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Abstract- Big Data deals with enormous volumes of complex 
and  exponentially growing data sets from multiple sources. 
With rapid growth in technology, we are now able to generate 
immense amount of data in almost any field imaginable 
including physical, biological and biomedical sciences. With 
the diversity and amount of data in health care industry there 
is an increasing need to evaluate the components in big data 
frameworks and gauge their adaptability to analytics 
techniques. However, a key step in adapting big data tools is 
the portability of relational databases to big data environment. 
Since SQL is considered to be the de-facto language for 
interactive queries, in this paper, we evaluate the performance 
of SQL-like big data solutions for the portability of existing 
relational databases. Our work focuses on benchmarking 
multiple SQL-like big data technologies over Hadoop based 
distributed file system (HDFS) for Study Data Tabulation 
Model (SDTM) used in clinical trial databases for improving 
the efficiency of research in clinical trials.  We use publically 
available clinical trial data (from National Institute on Drug 
Abuse (NIDA)), which follows SDTM, as a test bed to measure 
key parameters like usability, adaptability, modularity, 
robustness and efficiency of these solutions.  With the intention 
to demonstrate how current clinical trial functionality can be 
replicated on a big data backend with high SQL-like 
functionality, we evaluate several types of ad-hoc SQL queries. 

Keywords- Big Data; Benchmarking; HDFS; SDTM; SQL 
like  

 

I.  INTRODUCTION 
The focus of this paper is the evaluation of SQL-like Big 

Data Environment for clinical trials data. We set the stage by 
explaining what are clinical trials and what data models are 
currently being followed. We go a step beyond and explain 
the need of Big data environment and  particularly SQL-like 
Big Data environment in the domain of clinical trials. 

 
Clinical trials as defined by NIH (National Institutes of 

Health) [1] are the research studies in which one or more 
subjects are prospectively given one or more interventions to 
evaluate their effects on specific outcomes such as health-
related behavioral or biomedical outcomes. 

ClinicalTrials.gov, run by the United States National Library 
of Medicine (NLM) is the first and the largest clinical trials 
registry (CTR) for registering a clinical trial. 
ClinicalTrials.gov currently lists over 199,000 studies with 
locations across50 states in the United States and in 190 
countries worldwide [17]. 

 
The United States Food and Drug Administration (FDA), 

on July 21, 2004, [2] selected Study Data Tabulation Model 
(SDTM) as the standard requirement for submitting the 
tabulation data to FDA for clinical trials. The model defines 
a standard structure for both the human clinical trial (study) 
data tabulations and the for nonclinical study data 
tabulations. It provides a generalized framework for 
describing the organization of information collected during 
human and animal trials. The SDTM is built around the 
concept of observations , which consist of discrete pieces of 
information gathered during a study. Observations are 
reported in  series of domains, usually corresponding to data 
that are collected together.  

 
With the advent of the era for personalized medicine, the 

number of clinical trials has grown exponentially.  The data 
is being collected from combination of several smart devices, 
which is further improving the design of clinical trials, their 
efficiency and outcomes. Electronic data capture is helping 
in recording patient information in the provider’s electronic 
medical records and using such electronic medical records as 
the primary source for clinical-trial data is accelerating the 
trials and hence reducing the likelihood of errors caused by 
manual or duplicate entries. We can leverage the capabilities 
of big data technologies to unravel the hidden correlations 
such as drug interaction, comorbidity etc. across several 
clinical trials.  
 

According to literature collected from clinicaltrials.gov, 
most of the clinical trials today call for the enrollment of 1 in 
every 200 Americans as study participant. With such a large 
cohort of population signing for Clinical Trials and thus 
generating huge volume of data, one should ask the question 
if this high level of human participation is being put to the 
best use possible. Most clinical trials include paper files, X-

2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 2680



ray films, patient narratives, doctor’s prescription, etc. thus 
accounting towards the variety of data. Velocity of mounting 
data increases with data that represents routine monitoring, 
such as blood pressure readings or several diabetic glucose 
measurements. With all the 3 Vs in place i.e. Volume, 
Velocity, and Variety - Big Data promises making the drug 
discovery and development process more efficient in case of 
Clinical Trials.  
 

Big Data in general refers to very large and complex 
datasets such that the data becomes unmanageable via 
traditional database management tools. With SQL being the 
default choice and by far the best-suited language for basic 
data analysis already extensively in use in the domain of 
clinical trials, we have a number of big data solutions 
leveraging the same. Solutions like Hive, Presto, Impala, and 
Shark are designed to support data analytics on big data with 
a SQL like support so that transition into the big data 
environment is seamless. 
 

Thus, in the following sections of the paper, we evaluate 
the portability of SDTM relational model to SQL like big 
data environment and understand the various challenges 
involved during the process of ELT (Extract, Load and 
Transform) from various source systems. We also propose 
solutions to address the issue of generating surrogate keys, 
by incorporating cryptographic algorithms like SHA 256, to 
maintain the data and referential integrity. Finally, we 
perform extensive evaluations across multiple SQL like big 
data environments and propose our overall observations. 
 

The paper is organized as follows: In section II we discuss 
the related work. Section III discusses the state of the art of 
the big data solution landscape. In section IV we outline our 
methodology and in section V we discuss the results. Section 
VI outlines the overall observations and discussions followed 
by conclusions and future work in section VII. 

II. RELATED WORK 
Recent advances in healthcare and medical devices have 

produced massive amounts of multimodal data and hence 
the need for parallel processing is apparent for mining these 
data sets, which can range anywhere from tens of gigabytes, 
to terabytes or even petabytes. The emergence of such 
massive datasets in  clinical settings, presents both 
challenges and opportunities in data storage and analysis. 
Here we discuss such challenges and related work: 

A. Surrogate Keys 
Identifiers are the basic structure in every modern database 
implementation and the core of every relational database 
ensuring the consistence of data and relational paradigm 
using primary and foreign keys for schemas and object 
reference. The importance of uniqueness of identifiers is 
crucial for efficient data retrieval, storage and comparison in 
a distributed system. 

Balki  et al.[23] address the issue of distributed data 
storage and widely used unique identifiers which are in use 

from the early use of databases  and  backend  systems. They 
represent a new method for objects tagging using synergy 
mechanism between well-known Geo hash algorithm and 
Universally Unique Identifiers called GHUUID. Such keys 
can be generated by converting referential spatial systems 
into the Geo datum enabled WGS84 or country specific geo 
datum. 

Hunt[24] incorporates UUID (Leach, Mealling & Salz, 
2005) into a database design, as a type of artificial data that 
can be used as primary key to synchronize the data between 
two or more computers via an email server. The approach 
discussed by [24] proves the use of UUID to be robust and 
quiet successful for synchronizing data across multiple 
installations. 

Iordanov [25] presents a novel graph database based on 
generalized hypergraphs where hyperedges contained other 
hyperedges. The approach discussed by [25] maps the 
identifiers to either a tuple of identifiers or to a plain byte 
array. They concluded that use of UUID made it easier to 
manage the identifiers in a large distributed environment 
while virtually eliminating the chance of collision and each 
data peer could make up new IDs without a central 
authority. 

Our work addresses the problem of surrogate keys in the 
domain of clinical trials. Application of Geo Hash 
Algorithm proposed in [23] is tedious to implement in a big 
data environment. [24] and [25] implement plain UUID in 
their design. We incorporate the use of cryptographic 
algorithms such as SHA 256 on UUIDs as another approach 
to generate practically unique surrogate keys in the big data 
environment and hence maintain the referential integrity of 
the data. 

B. ELT (Extract, Load and Transform) in Big Data 
Understanding the nature of how data warehouses are 

loaded and the data movement tools work, can be really 
helpful in analytics of the data. 

ETL (Extract, Load and Transform) refers to the process 
of moving data from source systems into a data warehouse. 
The data is: 

• Copied from the source system to the staging area 
(Extracted). 

• Reformatted for the warehouse with business 
calculations applied (Transform) 

• Copied from the staging area into the warehouse 
(Load) 

In the modern era big data engines support complex 
transformations in SQL, including in-database data mining, 
cleaning, validation, statistical algorithms, profiling,  
drilldown functionality and much more. It is more efficient 
to perform most types of transformation within this engine. 
Hence, a new approach emerged where; data is extracted 
from the sources, loaded into staging tables and then 
transformed into desired format. This approach is known as 
ELT (Extract, Load and Transform) 

Devi et al. [26] propose process of ELT for taking 
business intelligence decisions in Apache Hadoop by 
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performing ELTL. The discussed approach has two major 
advantages. Firstly, one can ingest massive amounts of data 
without specifying a schema on write. Secondly, offload the 
transformation of raw data by parallel processing. Once the 
data is in Hadoop (HDFS), tasks of cleaning, normalizing, 
standardizing the data for analytics using MapReduce can 
be performed. 

We propose the novel approach of applying this work in 
the domain of clinical trials while evaluating the portability 
of SDTM model on big data backend.  

C. SQL on Hadoop 
A significant amount of work has been done in the field 

of evaluating and benchmarking the tools that provide SQL 
like functionality over Hadoop. Since SQL is considered to 
be the de-facto language for data analytics, SQL query 
processing over Hadoop data has recently gained significant 
foot. Several enterprise data management tools on hadoop 
rely on SQL.  

Floratou et al.[27] benchmark and evaluate the 
performance of Hive and Impala by providing TPC-H like 
workload. The queries discussed in [27] scans the table, 
applies an inequality predicate, projects a few columns, 
performs an aggregation and sorts the final result. 

Cloudera [28] addresses the implementation and 
working of Impala, which is a state-of-the art MPP SQL 
query engine, designed specifically to leverage the 
flexibility and scalability of Hadoop. It demonstrates that it 
is possible to build an analytic DBMS on top of Hadoop that 
performs just as well or better than commercial solutions for 
RDBMS, but at the same time retains the flexibility and 
cost-effectiveness of Hadoop. 

Our work addresses the issue of benchmarking the 
leading SQL like tools available for Big Data Environment 
for their efficiency and efficacy in the domain of Clinical 
Trials. These tools are currently being used by several 
organizations to churn petabytes of data. Presto is used to 
address the ad hoc interactive use cases for data exploration 
at Netflix [13], while Facebook, VideoEgg and Scribd uses 
Hive extensively to store and retrieve the data. We explore 
these SQL like processing platforms by executing the 
queries similar to the ones executed by Pavlo et al. [3]. 

 
Next we discuss the state of the art technologies available 

as shown in figure 1, some of which can be viable solutions 
for the clinical trials domain. 
 

III. STATE OF THE ART IN SQL SUPPORTING BIG DATA 
TOOLS 

Figure 1 gives out a referential list of solutions that form 
the major solutions available in the big data ecosystem. In 
our ecosystem review we have branched out tools based on 
distributed programming, distributed file system, SQL like 
processing tools etc. These tools can be used as per the needs 
of the use case.  

In this paper we evaluate key big data solutions for their 
ability to replicate the current clinical trial repository on a 
big data backend. Of the several big data analytics 
frameworks present in the market, we target the ones, which 
impose MPP (Massively Parallel Processing)-like execution 
engines on top of Hadoop and have high SQL like 
functionality and portability. 

Due to the compelling need for utilizing a SQL like 
backend in porting the SDTM, we evaluate the following 
four SQL like systems to provide 
quantitative and qualitative comparisons: 

• Apache Hive 
• Facebook Presto 
• Apache Drill 
• Apache Spark 

A. Apache Hive 
Hive [5] is an open-source data warehouse platform, 

which provides SQL like interface to access data residing in 
Hadoop distributed file system (HDFS). Developed by 
Facebook, Hive was primarily built in order to process a 
large amount of data in Hadoop when it had no alternative 
other than mapreduce scripts. Hive significantly reduced the 
complexity to manipulate the enormous data in Hadoop by 
eliminating the need of writing complex mapreduce tasks. 
Hive supports SQL-style query language known as HiveQL. 
Users can easily write HiveQL queries to collect and analyze 
data for various purposes such as business intelligence, data 
summarization or interactive data mining. Hive translates 
these queries into mapreduce jobs and submits them to 
Hadoop for execution. Hive also allows to plug-in custom 
user defined functions (UDFs) and aggregation functions 
(UDAFs) written in Java to perform operations that are not 
supported by HiveQL. Current version of HiveQL offers 
only a subset of SQL statements. Although earlier versions 
of Hive have demonstrated a significant performance 
enhancement in Hadoop, future versions would include a 
new set of SQL commands, more efficient query 
optimization engine and better JDBC and ODBC drivers for 
smooth integration with third party BI tools. 
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Figure 1: State of the Art in Big Data Technoologies 
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B. Facebook Presto 
Significantly improving the scalability o

released Presto [6], an open source distrib
engine for running interactive queries on pet
store. Presto was not only designed to query
HDFS but also to query other data so
relational databases and non-relational da
Cassandra. Presto uses in-memory, pipeline
execution of queries rather than mapreduce
unnecessary I/O and associated latency
Facebook claims that Presto runs 10 times
and Hadoop in terms of CPU efficien
Facebook built hive in order to give Ha
warehouse and SQL-like capabilities, but s
mapreduce, scanning over a large dataset
minutes to hours. It is not an ideal scenario
answers on the fly. 

Presto supports a larger subset of ANS
joins, aggregations, subqueries & window 
from these, it also supports wide range of
including JSON functions, URL functions,
and regular expression functions. Presto is tu
popular choice for interactive analysis ov
because of its support for various data- sou
of data it can handle. With Presto, simple
executed in a few hundred milliseconds, whi
ones execute in a few minutes. It runs in m
writes to the disk. Future releases of Pre
better performance by utilizing data cach
query speed. 

C. Apache Drill 
Apache Drill [7] is a distributed system

ad-hoc analysis of large-scale dataset. D
source version of Google's Drexel system, w
as an infrastructure service called Go
Developed with the goal to provide low la
interactive queries for larger datasets, it 
backing stores like HDFS and HBASE 
knowledge of ANSI SQL to write and exe
Drill does not require the user to specify th
querying. This schema-on-the-fly feature
involvement from IT personnel. 

Apache Drill provides ANSI SQL interf
data from Hadoop as well as NoSQL 
supports several file formats such as CSV
JSON and PSV. In distributed setup, dat
execution speeds up Drill’s query process
network traffic. A variety of SQL functio
Apache Drill including mathematical & stat
string and date manipulation functions 
powerful analytical tool. Similar to Hive, D
create custom functions by writing a custo
also offers an excellent connectivity to busi
tools such as Tableau, Microstrategy, Qlik
Spotfire. With simple installation, it can sc
large cluster comprised of thousands of node

f SQL, Facebook 
buted SQL query 
tabyte-sized data-
y data residing in 
ources including 
atabases such as 
ed processing for 
e, hence sidesteps 
y. As a result, 
s better than hive 
ncy and latency. 
adoop some data 
since it relies on 
t can take many 
o where we need 

SI SQL including 
functions. Apart 

f utility functions 
, string functions 
urning out to be a 
ver the big data 
urces and volume 
e queries can get 
ile more complex 

memory and never 
sto would target 
hing to improve 

m for interactive 
Drill is the open 
which is available 
oogle BigQuery. 
atency and faster 
supports several 
etc. Besides the 

ecute the queries, 
he schema before 
e calls for less 

face for querying 
databases. Drill 

V, TSV, Parquet, 
ta locality based 
sing by reducing 
ons supported by 
tistical functions, 
make it a very 
rill allows you to 
om java code. It 
iness intelligence 
kview and Tibco 
cale up-to a very 
es. 

D. Apache Spark 
Spark provides highly advanced DA
supports cyclic data flow and in-m
offers resilient distributed datasets 
abstraction to support multiple dist
reads data from stable storage. 
outperform existing solutions by u
analytics. Spark SQL is a fairly 
Spark that combines relational p
functional programming API. Sp
tighter integration between rela
processing, through a DataFrame 
procedural Spark code. Secondly
extensible optimizer which is bui
Scala, that makes it easy to add co
code generation, and define extensio

IV. STUDY METH

Although Apache Hive, Faceb
Drill provide similar functiona
execution engines utilized by th
software tools provide an interface t
with scalability up-to thousand 
tolerance, support for custom p
functions.  To evaluate these tools 
challenges of porting data into a b
provide the overall view of our app
2. The key tasks include extracting, 
the data, followed by generating su
records are unique through all ma
finally performing queries which 
efficiency of execution across 
evaluated. 

Figure 2: Overall Approach 

A. ELT (Extract, Load and Transfo
Inspired by Kimball Architec

Extract-load-transform (ELT) ap
evaluation on the big data backen
from the specified sources and p
processing into staging tables. On
staging area, we confirm the dime
generate surrogate keys for the sm
from multiple source systems. 
standardize the data in this stage. S
utilizes intermediate data store befo
it is much more efficient to handl

AG execution engine that 
emory computing. Spark 
(RDDs) which is an an 

tinct jobs, each of which 
RDDs allow Spark to 

up to 100x in multi-pass 
new module in Apache 

processing with Spark’s 
park SQL offers much 
ational and procedural 
API that combines with 

y, it includes a highly 
ilt using features of the 
omposable rules, control 
on points. 

HODOLOGY 
book Presto and Apache 
ality, underlying query 
hese tools differ. These 
to process large scale data 
distributed nodes, fault 
pluggable user defined 
and address the relevant 

big data environment we 
proach as shown in figure 
loading and transforming 

urrogate keys so the data 
apreduce operations and 
are evaluated for their 

all the systems being 

 

orm) 
cture [16], we use the 
pproach to design our 
nd. We extract the data 
ush the same for batch 

nce we have the data in 
ensions of the tables and 
mooth integration of data 

Thus, we clean and 
Since our ELT approach 

ore transforming the data, 
le big volume data than 
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traditional Extract-Transform-Load (ETL)
the data in temporary storage unit i.e. sta
transform and process the data according
rules and push it into the final tables. The p
includes the generation of surrogate keys 
data integrity as we discuss next. 

B. Generating Surrogate Keys. 
In order to generate unique keys 

integration of data from multiple source sys
three different methods. 
 

• Generate domain specific CTR 
Key) 

• Generate key using Java UUID 
• Generate key using SHA256(Java U

 
1) Domain Specific CTR Key (Numerica

 
This key utilizes the Clinical Trial r

generate the unique keys. The rowid UD
Function) provided by hivemall jar 
machine learning library for hive, gen
rowid by concatenating TaskID with a 
gets incremented by 1 for every iterat
insert query. It starts with 0 for every ins

We can further increase the granul
by concatenating the SDTM’s StudyID
function and cast the output as an integ
tables. 

 
2) Key using Java UUID:Universally U

 
Since Hive runs several mapp

parallel, there is no way to generate a
increasing row id. Generating sequentia
not possible due to the parallel nature 
second option we explored is to generate
Identifier, which represents a 128-bit val
Oracle there are four different basic t
time-based, DCE (Distributed Computin
security, name-based, and randomly gen
UUID fulfill the requirement of genera
where unique means "practically uniq
"guaranteed unique". According to I
generating 1 billion UUIDs every second
years, the probability of creating just one
be about 50%. 

Based on the requirement and d
generate and concat two randomly gener
that could serve as the surrogate keys. 
on the aforementioned probability o
duplicate key, one might never requir
Nonetheless, this approach can be summ
in figure 3: 
 

. Once we have 
aging tables, we 

g to the business 
rocessing of data 
to maintain the 

for the smooth 
stems we propose 

Key (Numerical 

UUID) 

al Key) 

repository data to 
DF (User Defined 
i.e. the scalable 
nerates a unique 

sequence which 
tion for a single 

sert query.  
larity of the keys 

D with the rowid 
ger and store it in 

Unique Identifier  

pers-reducers in 
a globally unique 
l numbers is also 
of Hadoop. The 

e the Java Unique 
lue. According to 
types of UUIDs: 
ng Environment) 

nerated UUIDs. A 
ating unique keys 
que" rather than 
TU-T [8] after 
d for the next 100 
e duplicate would 

data size we can 
rated Java UUIDs 
Although, based 

of generating a 
re this approach. 
marized as shown 

Figure 3: JAVA UUID 
 

3) Key using SHA256 (Java UU
 

SHA-256 is one of the suc
SHA-1 (collectively referred to a
the strongest hash functions ava
key column) can generate collisi
its original value are not in a one
it is impossible to track the orig
value. SHA1 has collision in th
strings of short length. Git [9] u
and there are still no known SHA
generate a random string using ja
generated string of binary numb
SHA 256 hash function thus gene
and use the same to serve the purp
This approach can be summarized

 

Figure 4: SHA 256 

C. Query Execution 
Once we have the table structur

databases in the big data backend, 
SQL query engines present in big 
large distributed data sets. As we o
used Hive, Presto Apache Drill and
SDTM model use case and hence d
these four solutions in the domain
several standard queries. This be
execution time on queries that
aggregations and joins. The tools
seamless query transition from AN
backend SQL. We next discuss re
efficiency of executing these querie

  

UID) 

ccessor hash functions to 
as SHA-2), and is one of 
ailable. Using hash (of a 
ons. The hash value and 

e-to-one mapping. Hence, 
ginal value from its hash 
heory, but don't exist for 
uses SHA1 hashes as IDs 
A1 collisions in 2014. We 
ava UUID or a randomly 
bers and pass it through 
erating 256-bit checksum 
pose for surrogate keys. 
d as shown in figure 4: 

 

e imitating the relational 
we can then use several 
data ecosystem to query 
outlined earlier, we have 

d Spark SQL to query our 
do a comparative study of 
n of clinical trials across 
enchmark compares the 
t involve table scans, 
s evaluated have a very 
NSI SQL to the big data 
esults, which outline the 
s. 
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V. RESULTS 
In our results, we outline the hardwa

specifications for our evaluation, the datas
runtime for the various types of queries. 

A. Specifications 

1) Hardware Specifications 
We used commodity hardware, unlike 

with three nodes of 2 2.10Ghz Intel Xeon E
processor, 32 GB memory, 1 TB 7200 RP
currently running CentOS 6.6. 

 
2) Software Specifications 
We deployed Cloudera CDH (Cloud

Including Apache Hadoop), which is the 
tested, and popular distribution of Apac
related projects. According to Cloudera, [1
Apache-licensed open source and is th
solution to offer unified batch processing, 
and interactive search, and role-based acc
date. 

B. Datasets 
We use the clinical trials from CTN

Network) Dissemination Library create
Institute on Drug Abuse (NIDA) as inp
demographic and disposition details for clin

C. Queries 
Our queries are inspired by the benchma

comparison of approaches to large-scale ana
the queries executed by Pavlo et al [3], 
exploratory, join, group by, union queries a
the performance with various test conditio
clause.  

In order to provide an environment fo
mentioned analytical tools on the described 
workloads and queries from [3]. 
 

1) Exploratory Queries 

Figure 5: Basic Select Query runtime 
 

are and software 
sets used and the 

supercomputers, 
E5-2450, core I7 
PM SATA, each 

dera Distribution 
most complete, 

che Hadoop and 
8] CDH is 100% 

he only Hadoop 
interactive SQL, 
cess controls till 

N (Clinical Trial 
ed by National 
put with patients 
nical trials.  

ark contained in a 
alytics. Similar to 

we execute the 
along with testing 
ons in the where 

or comparing the 
dataset, we draw 

 

 In figure 5, we can see that Face
other big data solutions for the exp
output of 1,62,82,644 rows (2.17 GB
 

2) Select Multiple Columns 
 

Figure 6: Selecting multiple column
 

In figure 6, we get the expected kind
Facebook presto illustrates its pow
while querying multiple column
1,62,82,644 rows.  
  

3) Select Multiple Columns with
 

Figure 7: Select with Where not con
 

In figure 7, we see the outstandin
of Facebook presto over other bi
follows the push model, wh
implementation of DBMS, process
multiple stages running concurren
Columns is a kind of interactive us
be put to its best use. 

 
4) Join Queries 

ebook presto outperforms 
ploratory queries to yield 
B). 

 
ns 

d of results where in  
wer and its effectiveness 
ns over the dataset of 

h Where Not condition 

 
ndition 

ng run time performance 
ig data solutions. Presto 
hich is a traditional 
sing a SQL query using 
ntly. Selecting Multiple 
se case, where Presto can 
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Figure 8: Join Query performance 
 
In figure 8, we see Facebook presto outdoin
solutions similar to the queries above. H
converted into a corresponding mapreduce
data sets involved are very small (for examp
megabytes), time to execute Hive queries i
high. Since SDTM is a STAR based 
following the push model, which is
implementation of DBMS to process a S
multiple stages running concurrently, it is p
of joining large tables with other small table

 
5) Union All Query 

Figure 9: Union All Query performance  
 

In Figure 9, we can see that even in co
queries Facebook presto yields the best run
big data solutions. This is primarily beca
pipe lining of mapreduce commands in or
query output. 

 
6) Join Query using different types of su

   
 
  In Figure 10, we can see that the time t
query using numerical keys (generated 
parameter is almost equivalent to time taken
same table using Java UUID and SHA 256

 

ng other big data 
Hive queries get 
 job. Even when 

mple, few hundred 
is generally very 
database, Presto 
s a traditional 

SQL query using 
put to its best use 
es. 

 

omplex Union all 
untime over other 
ause Presto uses 
rder to fetch the 

urrogate keys 

taken by the join 
by UDFs) as a 
n by querying the 
6 keys across all 

four platforms. Thus, we can see 
does not attach any additional overh

Figure 10: Surrogate key based pref
 

The uniqueness of the generated 
size ranging up to 2.5 GB.  
These results suggest that practicall
be generated, without collisions u
methods. Since we have already se
overhead involved on join queries
them to serve our purpose for surrog

 
Based on these results and our 

some overall other observations 
results. 

VI. OBSERVATIONS AN

In the table 1, we provide a 
evaluation points against which we 
 
Technolog
y/Evaluatio
n Point 

Hive Presto 

Cluster 
sizes 
possible 

Hundreds 
of Nodes 

Thousands
of Nodes 

Data Size 
Limit 

Terabytes Petabytes 

Scalability High Very High

ML 
Algorithms 
available 

No No 

Data 
visualizatio
n 

No No 

that the key generation 
head. 

 
formance evaluation 

keys is tested for a data 

ly unique set of keys can 
using all three proposed 
een there is no additional 
s, we can use anyone of 
gate keys. 

evaluations we provide 
and discussion of the 

ND DISCUSSION 
certain key technology 
evaluate the four tools.  

Drill Spark 

s Hundre
ds of 
nodes 

Thousand
s of Nodes 

Gigabyt
es to 
Petabyt
es 

Petabytes 

 High High 

No Yes 

No 
native 
support, 
but 
works 
with BI 
tools 
with 

No 
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jdbc/od
bc 

Language 
Support 

Mostly 
Java API, 
SQL 

C, Java, 
Node.js, 
PHP, 
Python, R, 
Ruby, SQL 

ANSI 
SQL, 
Mongo
QL, 
Java 
AP 

Scala, 
Java, 
Python, 
SQL 

Processing 
Speed 

Fast 10X faster 
than MR on 
disk and 
100X faster 
in memory 

Fast Fast 

Use case Batch 
processing 

Real-time 
Interactive 
analysis 
using 
Query 
Pipelining 

Real-
time 
Interact
ive 
analysis 

batch 
processing
, 
streaming, 
interactive 
queries, 
and 
machine 
learning. 

Programmi
ng model 

MapRedu
ce 

MapReduc
e Pipeline 

Queries MapRedu
ce and 
DAG 

Table 1: Evaluation Matrix 
 
In general we observe that Hive leverages the mapreduce 

architecture for data retrieval and transformation.  The 
output of mapreduce is written back to disk.  A query in 
Hive can have many mapreduce jobs, which requires the 
files to be read from and written to HDFS. 

A key advantage of Hive over newer SQL-on-Hadoop 
engines is robustness: Other engines like Presto require 
careful optimizations when two large tables are joined. Hive 
can join tables with billions of rows with ease and should 
the jobs fail it retries automatically.  
Presto on the other hand does not use mapreduce.  It reads 
the data from HDFS and has its own proprietary architecture 
for transforming the data; hence it is much faster compared 
to Hive. 

Our work clearly shows Hive along with Presto 
outperforming other considered tools. With the presence of 
machine learning library, Spark SQL surely has an edge for 
analytics. We can select the tools based on the type of 
problem at hand. 

VII. CONCLUSION & FUTURE WORK 
The benchmark proposed in this paper provides an 

overview of the capabilities of SQL-on-Hadoop platforms. 
The queries for benchmark have been executed with default 
tool settings without using optimized configurations. For our 
experiments, we have addressed a simple comparison 
between these SQL-on-Hadoop tools based on query 
execution time and the ease of migrating relational data 
model to Hadoop based backend considering a potential use 
case for clinical trial data. The provided benchmark is an 
implementation of these workloads, which are entirely 
hosted on an Intel Core i7 processor and can be reproduced 
from any computer.  

In future, we plan to use optimized tool configurations to 
improve data load process and reduce query-processing 
time. Hadoop file formats such as Parquet, optimized row 
columnar (ORC) provide lightweight and fast access to 
compressed data with columnar layout, hence can 
significantly boost IO performance.  Further, we intend to 
test the scalability and performance of our system on a 
bigger cluster. We plan to evaluate other SQL on Hadoop 
engines such as Cloudera Impala and Hortonworks’ Stinger, 
against large clinical datasets. Using integrated data layer of 
Hive and NoSQL database such as HBase can also be 
effective solution for clinical trial analytics. 
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