
SQL-Like Big Data Environments:
Case study in Clinical Trial Analytics

Akshay Grover1, Jay Gholap2, Vandana P. Janeja2,
Yelena Yesha1

1Computer Science and Electrical Engineering,
2Information Systems

University of Maryland, Baltimore County
{akshay2, jgholap1,vjaneja, yeyesha}@umbc.edu

Raghu Chintalapati3, Harsh Marwaha3,

Kunal Modi3
3Ekagra Software Technologies

{Raghu.Chintalapati, Harsh.Marwaha,
Kunal.Modi}@ekagra.com

Abstract- Big Data deals with enormous volumes of complex
and exponentially growing data sets from multiple sources.
With rapid growth in technology, we are now able to generate
immense amount of data in almost any field imaginable
including physical, biological and biomedical sciences. With
the diversity and amount of data in health care industry there
is an increasing need to evaluate the components in big data
frameworks and gauge their adaptability to analytics
techniques. However, a key step in adapting big data tools is
the portability of relational databases to big data environment.
Since SQL is considered to be the de-facto language for
interactive queries, in this paper, we evaluate the performance
of SQL-like big data solutions for the portability of existing
relational databases. Our work focuses on benchmarking
multiple SQL-like big data technologies over Hadoop based
distributed file system (HDFS) for Study Data Tabulation
Model (SDTM) used in clinical trial databases for improving
the efficiency of research in clinical trials. We use publically
available clinical trial data (from National Institute on Drug
Abuse (NIDA)), which follows SDTM, as a test bed to measure
key parameters like usability, adaptability, modularity,
robustness and efficiency of these solutions. With the intention
to demonstrate how current clinical trial functionality can be
replicated on a big data backend with high SQL-like
functionality, we evaluate several types of ad-hoc SQL queries.

Keywords- Big Data; Benchmarking; HDFS; SDTM; SQL
like

I. INTRODUCTION
The focus of this paper is the evaluation of SQL-like Big

Data Environment for clinical trials data. We set the stage by
explaining what are clinical trials and what data models are
currently being followed. We go a step beyond and explain
the need of Big data environment and particularly SQL-like
Big Data environment in the domain of clinical trials.

Clinical trials as defined by NIH (National Institutes of

Health) [1] are the research studies in which one or more
subjects are prospectively given one or more interventions to
evaluate their effects on specific outcomes such as health-
related behavioral or biomedical outcomes.

ClinicalTrials.gov, run by the United States National Library
of Medicine (NLM) is the first and the largest clinical trials
registry (CTR) for registering a clinical trial.
ClinicalTrials.gov currently lists over 199,000 studies with
locations across50 states in the United States and in 190
countries worldwide [17].

The United States Food and Drug Administration (FDA),

on July 21, 2004, [2] selected Study Data Tabulation Model
(SDTM) as the standard requirement for submitting the
tabulation data to FDA for clinical trials. The model defines
a standard structure for both the human clinical trial (study)
data tabulations and the for nonclinical study data
tabulations. It provides a generalized framework for
describing the organization of information collected during
human and animal trials. The SDTM is built around the
concept of observations , which consist of discrete pieces of
information gathered during a study. Observations are
reported in series of domains, usually corresponding to data
that are collected together.

With the advent of the era for personalized medicine, the

number of clinical trials has grown exponentially. The data
is being collected from combination of several smart devices,
which is further improving the design of clinical trials, their
efficiency and outcomes. Electronic data capture is helping
in recording patient information in the provider’s electronic
medical records and using such electronic medical records as
the primary source for clinical-trial data is accelerating the
trials and hence reducing the likelihood of errors caused by
manual or duplicate entries. We can leverage the capabilities
of big data technologies to unravel the hidden correlations
such as drug interaction, comorbidity etc. across several
clinical trials.

According to literature collected from clinicaltrials.gov,
most of the clinical trials today call for the enrollment of 1 in
every 200 Americans as study participant. With such a large
cohort of population signing for Clinical Trials and thus
generating huge volume of data, one should ask the question
if this high level of human participation is being put to the
best use possible. Most clinical trials include paper files, X-

2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 2680

ray films, patient narratives, doctor’s prescription, etc. thus
accounting towards the variety of data. Velocity of mounting
data increases with data that represents routine monitoring,
such as blood pressure readings or several diabetic glucose
measurements. With all the 3 Vs in place i.e. Volume,
Velocity, and Variety - Big Data promises making the drug
discovery and development process more efficient in case of
Clinical Trials.

Big Data in general refers to very large and complex
datasets such that the data becomes unmanageable via
traditional database management tools. With SQL being the
default choice and by far the best-suited language for basic
data analysis already extensively in use in the domain of
clinical trials, we have a number of big data solutions
leveraging the same. Solutions like Hive, Presto, Impala, and
Shark are designed to support data analytics on big data with
a SQL like support so that transition into the big data
environment is seamless.

Thus, in the following sections of the paper, we evaluate
the portability of SDTM relational model to SQL like big
data environment and understand the various challenges
involved during the process of ELT (Extract, Load and
Transform) from various source systems. We also propose
solutions to address the issue of generating surrogate keys,
by incorporating cryptographic algorithms like SHA 256, to
maintain the data and referential integrity. Finally, we
perform extensive evaluations across multiple SQL like big
data environments and propose our overall observations.

The paper is organized as follows: In section II we discuss
the related work. Section III discusses the state of the art of
the big data solution landscape. In section IV we outline our
methodology and in section V we discuss the results. Section
VI outlines the overall observations and discussions followed
by conclusions and future work in section VII.

II. RELATED WORK
Recent advances in healthcare and medical devices have

produced massive amounts of multimodal data and hence
the need for parallel processing is apparent for mining these
data sets, which can range anywhere from tens of gigabytes,
to terabytes or even petabytes. The emergence of such
massive datasets in clinical settings, presents both
challenges and opportunities in data storage and analysis.
Here we discuss such challenges and related work:

A. Surrogate Keys
Identifiers are the basic structure in every modern database
implementation and the core of every relational database
ensuring the consistence of data and relational paradigm
using primary and foreign keys for schemas and object
reference. The importance of uniqueness of identifiers is
crucial for efficient data retrieval, storage and comparison in
a distributed system.

Balki et al.[23] address the issue of distributed data
storage and widely used unique identifiers which are in use

from the early use of databases and backend systems. They
represent a new method for objects tagging using synergy
mechanism between well-known Geo hash algorithm and
Universally Unique Identifiers called GHUUID. Such keys
can be generated by converting referential spatial systems
into the Geo datum enabled WGS84 or country specific geo
datum.

Hunt[24] incorporates UUID (Leach, Mealling & Salz,
2005) into a database design, as a type of artificial data that
can be used as primary key to synchronize the data between
two or more computers via an email server. The approach
discussed by [24] proves the use of UUID to be robust and
quiet successful for synchronizing data across multiple
installations.

Iordanov [25] presents a novel graph database based on
generalized hypergraphs where hyperedges contained other
hyperedges. The approach discussed by [25] maps the
identifiers to either a tuple of identifiers or to a plain byte
array. They concluded that use of UUID made it easier to
manage the identifiers in a large distributed environment
while virtually eliminating the chance of collision and each
data peer could make up new IDs without a central
authority.

Our work addresses the problem of surrogate keys in the
domain of clinical trials. Application of Geo Hash
Algorithm proposed in [23] is tedious to implement in a big
data environment. [24] and [25] implement plain UUID in
their design. We incorporate the use of cryptographic
algorithms such as SHA 256 on UUIDs as another approach
to generate practically unique surrogate keys in the big data
environment and hence maintain the referential integrity of
the data.

B. ELT (Extract, Load and Transform) in Big Data
Understanding the nature of how data warehouses are

loaded and the data movement tools work, can be really
helpful in analytics of the data.

ETL (Extract, Load and Transform) refers to the process
of moving data from source systems into a data warehouse.
The data is:

• Copied from the source system to the staging area
(Extracted).

• Reformatted for the warehouse with business
calculations applied (Transform)

• Copied from the staging area into the warehouse
(Load)

In the modern era big data engines support complex
transformations in SQL, including in-database data mining,
cleaning, validation, statistical algorithms, profiling,
drilldown functionality and much more. It is more efficient
to perform most types of transformation within this engine.
Hence, a new approach emerged where; data is extracted
from the sources, loaded into staging tables and then
transformed into desired format. This approach is known as
ELT (Extract, Load and Transform)

Devi et al. [26] propose process of ELT for taking
business intelligence decisions in Apache Hadoop by

2681

performing ELTL. The discussed approach has two major
advantages. Firstly, one can ingest massive amounts of data
without specifying a schema on write. Secondly, offload the
transformation of raw data by parallel processing. Once the
data is in Hadoop (HDFS), tasks of cleaning, normalizing,
standardizing the data for analytics using MapReduce can
be performed.

We propose the novel approach of applying this work in
the domain of clinical trials while evaluating the portability
of SDTM model on big data backend.

C. SQL on Hadoop
A significant amount of work has been done in the field

of evaluating and benchmarking the tools that provide SQL
like functionality over Hadoop. Since SQL is considered to
be the de-facto language for data analytics, SQL query
processing over Hadoop data has recently gained significant
foot. Several enterprise data management tools on hadoop
rely on SQL.

Floratou et al.[27] benchmark and evaluate the
performance of Hive and Impala by providing TPC-H like
workload. The queries discussed in [27] scans the table,
applies an inequality predicate, projects a few columns,
performs an aggregation and sorts the final result.

Cloudera [28] addresses the implementation and
working of Impala, which is a state-of-the art MPP SQL
query engine, designed specifically to leverage the
flexibility and scalability of Hadoop. It demonstrates that it
is possible to build an analytic DBMS on top of Hadoop that
performs just as well or better than commercial solutions for
RDBMS, but at the same time retains the flexibility and
cost-effectiveness of Hadoop.

Our work addresses the issue of benchmarking the
leading SQL like tools available for Big Data Environment
for their efficiency and efficacy in the domain of Clinical
Trials. These tools are currently being used by several
organizations to churn petabytes of data. Presto is used to
address the ad hoc interactive use cases for data exploration
at Netflix [13], while Facebook, VideoEgg and Scribd uses
Hive extensively to store and retrieve the data. We explore
these SQL like processing platforms by executing the
queries similar to the ones executed by Pavlo et al. [3].

Next we discuss the state of the art technologies available

as shown in figure 1, some of which can be viable solutions
for the clinical trials domain.

III. STATE OF THE ART IN SQL SUPPORTING BIG DATA
TOOLS

Figure 1 gives out a referential list of solutions that form
the major solutions available in the big data ecosystem. In
our ecosystem review we have branched out tools based on
distributed programming, distributed file system, SQL like
processing tools etc. These tools can be used as per the needs
of the use case.

In this paper we evaluate key big data solutions for their
ability to replicate the current clinical trial repository on a
big data backend. Of the several big data analytics
frameworks present in the market, we target the ones, which
impose MPP (Massively Parallel Processing)-like execution
engines on top of Hadoop and have high SQL like
functionality and portability.

Due to the compelling need for utilizing a SQL like
backend in porting the SDTM, we evaluate the following
four SQL like systems to provide
quantitative and qualitative comparisons:

• Apache Hive
• Facebook Presto
• Apache Drill
• Apache Spark

A. Apache Hive
Hive [5] is an open-source data warehouse platform,

which provides SQL like interface to access data residing in
Hadoop distributed file system (HDFS). Developed by
Facebook, Hive was primarily built in order to process a
large amount of data in Hadoop when it had no alternative
other than mapreduce scripts. Hive significantly reduced the
complexity to manipulate the enormous data in Hadoop by
eliminating the need of writing complex mapreduce tasks.
Hive supports SQL-style query language known as HiveQL.
Users can easily write HiveQL queries to collect and analyze
data for various purposes such as business intelligence, data
summarization or interactive data mining. Hive translates
these queries into mapreduce jobs and submits them to
Hadoop for execution. Hive also allows to plug-in custom
user defined functions (UDFs) and aggregation functions
(UDAFs) written in Java to perform operations that are not
supported by HiveQL. Current version of HiveQL offers
only a subset of SQL statements. Although earlier versions
of Hive have demonstrated a significant performance
enhancement in Hadoop, future versions would include a
new set of SQL commands, more efficient query
optimization engine and better JDBC and ODBC drivers for
smooth integration with third party BI tools.

2682

Figure 1: State of the Art in Big Data Technoologies

2683

B. Facebook Presto
Significantly improving the scalability o

released Presto [6], an open source distrib
engine for running interactive queries on pet
store. Presto was not only designed to query
HDFS but also to query other data so
relational databases and non-relational da
Cassandra. Presto uses in-memory, pipeline
execution of queries rather than mapreduce
unnecessary I/O and associated latency
Facebook claims that Presto runs 10 times
and Hadoop in terms of CPU efficien
Facebook built hive in order to give Ha
warehouse and SQL-like capabilities, but s
mapreduce, scanning over a large dataset
minutes to hours. It is not an ideal scenario
answers on the fly.

Presto supports a larger subset of ANS
joins, aggregations, subqueries & window
from these, it also supports wide range of
including JSON functions, URL functions,
and regular expression functions. Presto is tu
popular choice for interactive analysis ov
because of its support for various data- sou
of data it can handle. With Presto, simple
executed in a few hundred milliseconds, whi
ones execute in a few minutes. It runs in m
writes to the disk. Future releases of Pre
better performance by utilizing data cach
query speed.

C. Apache Drill
Apache Drill [7] is a distributed system

ad-hoc analysis of large-scale dataset. D
source version of Google's Drexel system, w
as an infrastructure service called Go
Developed with the goal to provide low la
interactive queries for larger datasets, it
backing stores like HDFS and HBASE
knowledge of ANSI SQL to write and exe
Drill does not require the user to specify th
querying. This schema-on-the-fly feature
involvement from IT personnel.

Apache Drill provides ANSI SQL interf
data from Hadoop as well as NoSQL
supports several file formats such as CSV
JSON and PSV. In distributed setup, dat
execution speeds up Drill’s query process
network traffic. A variety of SQL functio
Apache Drill including mathematical & stat
string and date manipulation functions
powerful analytical tool. Similar to Hive, D
create custom functions by writing a custo
also offers an excellent connectivity to busi
tools such as Tableau, Microstrategy, Qlik
Spotfire. With simple installation, it can sc
large cluster comprised of thousands of node

f SQL, Facebook
buted SQL query
tabyte-sized data-
y data residing in
ources including
atabases such as
ed processing for
e, hence sidesteps
y. As a result,
s better than hive
ncy and latency.
adoop some data
since it relies on
t can take many
o where we need

SI SQL including
functions. Apart

f utility functions
, string functions
urning out to be a
ver the big data
urces and volume
e queries can get
ile more complex

memory and never
sto would target
hing to improve

m for interactive
Drill is the open
which is available
oogle BigQuery.
atency and faster
supports several
etc. Besides the

ecute the queries,
he schema before
e calls for less

face for querying
databases. Drill

V, TSV, Parquet,
ta locality based
sing by reducing
ons supported by
tistical functions,
make it a very
rill allows you to
om java code. It
iness intelligence
kview and Tibco
cale up-to a very
es.

D. Apache Spark
Spark provides highly advanced DA
supports cyclic data flow and in-m
offers resilient distributed datasets
abstraction to support multiple dist
reads data from stable storage.
outperform existing solutions by u
analytics. Spark SQL is a fairly
Spark that combines relational p
functional programming API. Sp
tighter integration between rela
processing, through a DataFrame
procedural Spark code. Secondly
extensible optimizer which is bui
Scala, that makes it easy to add co
code generation, and define extensio

IV. STUDY METH

Although Apache Hive, Faceb
Drill provide similar functiona
execution engines utilized by th
software tools provide an interface t
with scalability up-to thousand
tolerance, support for custom p
functions. To evaluate these tools
challenges of porting data into a b
provide the overall view of our app
2. The key tasks include extracting,
the data, followed by generating su
records are unique through all ma
finally performing queries which
efficiency of execution across
evaluated.

Figure 2: Overall Approach

A. ELT (Extract, Load and Transfo
Inspired by Kimball Architec

Extract-load-transform (ELT) ap
evaluation on the big data backen
from the specified sources and p
processing into staging tables. On
staging area, we confirm the dime
generate surrogate keys for the sm
from multiple source systems.
standardize the data in this stage. S
utilizes intermediate data store befo
it is much more efficient to handl

AG execution engine that
emory computing. Spark
(RDDs) which is an an

tinct jobs, each of which
RDDs allow Spark to

up to 100x in multi-pass
new module in Apache

processing with Spark’s
park SQL offers much
ational and procedural
API that combines with

y, it includes a highly
ilt using features of the
omposable rules, control
on points.

HODOLOGY
book Presto and Apache
ality, underlying query
hese tools differ. These
to process large scale data
distributed nodes, fault
pluggable user defined
and address the relevant

big data environment we
proach as shown in figure
loading and transforming

urrogate keys so the data
apreduce operations and
are evaluated for their

all the systems being

orm)
cture [16], we use the
pproach to design our
nd. We extract the data
ush the same for batch

nce we have the data in
ensions of the tables and
mooth integration of data

Thus, we clean and
Since our ELT approach

ore transforming the data,
le big volume data than

2684

traditional Extract-Transform-Load (ETL)
the data in temporary storage unit i.e. sta
transform and process the data according
rules and push it into the final tables. The p
includes the generation of surrogate keys
data integrity as we discuss next.

B. Generating Surrogate Keys.
In order to generate unique keys

integration of data from multiple source sys
three different methods.

• Generate domain specific CTR
Key)

• Generate key using Java UUID
• Generate key using SHA256(Java U

1) Domain Specific CTR Key (Numerica

This key utilizes the Clinical Trial r

generate the unique keys. The rowid UD
Function) provided by hivemall jar
machine learning library for hive, gen
rowid by concatenating TaskID with a
gets incremented by 1 for every iterat
insert query. It starts with 0 for every ins

We can further increase the granul
by concatenating the SDTM’s StudyID
function and cast the output as an integ
tables.

2) Key using Java UUID:Universally U

Since Hive runs several mapp

parallel, there is no way to generate a
increasing row id. Generating sequentia
not possible due to the parallel nature
second option we explored is to generate
Identifier, which represents a 128-bit val
Oracle there are four different basic t
time-based, DCE (Distributed Computin
security, name-based, and randomly gen
UUID fulfill the requirement of genera
where unique means "practically uniq
"guaranteed unique". According to I
generating 1 billion UUIDs every second
years, the probability of creating just one
be about 50%.

Based on the requirement and d
generate and concat two randomly gener
that could serve as the surrogate keys.
on the aforementioned probability o
duplicate key, one might never requir
Nonetheless, this approach can be summ
in figure 3:

. Once we have
aging tables, we

g to the business
rocessing of data
to maintain the

for the smooth
stems we propose

Key (Numerical

UUID)

al Key)

repository data to
DF (User Defined
i.e. the scalable
nerates a unique

sequence which
tion for a single

sert query.
larity of the keys

D with the rowid
ger and store it in

Unique Identifier

pers-reducers in
a globally unique
l numbers is also
of Hadoop. The

e the Java Unique
lue. According to
types of UUIDs:
ng Environment)

nerated UUIDs. A
ating unique keys
que" rather than
TU-T [8] after
d for the next 100
e duplicate would

data size we can
rated Java UUIDs
Although, based

of generating a
re this approach.
marized as shown

Figure 3: JAVA UUID

3) Key using SHA256 (Java UU

SHA-256 is one of the suc
SHA-1 (collectively referred to a
the strongest hash functions ava
key column) can generate collisi
its original value are not in a one
it is impossible to track the orig
value. SHA1 has collision in th
strings of short length. Git [9] u
and there are still no known SHA
generate a random string using ja
generated string of binary numb
SHA 256 hash function thus gene
and use the same to serve the purp
This approach can be summarized

Figure 4: SHA 256

C. Query Execution
Once we have the table structur

databases in the big data backend,
SQL query engines present in big
large distributed data sets. As we o
used Hive, Presto Apache Drill and
SDTM model use case and hence d
these four solutions in the domain
several standard queries. This be
execution time on queries that
aggregations and joins. The tools
seamless query transition from AN
backend SQL. We next discuss re
efficiency of executing these querie

UID)

ccessor hash functions to
as SHA-2), and is one of
ailable. Using hash (of a
ons. The hash value and

e-to-one mapping. Hence,
ginal value from its hash
heory, but don't exist for
uses SHA1 hashes as IDs
A1 collisions in 2014. We
ava UUID or a randomly
bers and pass it through
erating 256-bit checksum
pose for surrogate keys.
d as shown in figure 4:

e imitating the relational
we can then use several
data ecosystem to query
outlined earlier, we have

d Spark SQL to query our
do a comparative study of
n of clinical trials across
enchmark compares the
t involve table scans,
s evaluated have a very
NSI SQL to the big data
esults, which outline the
s.

2685

V. RESULTS
In our results, we outline the hardwa

specifications for our evaluation, the datas
runtime for the various types of queries.

A. Specifications

1) Hardware Specifications
We used commodity hardware, unlike

with three nodes of 2 2.10Ghz Intel Xeon E
processor, 32 GB memory, 1 TB 7200 RP
currently running CentOS 6.6.

2) Software Specifications
We deployed Cloudera CDH (Cloud

Including Apache Hadoop), which is the
tested, and popular distribution of Apac
related projects. According to Cloudera, [1
Apache-licensed open source and is th
solution to offer unified batch processing,
and interactive search, and role-based acc
date.

B. Datasets
We use the clinical trials from CTN

Network) Dissemination Library create
Institute on Drug Abuse (NIDA) as inp
demographic and disposition details for clin

C. Queries
Our queries are inspired by the benchma

comparison of approaches to large-scale ana
the queries executed by Pavlo et al [3],
exploratory, join, group by, union queries a
the performance with various test conditio
clause.

In order to provide an environment fo
mentioned analytical tools on the described
workloads and queries from [3].

1) Exploratory Queries

Figure 5: Basic Select Query runtime

are and software
sets used and the

supercomputers,
E5-2450, core I7
PM SATA, each

dera Distribution
most complete,

che Hadoop and
8] CDH is 100%

he only Hadoop
interactive SQL,
cess controls till

N (Clinical Trial
ed by National
put with patients
nical trials.

ark contained in a
alytics. Similar to

we execute the
along with testing
ons in the where

or comparing the
dataset, we draw

 In figure 5, we can see that Face
other big data solutions for the exp
output of 1,62,82,644 rows (2.17 GB

2) Select Multiple Columns

Figure 6: Selecting multiple column

In figure 6, we get the expected kind
Facebook presto illustrates its pow
while querying multiple column
1,62,82,644 rows.

3) Select Multiple Columns with

Figure 7: Select with Where not con

In figure 7, we see the outstandin
of Facebook presto over other bi
follows the push model, wh
implementation of DBMS, process
multiple stages running concurren
Columns is a kind of interactive us
be put to its best use.

4) Join Queries

ebook presto outperforms
ploratory queries to yield
B).

ns

d of results where in
wer and its effectiveness
ns over the dataset of

h Where Not condition

ndition

ng run time performance
ig data solutions. Presto
hich is a traditional
sing a SQL query using
ntly. Selecting Multiple
se case, where Presto can

2686

Figure 8: Join Query performance

In figure 8, we see Facebook presto outdoin
solutions similar to the queries above. H
converted into a corresponding mapreduce
data sets involved are very small (for examp
megabytes), time to execute Hive queries i
high. Since SDTM is a STAR based
following the push model, which is
implementation of DBMS to process a S
multiple stages running concurrently, it is p
of joining large tables with other small table

5) Union All Query

Figure 9: Union All Query performance

In Figure 9, we can see that even in co
queries Facebook presto yields the best run
big data solutions. This is primarily beca
pipe lining of mapreduce commands in or
query output.

6) Join Query using different types of su

 In Figure 10, we can see that the time t
query using numerical keys (generated
parameter is almost equivalent to time taken
same table using Java UUID and SHA 256

ng other big data
Hive queries get
 job. Even when

mple, few hundred
is generally very
database, Presto
s a traditional

SQL query using
put to its best use
es.

omplex Union all
untime over other
ause Presto uses
rder to fetch the

urrogate keys

taken by the join
by UDFs) as a
n by querying the
6 keys across all

four platforms. Thus, we can see
does not attach any additional overh

Figure 10: Surrogate key based pref

The uniqueness of the generated
size ranging up to 2.5 GB.
These results suggest that practicall
be generated, without collisions u
methods. Since we have already se
overhead involved on join queries
them to serve our purpose for surrog

Based on these results and our

some overall other observations
results.

VI. OBSERVATIONS AN

In the table 1, we provide a
evaluation points against which we

Technolog
y/Evaluatio
n Point

Hive Presto

Cluster
sizes
possible

Hundreds
of Nodes

Thousands
of Nodes

Data Size
Limit

Terabytes Petabytes

Scalability High Very High

ML
Algorithms
available

No No

Data
visualizatio
n

No No

that the key generation
head.

formance evaluation

keys is tested for a data

ly unique set of keys can
using all three proposed
een there is no additional
s, we can use anyone of
gate keys.

evaluations we provide
and discussion of the

ND DISCUSSION
certain key technology
evaluate the four tools.

Drill Spark

s Hundre
ds of
nodes

Thousand
s of Nodes

Gigabyt
es to
Petabyt
es

Petabytes

 High High

No Yes

No
native
support,
but
works
with BI
tools
with

No

2687

jdbc/od
bc

Language
Support

Mostly
Java API,
SQL

C, Java,
Node.js,
PHP,
Python, R,
Ruby, SQL

ANSI
SQL,
Mongo
QL,
Java
AP

Scala,
Java,
Python,
SQL

Processing
Speed

Fast 10X faster
than MR on
disk and
100X faster
in memory

Fast Fast

Use case Batch
processing

Real-time
Interactive
analysis
using
Query
Pipelining

Real-
time
Interact
ive
analysis

batch
processing
,
streaming,
interactive
queries,
and
machine
learning.

Programmi
ng model

MapRedu
ce

MapReduc
e Pipeline

Queries MapRedu
ce and
DAG

Table 1: Evaluation Matrix

In general we observe that Hive leverages the mapreduce

architecture for data retrieval and transformation. The
output of mapreduce is written back to disk. A query in
Hive can have many mapreduce jobs, which requires the
files to be read from and written to HDFS.

A key advantage of Hive over newer SQL-on-Hadoop
engines is robustness: Other engines like Presto require
careful optimizations when two large tables are joined. Hive
can join tables with billions of rows with ease and should
the jobs fail it retries automatically.
Presto on the other hand does not use mapreduce. It reads
the data from HDFS and has its own proprietary architecture
for transforming the data; hence it is much faster compared
to Hive.

Our work clearly shows Hive along with Presto
outperforming other considered tools. With the presence of
machine learning library, Spark SQL surely has an edge for
analytics. We can select the tools based on the type of
problem at hand.

VII. CONCLUSION & FUTURE WORK
The benchmark proposed in this paper provides an

overview of the capabilities of SQL-on-Hadoop platforms.
The queries for benchmark have been executed with default
tool settings without using optimized configurations. For our
experiments, we have addressed a simple comparison
between these SQL-on-Hadoop tools based on query
execution time and the ease of migrating relational data
model to Hadoop based backend considering a potential use
case for clinical trial data. The provided benchmark is an
implementation of these workloads, which are entirely
hosted on an Intel Core i7 processor and can be reproduced
from any computer.

In future, we plan to use optimized tool configurations to
improve data load process and reduce query-processing
time. Hadoop file formats such as Parquet, optimized row
columnar (ORC) provide lightweight and fast access to
compressed data with columnar layout, hence can
significantly boost IO performance. Further, we intend to
test the scalability and performance of our system on a
bigger cluster. We plan to evaluate other SQL on Hadoop
engines such as Cloudera Impala and Hortonworks’ Stinger,
against large clinical datasets. Using integrated data layer of
Hive and NoSQL database such as HBase can also be
effective solution for clinical trial analytics.

ACKNOWLEDGEMENTS

The query outputs reported here result from secondary
analyses of data from multiple clinical trials conducted by
the National Institute on Drug Abuse (NIDA). NIDA
databases are available at http://datashare.nida.nih.gov.

REFERENCES
[1] "Clinical Trials." - NHLBI, NIH.
http://www.nhlbi.nih.gov/studies, Web. 2 Oct. 2015
[2] Wikipedia, STDM,
https://en.wikipedia.org/wiki/SDTM, Web. 2 Oct. 2015.
[3] Pavlo, Andrew, Erik Paulson, Alexander Rasin,
Daniel Abadi, David DeWitt, Samuel Madden, and
Michael Stonebraker.
"Http://database.cs.brown.edu/sigmod09/benchmarks-
sigmod09.pdf." Web. 2 Oct. 2015.
[4] "Big Data: The next Frontier for Innovation,
Competition, and Productivity.”,
http://www.mckinsey.com/insights/business_technology/b
ig_data_the_next_frontier_for_innovation, Web. 2 Oct.
2015.
[5] "General." Apache Hive TM. Web. 2 Oct. 2015.
https://hive.apache.org/.
[6] "Presto | Distributed SQL Query Engine for Big Data."
Presto | Distributed SQL Query Engine for Big Data.
Web. 2 Oct. 2015.
[7] "Documentation." - Apache Drill. Web. 2 Oct. 2015.
https://drill.apache.org/docs/.

2688

[8] Wikipedia. UUID, Web. 2 Oct. 2015.
<https://en.wikipedia.org/wiki/Universally_unique_identif
ier>.
[9] "Git User's Manual (for Version 1.5.3 or Newer)." Git
User's Manual (for Version 1.5.3 or Newer). Web. 2 Oct.
2015. http://schacon.github.io/git/user-
manual.html#object-details.
[10] "Clinical Research Continuum: Big Data FOR and
FROM Clinical Trials." Conference Agenda. Web. 2 Oct.
2015.
http://www.clinicalinformaticsworld.com/conference-
agenda/ .
[11] "Healthcare & Life Sciences." Healthcare & Life
Sciences. Web. 2 Oct. 2015.
http://www.cloudera.com/content/cloudera/en/solutions/in
dustries/healthcare-life-sciences.html .
[12] Thusoo, Ashish, et al. "Hive: a warehousing solution
over a mapreduce framework." Proceedings of the VLDB
Endowment 2.2 (2009): 1626-1629.
[13] "Why Presto?" The Netflix Tech Blog: Using Presto
in Our Big Data Platform on AWS. Web. 2 Oct. 2015.
http://techblog.netflix.com/2014/10/using-presto-in-our-
big-data-platform.html .
[14] "Hive The next Generation Data Warehouse." Hive

 The next Generation Data Warehouse. Web. 2 Oct.
2015.
http://blogs.impetus.com/big_data/hadoop_ecosystem/Hiv
e.do.
[15] "Join Optimization in Apache Hive." Join
Optimization in Apache Hive. Web. 2 Oct. 2015.
https://m.facebook.com/notes/facebook-engineering/join-
optimization-in-apache-hive/470667928919/?p=10.
[16] Kimball, Ralph. "Newly Emerging Best Practices for
Big Data." Web. 2 Oct. 2015.
http://www.kimballgroup.com/wp-
content/uploads/2012/09/Newly-Emerging-Best-
Practices-for-Big-Data1.pdf.
[17] "ClinicalTrials.gov." Home. Web. 2 Oct. 2015.
https://clinicaltrials.gov/ .
[18] "CDH." CDH. Web. 2 Oct. 2015.
http://www.cloudera.com/content/cloudera/en/products-
and-services/cdh.html .
[19] "Presto versus Hive | Treasure Data Blog." Treasure
Data Blog RSS. 20 Mar. 2015. Web. 2 Oct. 2015.
http://blog.treasuredata.com/blog/2015/03/20/presto-
versus-hive/ .

[20] "Big Data: How Do Your Data Grow?" Web. 2 Oct.
2015.
http://www.nature.com/nature/journal/v455/n7209/full/45
5028a.html .
[21] Berman, Jules J. Principles of Big Data Preparing,
Sharing, and Analyzing Complex Information. Morgan
Kaufaman, 2013.
[22] Zhan, Jianfeng. Big Data Benchmarks, Performance
Optimization, and Emerging Hardware: 4th and 5th
Workshops, BPOE 2014, Salt Lake City, USA, March 1,
2014 and Hangzhou, China, September 5, 2014 : Revised
Selected Papers.
[23] Balki , Zoran, Damir Sostaric, and Goran Horvat.
"GeoHash and UUID Identifier for Multi Agent Systems."
ResearchGate. Web. 2 Oct. 2015.
http://www.researchgate.net/publication/232285663_Geo
Hash_and_UUID_identifier_for_Multi_agent_systems .
[24] Hunt, Tim D. (2010) Implementing a UUID primary
key in a distributed email client application. In:
Proceedings of the 1st Annual Conference of Computing
and Information Technology Education and Research in
New Zealand (CITRENZ): Incorporating the 23rd Annual
Conference of the National Advisory Committee on
Computing Qualifications. National Advisory Committee
on Computing Qualifications (NACCQ), Hamilton, New
Zealand, pp. 71-78.
[25] Iordanov, Borislav. "HyperGraphDB: A Generalized
Graph Database." Web-age Information Management
WAIM 2010 International Workshops: IWGD 2010,
XMLDM 2010, WCMT 2010, Jiuzhaigou Valley, China,
July 15-17, 2010 : Revised Selected Papers. Berlin:
Springer, 2010.
[26] Devi, P.Sarada, V.Visweswara Rao, and K.
Raghavender. "Emerging Technology Big Data-Hadoop
over Datawarehousing ETL." Web. 2 Oct. 2015.
http://iraj.in/up_proc/pdf/103-141145144330-34.pdf .
[27] Floratou, Avrilia, Umar Farooq Minhas, and Fatma
Ozcan. "SQL-on-Hadoop: Full Circle Back to Shared-
Nothing Database Architectures." Web. 2 Oct. 2015.
http://www.vldb.org/pvldb/vol7/p1295-floratou.pdf .
[28] Kornacker, Marcel, Alexander Behm, Victor Bittorf,
Taras Bobrovytsky, Casey Ching, Alan Choi, Justin
Erickson, Martin Grund, Daniel Hecht, Matthew Jacobs,
Ishaan Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang,
Nong Li, Ippokratis Pandis, Henry Robinson, David
Rorke, Silvius Rus, and John Russell. "Impala: A Modern,
Open-Source SQL Engine for Hadoop."
7th Biennial Conference on Innovative Data Systems
Research, CIDR 2015.

2689

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

