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Abstract—Distributed communities of researchers rely increas-
ingly on valuable, proprietary, or sensitive datasets. Given the
growth of such data, especially in fields new to data-driven,
computationally intensive research like the social sciences and
humanities, coupled with what are often strict and complex
data-use agreements, many research communities now require
methods that allow secure, scalable and cost-effective storage and
analysis. Here we present CLOUD KOTTA: a cloud-based data
management and analytics framework. CLOUD KOTTA delivers
an end-to-end solution for coordinating secure access to large
datasets, and an execution model that provides both automated
infrastructure scaling and support for executing analytics near
to the data. CLOUD KOTTA implements a fine-grained security
model ensuring that only authorized users may access, analyze,
and download protected data. It also implements automated
methods for acquiring and configuring low-cost storage and
compute resources as they are needed. We present the architec-
ture and implementation of CLOUD KOTTA and demonstrate the
advantages it provides in terms of increased performance and
flexibility. We show that CLOUD KOTTA’s elastic provisioning
model can reduce costs by up to 16x when compared with
statically provisioned models.

I. INTRODUCTION

Data is fast becoming a crucial, if not defining, asset for
researchers. Entire fields, including those new to computa-
tional practices, are quickly embracing data-driven research.
However, the increasing scale and complexity of both data
and analysis combined with the fact that datasets are often
proprietary, or sensitive, creates new and unique challenges.
The emerging centrality of data has led many researchers to
design processes around datasets, which are often housed in
tightly coupled environments that discourage reusability and
agility. To support the needs of data-driven research we have
developed CLOUD KOTTAE] , a cloud-based framework that
enables the secure, cost-effective management and analysis of
large, and potentially sensitive, datasets at virtually any scale.

Many researchers, especially recent adoptees of data-driven
practices, lack the infrastructure and technical expertise to
effectively leverage big data. To satisfy the growing reliance on
data-driven research, researchers are increasingly forgoing on-
premise infrastructure and moving to cloud-based solutions.
For example, a variety of valuable and proprietary scientific
datasets (e.g., 1000 Genomes project and US Census data) are
now hosted by Amazon on Amazon Web Services (AWS).

'The name CLOUD KOTTA comes from the Malayalam word for “fortress’.
It represents a secure environment for storing and operating on valuable data.

This trend is not difficult to explain: cloud platforms provide
high reliability, availability, and performance without the need
for direct ownership and management of on-site infrastructure.
The adoption of cloud-based services has also facilitated
new directions for exploration and investigation. For example,
researchers can take more risks and more flexibly explore
new analyses when storage is co-located with ‘infinite’ elastic
computing capacity with which data can be analyzed, aggre-
gated, and integrated. CLOUD KOTTA aims to catalyze this
kind of agility across fluid groups of users (interns, students,
postdocs, etc.) while also ensuring scalability, security, and
data provenance.

While the advantages of big data research on the cloud
are evident, they come with unique challenges. For exam-
ple, storage is available with varying performance and cost,
identity management can be opaque and complex, and many
algorithms used to analyze large data are, themselves, com-
plex, computationally expensive, or otherwise unruly. While
researchers may not concern themselves with the routine
management of infrastructure, they are nevertheless, faced
with coordinating the use of abstract infrastructure. As a result,
even cloud platforms have primarily been adopted by large
research consortia who have the requisite financial resources
and technical expertise to manage them.

CLOUD KOTTA addresses research priorities with an ana-
lytics environment that allows researchers to concurrently run
analytics of their own design within a secure environment and
in close proximity to the data, with a flexible storage model
designed to minimize cost.

CLoUD KOTTA is designed to be accessible to a broad range
of users. It is open source and can be used as a service or
deployed with automated deployment scripts.

The remainder of this paper is as follows. In we present
representative datasets and analyses hosted by CLOUD KOTTA.
In section §lIIf we discuss requirements, before presenting
the general architecture in and describing the cost-aware
mechanisms (§V)), and the security fabric (§VI). In we
evaluate CLOUD KOTTA along a number of dimensions. Fi-
nally, in §VIII|and we review related work and summarize
our contribution.

II. DATASETS AND ANALYTICS

CLoUD KOTTA is designed to support the hosting and
analysis of large datasets. To help specify the requirements



TABLE I
DATASETS HOSTED HOSTED BY CLOUD KOTTA
Dataset Data Sensitive
UChicago Aura Grants ~200GB Yes
Web of Science “1000GB  Yes
ACM “16GB Yes
Annual Reviews “55GB Yes
American Physical Society =~ “510GB Yes
ArXiv ~400GB No
1IEEE “5500GB  Yes
JSTOR (Journal Storage) “1700GB  Yes
PubMed ~70GB No
US Patents “200GB No
Wikipedia 20TB No

of CLOUD KOTTA we review representative data and analytics
for which it was designed and is currently being used.

A. Datasets

CLOUD KOTTA houses a broad range of datasets, including
samples of NSF and NIH awards, patents, as well as large
corpora of scholarly publications (JSTOR, ACM, IEEE, etc.).
Table summarizes the size and properties of several
important datasets that are stored in a mixture of compressed
and uncompressed formats (depending on usage requirements).
Most are stored as file-based raw data, with large collections
of metadata residing in a relational database. The sizes of
raw data range from several GB to many TB. Each dataset is
subject to its own data-use agreement, with different access
policies defined for various user groups. In some cases,
datasets are publicly accessible (e.g. Wikipedia), while some
are managed for specific research consortia (e.g., IEEE and
ACM), and others are hosted for specific research groups (e.g.
UChicago grants).

B. Analyses

CLoUD KOTTA aims to host a wide range of analytics
algorithms, particularly those used in social sciences and
humanities, and more specifically, those used on the datasets
described above.

Since deployment (3 months at the time of writing), CLOUD
KOTTA has been used to execute a variety of different analyses.
Table presents requirements from representative execu-
tions conducted using CLOUD KOTTA.

TABLE 11
ANALYSES CONDUCTED WITH CLOUD KOTTA

1) Text Analysis: Text analysis is one of the most common
classes of analytics executed by CLOUD KOTTA. Typically,
text analysis is carried out in a multi-stage workflow, where
each new stage receives the output of the previous stage. For
example, extracting latent topics from a publication corpus
requires that documents are first normalized and divided into
logical bins. Next, a pre-processing stage removes irrelevant
text such as common grammatical words, proper nouns, and
punctuation. The extracted text is then analyzed semantically
using one (or many) models (e.g., doc2vec, word2vec [1] and
various probabilistic topic models [2[, [3]]) that make sense of
the words.

This process is both memory and compute intensive, rely-
ing on high-performance libraries compiled for specific CPU
architectures.

CLOUD KOTTA, has been used to generate a latent Dirichlet
Allocation (LDA) model on the Thomson Reuters Web of
Science, a large corpus of 10MM documents, using the gensim
multicore 1da package. This task took 44 hours using 1 in-
stance with 8 cores and 128 GB of RAM. CLOUD KOTTA has
also been used to parse the entire edit history of the English
language Wikipedia to explore journal citation practices [4].
Searching over 40TB of XML documents is a highly 10
intensive process and requires instances with large (SSD)
storage. By processing the 188 data chunks in parallel, CLOUD
KOTTA was able to reduce execution time from several weeks
to several hours.

2) Word Embeddings: Word embeddings allow researchers
to perform discourse analyses on texts. This involves treat-
ing documents as sequences of tokens or as ‘composable’
units. This is typically done using structured prediction (with
conditional random fields or recurrent neural networks). Jobs
of this kind that are run on CLOUD KOTTA involve taking
tranches of scientific abstracts, processing each sentence in
turn, and training a model to predict where the discursive
type (e.g., method, results, discussion, etc.) of the sentence
occurs. This prediction uses vector-representations of different
sections in articles to characterize their relationship to one
another. Both problems are computationally expensive. The
training complexity for a conditional random field is quadratic
to the size of the label set, and nearly quadratic for the size
of the training sample: analyzing 10,000 documents on an
instance with 10GB of RAM and 8 cores required 8 hours.
Training a neural network to produce the word embeddings
with 1,000 journals (with varying numbers of articles) required
an instance with 250GB of RAM, 8 cores and 8-10 hours of
processing time.

3) Network Analysis: Researchers in the computational

social sciences are increasingly interested in large scale, com-
plex network analysis. Early work on CLOUD KOTTA was

Analysis Input Nodes Per node Time
Data Cores Memory (hours)
LDA 10M (txt) 1 8 128GB 44
Word Embeddings 10K (txt) 1 8 250GB 8-10
Network Analysis ~ 20M 61 64 64GB 264
OCR 10K (pdf) 10 32 75GB 20
XML Parsing 3.5M (xml) 188 1 16GB 3
MF 2.5Kx122 1 17 100GB 10

leveraged in developing and analyzing a massive, dynamic
hyper-graph model of biomedical science [5] and a dynamic
hypergraph model of practicing scientists and scholars [6].
For the biomedical study, researchers extracted all authors,

chemicals, diseases, and methods represented in the National
Library of Medicine’s 20 million article MEDLINE dataset



and constructed a dynamic hypergraph model through time
(e.g. 1950 - 2008). Decomposing 20 million records into
roughly 9 million authors, 9 thousand chemicals, 4 thousand
diseases, and 2 thousand methods and then recomposing
these ‘nodes’ into a dynamic hypergraph representation of
MEDLINE executed on 61 nodes, each with 64 cores and
64GB of RAM, and ran for 11 days.

4) Optical Character Recognition (OCR) : OCR software
such as fesseract is used to extract text, figures, tables, and
features from non-text documents, such as PDF. Given the
vast amount of important content locked within non-text
documents, OCR is relied upon by many researchers. CLOUD
KOTTA is used to run OCR software on PDF-based grant
proposals and scholarly texts. Extracting text from a corpus
of 10K documents using CLOUD KOTTA required 20 hours
utilizing 10 instances with 32 cores and 75GB of RAM.

5) Matrix Factorization (MF): When faced with lossy data,
researchers use multiple imputation (MI) to recover missing
values. Typically, a ‘missingness’ pattern is established on a
given response (in a survey, for example) which is used as
the dependent variable in a parameterized regression using the
non-missing responses as parameters. The ‘multiple’ aspect of
MI refers to the process whereby after being imputed, the new
values can increase the accuracy of imputing other missing
values. This process must be cross-validated for stability and to
parameterize error-bounds over sets of multiply imputed data.
CLOUD KOTTA was used to run low rank and low norm matrix
factorization (MF) (an alternative to parametric MI). Once the
models were developed, CLOUD KOTTA was used to execute
a large batch of validations to provide pooled results. One
such batch, represented as a 2,500 by 122 matrix, consumed
1 instance with 32 cores and 100 GB of RAM for 10 hours.

III. REQUIREMENTS

CLouD KOTTA is designed to address the requirements

of two central use cases: managing community datasets and
providing scalable, analytics capabilities. Here we briefly
describe these use cases and their requirements.
Managing community datasets. There is a growing need
to make valuable datasets available to research communities.
Often, this requirement is motivated by funding agencies or
institutions. However, it is also a proven means for establishing
and growing research communities around shared datasets.

The requirements for this use case are that CLOUD KOTTA
be:

e Secure: data must be securely stored and accessible only
to authorized users.

o Scalable: storage must scale to meet the needs of increas-
ingly large datasets and access workloads.

« Reliable: data must be stored reliably, with efforts made
to backup data in case of failure, corruption, or disaster.

o Available: data must be available to a broad set of
geographically distributed users with minimal downtime.

o Cost-effective: the costs associated with high perfor-
mance, secure, reliable, and available data storage must
be relatively low.

o Analyzable: data value is most often derived from anal-
ysis. Data should be easily and efficiently analyzed with
various tools.

Scalable analytics.

As data sizes grow and analysis algorithms become more
computationally intensive, the required resources often exceed
those available to researchers. Thus, methods are required to
scale analyses from individual computers to distributed and
parallel computing systems. The requirements for this use case
are that CLOUD KOTTA be:

e Secure: authorizations control what data can be analyzed
and users’ analyses must be isolated from one another.

e Scalable: analyses must scale to the size of data, exploit
parallelism where possible, and leverage large scale com-
puting infrastructure for efficient performance.

o Cost-effective: analysis costs must be comparable to, or
lower than, that of using local compute resources.

« Easy to use: interfaces must minimize the complexity of
using the underlying infrastructure.

o Co-located with data: data movement can be costly and /
or impose significant overheads. Where possible, analyt-
ics workloads should be placed to minimize data transfer.

IV. ARCHITECTURE AND IMPLEMENTATION

The CLOUD KOTTA architecture is depicted in Fig. [T} The
entire system is comprised of a web interface and web service;
a storage layer that provides fast, reliable, cost-effective stor-
age; a compute layer that provides elastic and cost-effective
compute resources; a job management layer that provides
reliable execution of user-specified jobs; and a security fabric
that permeates the whole system. It also includes a collection
of automated deployment and configuration scripts, as well as
monitoring and management software.

CLouD KOTTA is designed to be deployed on Amazon
Web Services (AWS), the research ecosystem of its intended
users. Where possible, CLOUD KOTTA builds upon existing
cloud services as they are scalable, reliable, secure, and cost-
effective. The entire CLOUD KOTTA system is open source
and can be deployed using a reproducible CloudFormation
configuration.

A. User Interface

CLoOUD KOTTA offers three interfaces: a web interface, a
REST API, and a command line interface (CLI) accessible
from the login node. This range of interfaces supports broad
usage scenarios, enabling intuitive web access for web-based
users alongside advanced programmatic and CLI support to
facilitate customizable and automated invocation.

The supported interfaces allow users to browse datasets,
upload new data, view and download results from previous
analyses, and submit and manage new analyses.

All interfaces are secured, restricting access to only properly
authenticated and authorized users.

Users can upload files to their own private storage, and
browse accessible data. Once uploaded, files are available to
be specified as inputs to submitted jobs.
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Fig. 1. Architecture of CLOUD KOTTA.

In CLOUD KOTTA, a job consists of a complete description
of an executable, a list of inputs, a list of output files to be
saved, a maximum wall-time, and a target queue. In addition to
supporting arbitrary executables, applications can be templated
to create pipelines with simplified user interfaces. Users submit
jobs via simple web forms, or by specifying the job as a JSON
file for the CLI and REST interfaces.

B. Storage Layer

At the heart of CLOUD KOTTA is a durable storage layer
that provides scalable storage of managed datasets. The storage
layer uses several AWS services that provide different guar-
antees regarding access time, durability, and availability with
different cost models. The types of storage used by CLOUD
KoTTA are:

« Elastic Block Store (EBS): a high performance block
storage model that can be mounted as a file system.

« Simple Storage Service (S3): a reliable object store that
provides high performance access via HTTP(S).

o S3 infrequent access: an object store with reduced stor-
age cost at the expense of increased data access cost.

o Glacier: an archival storage model that provides high
durability at a low price with high data retrieval times.

Rather than rely on a single storage tier for all data, CLOUD
KOTTA implements a data lifecycle model where data are
migrated between storage tiers based on access workloads.

C. Compute Layer

The workloads for which CLOUD KOTTA is designed often
comprise independent, loosely coupled jobs. As such, they
are well suited for execution in a high throughput computing
model. To address these needs, CLOUD KOTTA implements
a scalable compute layer based on an elastic pool of AWS
Elastic Compute Cloud (EC2) instances.

EC2 offers a range of different instance types (virtual
machines with fixed resources). Instances are organized by
region and Availability Zone (AZ). Regions represent different
geographic locations whereas AZs are located in a specific
region and offer independent failure probabilities. EC2 in-
stances are provisioned according to a market model in which
users pay for the resources consumed. CLOUD KOTTA can be
configured to use two different EC2 market models:

o On-demand instances are offered at a fixed hourly price.
There is no long-term commitment and an instance will
remain operational until it is terminated by the user.

o Spot instances are offered using a dynamic price model
where users specify the maximum hourly price they are
willing to pay and instances are provisioned until their
price exceeds the user’s bid. Spot instances tend to be a
fraction of the price of their on-demand equivalents, but
they may be terminated without warning.

Like HPC systems, CLOUD KOTTA is used for two distinct
types of workloads: short development tasks requiring quick
responses but minimal compute resources, and longer running
production tasks that are computationally intensive but more
tolerant to delays.

Given the nature of our target workloads (many independent
jobs) we adopt a queue model and implement two logically
independent pools. To guarantee that development jobs do not
wait for long periods of time, the development pool is always
provisioned with at least one reliable (on-demand) instance. In
contrast, the production queue uses Spot instances to reduce
costs. CLOUD KOTTA provisions additional instances when
there are pending jobs in the queues.

D. Job Management

When submitting an analytics job users define a task de-
scription that includes the analysis script, the required inputs
and which output files to save to persistent storage, and other
configuration settings. Upon submission, the entire description
is stored in the database. The job management system adds the
user’s role identifier to the task description and forwards it to
the appropriate queue for execution.

The queue provides a reliable way of managing task ex-
ecution. Worker nodes, when first instantiated or idle, poll
the queue for waiting tasks. The worker retrieves the queued
job, looks up the job description in the database, and starts
executing the job. Because CLOUD KOTTA makes use of Spot
instances, failures stemming from instance revocation are not
uncommon. A queue-watcher service monitors nodes for early
termination (or other failures) and resubmits tasks to the queue
in the case of failure. Throughout execution the worker node



writes job status markers to the database. This provides a
constant stream of worker statistics (CPU, I/O and RAM
utilization) and job progress which is can be interrogated via
the web interface to provide real-time feedback. When the
job completes, output data is staged to the user’s storage, the
completion code of the application is written to the database,
and the worker node marks itself as idle to begin the queue
polling process.

V. AUTOMATED COST-AWARE MECHANISMS

CLoUD KOTTA is differentiated from comparable systems
via its use of automated, policy-based mechanisms to reduce
costs and improve performance of storage and compute.

A. Storage

CLOUD KOTTA’s storage layer incorporates various storage
tiers with different properties. An automated data lifecycle
model manages data across tiers by applying a Least Recently
Used (LRU) caching strategy to data (Fig. [2). The primary
store for data is S3. When data is needed for analysis, it is
either retrieved directly from S3 or it is staged from another
tier via S3. Data is made available to a job via ephemeral
storage on the instance or an attached EBS volume. At the
conclusion of analysis, output files are staged back to S3.

CLoUD KOTTA uses S3-Standard (STD) and S3-Infrequent
Access (IA) tiers for frequently accessed datasets and Glacier’s
low cost storage for less frequently accessed data. CLOUD
KOTTA can be configured with a LRU staleness property that
defines how long data is stored in a particular tier. For example,
the policy STD30-IA60-Glacier will move data from STD to
IA if it is not accessed for 30 days, and from IA to Glacier if
it is not accessed for a further 60 days.

When data is stored in Glacier there is potential for signifi-
cant delays accessing data. If analyses are submitted requiring
data that is stored in Glacier, the job management system will
identify that the data is not available and submit a request for
it to be retrieved from Glacier. The analysis job is placed in
a separate queue until the data is available in S3. When the
data is available the job will execute as normal.

CLoUD KOTTA’s storage model has important advantages
over a static storage configuration. First, while EBS provides
low-latency access, it must be mounted as a file system to
access data and its persistent nature can result in significant
costs. By storing data in S3, a small overhead is incurred to
stage data for compute, however, this latency is nominal in
most cases, representing a fraction of the total time it takes to
provision, and execute a job. Finally, Glacier provides low cost
and reliable storage if reduced availability can be tolerated.

B. Compute

Most production jobs are computationally intensive, long
running tasks, that are tolerant of delays. To minimize costs,
CLOUD KOTTA aims to host production jobs on Spot instances
where possible.

CLOUD KOTTA uses an automated provisioning model to
acquire the instances needed to execute a job. It is able to
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Fig. 2. Storage tiers in CLOUD KOTTA and the heuristics used to minimize
storage costs. Some costs may differ across regions and configurations.

provision resources across all AZs in a region to minimize the
impact of price spikes local to a single AZ. Administrators
can define static or policy-based bid prices (some fraction of
the equivalent on-demand price, for example).

While Spot instances can significantly reduce costs, instance
revocations are inevitable. In this case, CLOUD KOTTA can
reschedule running jobs on a different Spot instance to ensure
the job will complete, albeit with an increased execution time.

There are a number of trade-offs that must be considered
regarding compute cost, execution time, and wait time. To
provide flexible control of these trade-offs, CLOUD KOTTA
offers various policy-based configuration options. For ex-
ample, administrators may set maximum bid prices, define
the minimum and maximum number of instances per pool,
and select suitable instance types for execution. Presently,
CLoUD KOTTA uses a single pre-selected instance type for
the development and production pools. When provisioning
Spot instances for the production pool the cheapest instance
across AZs is selected by default. In future work, we intend
to integrate cost-aware provisioning [7l], [8] and profiling [9]]
models to automate the selection of instance types based on
an analysis of predicted cost and execution time.

VI. SECURITY

CLouD KOTTA implements a flexible and extensible, role-
based access control model across all resources managed by
the service. As shown in Fig. |3| users are assigned roles from
a list of predefined roles, for example kotta-public-only and
kotta-read-WOS-private, where WOS refers to access to the
private Web of Science dataset. Policies define a role’s privi-
leges on a specific resource. All data access is controlled by
user roles and, as such, worker nodes must assume a user role
before being able to access restricted data. Internal services,
such as the queue watcher, are granted appropriate privileges
by internal roles such as web-server or task-executor. These
roles, unlike user roles, have access to the internal database,
queues and notification systems and are capable of controlling
scaling functionality.
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Fig. 3. Role-based security model in CLOUD KOTTA.

Since CLOUD KOTTA uses Login with Amazon for authen-
tication, users require an account with Amazon’s merchant
service to use CLOUD KOTTA. Before being granted permis-
sion to use the system, the user’s unique identity must be
registered and mapped to a role. Users may then authenticate
using Amazon’s OAuth 2 interface. Following the redirection-
based OAuth 2 workflow, the user is redirected to a secure
AWS website to authenticate. Upon successful authentication,
a short-term delegated access token is returned to CLOUD
KOTTA. The token is valid for one hour and during that time it
can be used to perform actions on behalf of the authenticated
user. In keeping with the principle of least privilege, every
user in CLOUD KOTTA starts with no privileges and is in-
crementally granted permissions when required. This strategy
can increase the burden on system administrators who are
responsible for managing policies and roles. Nevertheless, it
ensures that the system remains secure which is a priority for
users and administrators.

The CLOUD KOTTA web interface translates access tokens
into short duration web sessions (using cookies) valid for six
hours.

All data access control is implemented at the S3 level.
Every S3 bucket may have policies which prescribe role-based
access permissions. For private data not available for down-
load, policies are configured to allow for read-only access to
specified compute nodes. For datasets that can be downloaded,
policies restrict access to authorized users. The data stored on
S3 buckets are server-side encrypted and accessible only from
a Virtual Private Cloud (VPC) Endpoint. This guarantees that
traffic between S3 buckets and the compute instances remain
private.Derived data as the result of an analysis is stored as
private objects which can be managed only by the creator.
CLOUD KOTTA also supports a short-term signed URL model
(similar to sharing links in DropBox) for securely sharing data.

The compute layer is insulated from the Internet by a private
subnet enclosed in a VPC. Worker nodes in the compute layer
are provisioned with a specific task-executor role that grants
them a minimal set of privileges such as read access to the
database, queues, and to the S3 bucket where data can be
accessed and results can be stored. Most importantly, this
role is a trusted role that is authorized to allow for switching
between other user roles. When a worker receives a task, it
switches to the role of the user to stage input data. As a result,
objects in S3 buckets can be accessed from worker nodes

500 8000

~—— Data Analyzed ‘ 17000
400f| ~— i
vCPU time ‘ 16000
wn
@ 300} | ‘ 17000 5
g ] Jaooo2
- {40005
o
B 200 | b ‘lf‘ "Mfsooog
[ ] U
100| Hn ‘L‘ N‘{ ‘ (".U’ZUDO
I PUIE IR LT
. " "\wﬁ“ f"‘l‘ “u | H.”‘ I ) \;,\\ 1000
0 PP P (S| LY aa LT NNAY Y
Mar2016  Apr2016 May 2016 Jun2016  Jul2016  Aug 2016

Days

Fig. 4. System utilization

provided that the user’s role is authorized to access them.

After input files are staged, the worker resumes its rask-
executor role and continues execution of the job. During
execution, temporary credentials are used to record progress
in the database and store intermediary and output data. After
tasks terminate, any output files are transferred to S3.

An important component of CLOUD KOTTA is the ability
to audit data usage. To do so, CLOUD KOTTA tracks all data
access by users and analyses, which is combined in audit logs.

VII. EVALUATION

Our evaluation explores several important aspects of CLOUD
KoTTA. First, we investigate production usage of the sys-
tem. Second, we explore the benefits of storage lifecycle
policies. Third, we interrogate elastic resource provisioning
with regards to cost and makespan. Fourth, we evaluate the
throughput of the system using a worst-case, many small jobs
workload. Finally, we examine the potential benefits of cost-
aware provisioning when considering the cost of data transfer.

A. Production Usage

CLOUD KOTTA has been used in production by a number
of researchers for a diverse range of applications. Fig. [
shows the total data analyzed and the total number of compute
hours used, per day over the last 3 months. Researchers have
used CLOUD KOTTA to process more than STB of data with
over 75,330 CPU hours. Individual days approach 500GB
of data analyzed with nearly 8,000 CPU hours. The figure
shows that compute is generally proportional to data size, with
several exceptions. Specifically, the differences in late June
and August are due to long running machine learning models
and text processing on Wikipedia datasets. The graph also
highlights the sporadic usage of our users, which reinforces the
value of elastically provisioning infrastructure when required.

B. Storage cost evaluation

To evaluate our adaptive storage model we consider each of
the storage services provided by AWS in isolation as well as in
combination when lifecycle policies are used. We assumed a
fixed dataset of 10TB and calculate storage costs with two
access workloads. We calculate storage costs for each tier
based on advertised pricing. S3 STD and IA are offered at
a tiered cost per byte. Note that we do not include S3 data
access costs as they are negligible ($0.004 per 10,000 requests



TABLE III
STORAGE COST PROJECTION FOR 10TB OVER A YEAR

Storage Strategy Cost Access cost  Access time
S3-Standard $3546 NIL NIL
S3-Infrequent Access $1500 NIL NIL

Glacier (3%) $840 $4217.2 4hourst
STD30-1A $1670.5 NIL NIL
STD30-IA60-Glacier (3%) $880.259  $169.73 4hourst
STD30-1A60-Glacier (10%)  $974.20 $169.73 4hours’

T :Average glacier retrieval time

within AWS). Glacier is offered at a fixed cost per byte with
an additional retrieval fee for accessing archived objects (5%
of average monthly storage can be retrieved for free).

We model the costs of storage in Glacier as follows. The
cost per month of storage (C,,,) depends on the peak transfer
rate T'x,, calculated from the peak daily transfer volume D g,
(assumed to be retrieved in Tx¢jme = 4hours). There is a
cost for transferring data from Glacier CY, if transfer volumes
exceed the daily pro-rated transfer quota (Q;, as a percentage
of all data stored in Glacier Dgjqcier. We model the monthly
cost by scaling the transfer ratio over 30 days.

D'rdaily Dgla,cier 5%
Tx, = Zrdaily q, _ Dglacier 970 1
r Txtime =% 30 - Txtime ( )
C. = 0, if Txy, < Txg @)

(Txp —Txq) - Cig - 720, otherwise
Analysis of production data access in CLOUD KOTTA indi-
cates that only a small fraction Ag,¢, (3-10%) of the total data
is accessed in a 3 month period. When applying a lifecycle
policy (e.g., STD30-IA60-Glacier), the monthly storage cost
SCo0,,, is then:

Cs 2C
SOOmo = M(l_Ada,ta)+(cglacie7*'Adata) (3)

Table shows the cost for storing and accessing data
in S3 STD, S3 IA, Glacier, and two lifecycle policies with
different data access (Agqiq) rates (3% and 10%). The results
show that storage costs can be significantly reduced by using
S3 TA and Glacier. However, access costs and the time to
retrieve data when using Glacier may negate these benefits.
Our storage lifecylce policies are able to balance these costs
by automatically moving data between storage classes.

C. Elastic Scaling

CLOUD KOTTA embraces on-demand and elastic cloud com-
puting capacity by dynamically provisioning new instances
to host submitted workloads. Rather than relying on a time-
sharing system or scheduler, scaling is achieved by provision-
ing instances as the need arises based on the state of the queue.

For each experiment we compared the trade-offs between
total execution time (‘makespan’) and total cost.

Three scaling strategies were explored:

o No scaling: A baseline strategy in which a fixed number
of instances are provisioned.

o Limited scaling: A restricted strategy where the maxi-
mum number of provisioned nodes is limited.

o Unlimited scaling: An unbound strategy where as many

instances as are needed will be provisioned.

To evaluate elastic scaling under a realistic usage scenario
we created a simulation workload to mimic existing production
usage of CLOUD KOTTA (see Section [[). To reduce costs of
experimentation, the workload consists of 40 jobs submitted
over a four hour period. The inter-arrival time is obtained
from a Poisson distribution of the form ¢ ~ P(A = 0.1667)
hours. Where \ was selected based on the duration of the
experiment. Within the workload, we modeled three distinct
job types representative of three distinct analyses that have
been executed on CLOUD KOTTA. Specifically, jobs were
configured to run for 1, 3, and 4 hours, with 40%, 20% and
40% in each category, respectively. Each job duration was
further varied by up to +5% minutes to ensure the results are
not biased toward hourly increments. To model data transfer
time we randomly assigned input datasets of {1,3,5,7,9} GB.
These datasets were hosted on and staged from S3. The jobs
themselves were comprised of simple calls to sleep ().

Fig. [5] illustrates the relationship between job execution
and the elastic infrastructure provisioned to host the workload
when using the unlimited scaling strategy.

For each job, it shows the time of submission, the wait
time in a queue before execution began, the data staging time
(in/out), and the execution time.

The results highlight CLOUD KOTTA’s ability to elastically
provision infrastructure for waiting jobs. The workload peaks
at 27 concurrent jobs. The results also show a moderate wait
time due to the delay caused by provisioning instances, which,
on average, is 7:39 per job with a peak of 30 minutes due
to spot market volatility. The advantage of reusing existing
instances is made evident in the figure. For instance, the last
7 jobs were able to execute without waiting because idle
instances were available in the pool.

Table compares the different scaling strategies with
respect to makespan, cost, and wait time. Wait time is the time
a job waited in the queue. Makespan is the total execution
time from when the first job is submitted until the last job
completes. Spot costs were calculated as the cost paid for
running the experiment using Spot instances. The spot costs
may vary significantly because these experiments were run
at different times with different market conditions between
executions. The on-demand cost was calculated based on the
price that would have been paid had on-demand instances been
used. These results aim to remove the variability of the spot
market when comparing costs. The cost savings, then, are the
percentage improvement compared to the baseline (no scaling,
min: 40, max: 40) strategy.

The no scaling strategy, where a fixed pool of instances are
available to host the workload, represents a baseline strategy
to which the others can be compared. Using a fixed pool of
40 instances, the wait time is 0, thereby fully optimizing the
makespan. However, many instances are idle for a significant
portion of the workload which results in costs of $74.57
for 40 fixed instances and $40.87 for 20 fixed instances.
The unlimited scaling strategy provisions instances only when
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Fig. 5. Elastic scaling in CLOUD KOTTA. The top plot shows currently provisioned nodes and the proportion of which are idle. The bottom plot shows each
job’s status from submission to completion, including wait and data staging time.

they are required. Here the wait time is longer than the no
scaling strategy (on average 7:39 per job), however the cost
of executing the whole workload is significantly lower (saving
approximately 61% using spot or on-demand instances). The
unlimited scaling strategy using Spot instances offers similar
compute performance at % the cost of a static cluster pro-
visioned with on-demand instances. It is worth noting that
the makespan is the same here given that the last jobs to
complete do not have to wait in the queue due to available
idle instances. The limited scaling strategies aim to provide a
hybrid model to manage the trade-off between cost and time.
As expected, the results show increased makespan (roughly 1
hour and 5 hours longer for 20 and 10 instances, respectively)
with reduced cost (roughly $2 and $5 for 20 and 10 instances,
respectively). Our results show, that knowledge of workloads
can be used to define scaling restrictions that minimize idle
times and reduce costs.

D. Throughput

To evaluate the throughput of CLOUD KOTTA, we designed
a strong scaling experiment where 10,000 small tasks were
submitted to a pool of general purpose instances (m4.xlarge,
4 cores@2.4Ghz). To model a worst-case scenario, each task
is a sleep (0) call and requires no data staging. Instances
were provisioned ahead of time to reduce overhead associated
with the provisioning process. We measure the total time to
completion of the 10K tasks for {1,2,4,8, 16,32} worker
nodes. In an ideal case, we should observe speed-ups that are
directly proportional to the number of nodes.

Fig. |§| shows the time to submit all 10,000 tasks, the total
time to completion for tasks on provisioned instances, and
the throughput. The results show that throughput increases
linearly with the number of worker nodes up to 16 nodes.
Up to this point, the average task throughput per worker node
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Fig. 6. Throughput in CLOUD KOTTA for 10,000 tasks

is 4.90 tasks/s (total 79.84 tasks/s). In this experiments, the
primary bottleneck is the database as transactions are used
to record job descriptions and performance markers. So, for
these experiments, we increased the DynamoDB read and
write capacity per second to 100 and 400, respectively. It is
important to note that these experiments represent an idealized
worst case scenario in which tasks are trivial and frivolous.
With more typical, longer running jobs that run on the order
of minutes or hours, our results show that CLOUD KOTTA can
easily support thousands of jobs submitted simultaneously.

E. Cost-aware Provisioning

Here we explore the benefits of various provisioning strate-
gies in the context of geographically distributed computation in
a cloud environment. In this experiment, the data was hosted in
one region (N.Virginia, us-east-1) and compute was distributed
across different EC2 regions and AZs. We use historical Spot
price data from ten AZs spread across four regions, and
simulate various strategies for instance selection. We simulate
a single hour task that is provisioned among the AZs based
on the different strategies. This simulation is executed for a



TABLE IV
COST VS. MAKESPAN.

Scaling Nodes Cost Wait Time % Savings
(min,max) Makespan Spot On-demand Max Avg. Spot  On-demand
None 40,40 07:43:00 $10.26  $74.57 00:00:00  00:00:00 0 0
None 20,20 08:33:00 $5.98 $40.87 01:27:00  00:11:30 41.71 45.19
Unlimited  0,- 07:43:00 $3.95 $28.92 00:30:00  00:07:39  61.50 61.21
Limited 0,20 08:22:00 $4.52 $26.77 01:46:00  00:15:10 55.94 64.10
Limited 0,10 12:50:00 $3.62 $23.18 05:41:00  02:08:06 64.71 68.91
700 %t e %t Ew o VIII. RELATED WORK
6501 I35 8 ‘o
s Single AZ Cheapest = Multi Region Cheapest || & Currently, there are no existing frgmeworks that. enable
6001 s Single AZ Costliest « -« Multi Zone savings 1308 secure and scalable storage, dissemination, and analysis of re-
c . . .
__s550|| ®=® Multi AZ Cheapest .= Multi Region savings g search data using cost-effective, elastic cloud resources. Here,
hin 4 . . . .. .
500 » %. we review related work that has significant commonalities with
2 20g  CLOUD KOTTA.
24 " In the social sciences there is a growing need to provide
= 400 : * : . . . . g secure storage and analysis of data [11], [12]. While there
3501 - 110 E is yet to be a complete solution, there are several efforts that
: . : : . : . . , 5 overlap with the goals of CLOUD KOTTA. For example, hybrid
300, @ A a A A A A A A 4> @ : .
o——gum=q = cloud models have been used to support scalable social science
A e . B Chsrumt analytics in research computing centers [[13]. Others have
Data transfer per instance(MB) extended common software used by social sciences, such as
i ) ) Microsoft Excel, to analyze increasingly large data [14]. How-
Fig. 7. Monthly cost for C4.8xlarge instance with data egress costs.

month to capture the long term impact of price differences
between AZs.

We calculate the total cost of computation for a given hour
Py 1q1 as the sum of the hourly instance price P; and the costs
associated with data transfer.

Piotar = P; + Ptransfer (4)
If the selected compute instance lies in a different region than
the location of the S3 data bucket, there is an inter-region
data transfer cost 7. = $0.020/GB [10]. The amount of data
downloaded and uploaded from S3 are represented by Dy,
and D,,,, respectively, which we, further, assume to be equal.

0, if us —east — 1 5)
(Dgn + Duyp) - T,, otherwise (
Fig. [/ shows the total monthly cost of using C4.8xlarge
instances when different amounts of data are used by the
analysis. The graph shows several different provisioning strate-
gies: selecting the cheapest or most expensive instance in a
single AZ, the cheapest instance within regions and across
regions. The graph also shows the savings that are obtainable
when broadening the search scope across AZs and regions. We
observe a significant difference between the cheapest and most
expensive instance within an AZ. This suggests that there is
considerable financial risk when provisioning instances within
a single AZ. Thus, there is a considerable advantage to select-
ing instances across AZs and regions. Interestingly, however,
as the volume of data transfer associated with compute tasks
increases, we observe diminishing returns from extending the
search scope to consider multiple regions. This result confirms
the need to co-locate compute with data as data sizes increase.

Ptransfer =

ever, these efforts focus primarily on moderately sized tabular
data and interactive analytics. The data capsule [15] model
used by the Hathi Trust enables secure, non-consumptive
analysis of data by leveraging controlled virtual machines.

There are many community hosted data repositories de-
signed to support specific research communities. For example,
dbGaP (database of Genotypes and Phenotypes) [16] organizes
the results of studies of genotype and phenotype interactions
and NOAA’s National Climatic Data Center [17] provides
public access to national climate and weather data.

Each of these data storage repositories requires significant
administrative overhead to populate, curate, operate, and man-
age.

In many cases, proprietary authentication and authorization
frameworks have been developed to control access to data.
Though, more importantly, these systems act as static, isolated
data environments, and provide only minimal data manage-
ment capabilities with no computational capabilities.

The Integrated Rule-Oriented Data System (iRODS) [18]
provides policy-based, federated data management. Among
other features, it allows distributed file systems to be in-
tegrated, data to be organized in global namespaces, and
rule specification for managing data throughout its life-cycle.
However, iRODS is designed to manage file systems, and does
not support cloud storage models.

There are many other systems that provide the ability to
deploy cloud-based clusters. For example, CloudMan [19] and
StarCluster [20] enable deployment of fully functional clusters
for hosting and executing workflows. Systems like these and
others, are primarily designed to aid in the creation of clusters
for semi-permanent usage. Other systems, such as the Globus



Galaxies platform [21] and Makeflow [22]], enable on-demand
and elastic cluster provisioning in response to user submitted
workload. CLOUD KOTTA is unique, however, in its use of
commodity AWS services and its broad focus on providing a
framework for secure data storage and analysis.

Science gateways [23] are designed to abstract the technical
challenges that come with using large scale computing infras-
tructure.They typically provide access to shared datasets and
resources through high level user interfaces (e.g., workflows
and portals). Examples of commonly used gateways include
CyberGIS [24] for geoscience and iPlant [25] for ecology.
While there is increasing interest in cloud-based solutions,
most science gateways are built on more traditional High Per-
formance Computing (HPC) infrastructure [26], [21]. CLOUD
KOTTA acts as a fabric on top of which cloud-hosted gateways
could be developed in a domain-agnostic setting.

IX. SUMMARY

CLoUD KOTTA enables distributed groups of researchers
to manage valuable and large-scale research data and execute
complex, heterogeneous analyses in a secure, scalable manner.
CLOUD KOTTA helps users interact seamlessly with secure
datasets while simultaneously enabling administrators to con-
solidate and simplify storage and computational infrastructure,
all the while significantly reducing costs. Its automated storage
lifecycle model allows for these reductions with minimal effect
on active research. The scaling computing model, which lever-
ages elastic, low-cost compute resources, further ensures that
compute resources are used efficiently and that compute costs
are minimized. By integrating existing identity management
tools, CLOUD KOTTA allows for role-based management of
datasets that ensures compliance with a group’s range of data-
use agreements. It is true that any middleware platform comes
at the cost of disruption to users’ workflows. CLOUD KOTTA,
however, minimizes this disruption by ensuring that users
have full privileges on compute nodes so they can configure
their environment to meet the needs of their analyses. Lastly,
CLoUD KOTTA implements intuitive interfaces that support
users with varied technical competencies. As computational
and data science becomes more prevalent, and data grows yet
larger,

it will become more important for computing platforms
to accommodate large-scale and unpredictable workloads.
CLOUD KOTTA achieves this along three critical dimensions:
security, scalability and cost-effectiveness.

X. AVAILABILITY

CLoUD KOTTA is open source and is available at:

https://github.com/yadudoc/cloud_kotta
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