:type FullProfessor.}}

B. Query Q2: Inferences over the property hierarchy
SELECT ?x ?y WHERE { ?x memberOf ?y.}

and its rewriting Q′2
SELECT ?x ?y WHERE {{?x memberOf ?y} UNION
{?x worksFor ?y} UNION {?x headOf ?y}}

C. Query Q3: Inferences over the concept and property hier-
archies
SELECT ?x ?y WHERE { ?x rdf:type Professor.
?x memberOf ?y.}

The rewriting, denoted Q′3, of this query corresponds to the
union of the cartesian product of the WHERE clauses of
queries Q1 and Q2. The query thus contains the union of 18
filters. For space limitation, we only display a subset of them:

SELECT ?x WHERE {{?x rdf:type Professor.
?x memberOf ?y.} UNION {?x rdf:type
Professor. ?x worksFor ?y.} UNION {?x
rdf:type Professor. ?x headOf ?y.} UNION
{?x rdf:type AssistantProfessor.
?x memberOf ?y.}...}

D. Query Q4: Inferences over the property hierarchy
This query is a generalized pattern of the query Q12 from

the LUBM benchmark.

SELECT ?x WHERE { ?x rdf:type Chair.
?y rdf:type Department. ?x worksFor ?y.}

and its rewriting Q′4:

SELECT ?x WHERE {{ ?x rdf:type Chair.
?y rdf:type Department. ?x worksFor ?y.}
UNION {?x headOf ?y.
?y rdf:type Department.}}
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