
Evaluating the Impact of Data Placement to Spark and SciDB with an Earth Science
Use Case

Khoa Doan
University of Maryland, College Park, MD, USA

khoadoan@umd.edu

Amidu Oloso, Kwo-Sen Kuo,
Thomas Clune

NASA GSFC, Greenbelt, MD, USA,
SSAI, Greenbelt MD, USA

{amidu.o.oloso, kwo-sen.kuo,
thomas.l.clune}@nasa.gov

Hongfeng Yu

University of Nebraska, Lincoln, NE, USA
yu@cse.unl.edu

Brian Nelson

NOAA National Climatic Data Center, Asheville, NC,
USA

brian.nelson@noaa.gov

Jian Zhang
NOAA National Severe Storms Laboratory,

Norman, OK, USA
jian.zhang@noaa.gov

Abstract— We investigate the impact of data placement for two
Big Data technologies, Spark and SciDB, with a use case from
Earth Science where data arrays are multidimensional.
Simultaneously, this investigation provides an opportunity to
evaluate the performance of the technologies involved. Two
datastores, HDFS and Cassandra, are used with Spark for our
comparison. It is found that Spark with Cassandra performs
better than with HDFS, but SciDB performs better yet than
Spark with either datastore. The investigation also underscores
the value of having data aligned for the most common analysis
scenarios in advance on a shared nothing architecture.
Otherwise, repartitioning needs to be carried out on the fly,
degrading overall performance.

Keywords- SciDB; Spark; multimensional arrays; SciDB;
data layout

I. INTRODUCTION
Several Big Data technologies based on shared-nothing

architecture (SNA) [12] offer cautious hope to scientists
facing the daunting challenge of analyzing datasets of
unprecedented volumes in the Big Data era. Among SNA’s
important advantages are: 1) it provides a simpler
distributed programming model better suited for data
parallelism than that of traditional network programming
such as MPI; 2) it can take advantage of relatively
inexpensive commodity hardware; and 3) it supports
redundancy and resiliency resulting in better system
availability (long system uptime).

A very common category of analysis in Earth Science is
comparing values of the same geophysical variable obtained
by different means. These comparisons may involve
observations from different instruments or observations and
model results that require binary operations such as join.
While parallel database systems, e.g. Vertica or Oracle, are
especially adept at such operations and facilitate various
data analysis tasks, developing analytic capabilities in these

systems is generally too arduous for Earth scientists. More
recent frameworks, however, provide simple, yet powerful,
high-level abstractions and tools that make it possible for
various types of users to work with data efficiently without
detailed knowledge of the underlying implementation.

SciDB is one such recent technology development that
specifically targets multidimensional arrays, providing an
attractive alternative to general purpose analytic platforms
such as Hadoop/MapReduce [1] or Spark [17], for scientific
data analysis. As a next-generation parallel database system
based on the array data model, SciDB not only indexes the
data it ingests for fast retrieval, but also provides an
attractive, mathematical/statistical toolbox for data analysis.
Similar to Spark and Hadoop/MapReduce, SciDB also
exploits the affinity of compute and data, with arguably
better effectiveness.

In this study, we compare two technologies that are
designed with different analytic purposes in mind, Spark
and SciDB, in the aspects of 1) performance 2) flexibility,
and 3) impact of data placement using a typical use case in
Earth science. In Spark, we also explore an alternative
datastore to HDFS, i.e. Cassandra. We first highlight the
needs and requirements for high-level distributed computing
systems in Section II. We describe our use case scenarios
next in section III, and then present our evaluation in
Section IV. We conclude the paper with a discussion and
our plan for future works.

II. DATA INTENSIVE APPLICATIONS IN EARTH SCIENCE

A. Shared Nothing Computing Frameworks
Since the publication of MapReduce (MR) [1], data
scientists and technologists have tried to adapt and extend it
to many data analysis applications in various domains.
Hadoop (HD), the open-source version of MapReduce, has
thus become the default choice for almost every Big-Data

analysis application. But, its sub-optimal performance has
been noted in a number of scenarios [3, 4]. Recent
technological developments, such as SciDB and Spark, are
providing attractive alternatives to Hadoop/MapReduce
(HD/MR) for scientific data analysis.

While HD/MR is simple and arguably laudable for one-
pass computations, it is inherently inefficient for multi-pass
algorithms. The reason for this is that HD/MR lacks
appropriate primitives for sharing intermediate states of the
calculation between passes and instead sends/retrieves
intermediate states to/from a distributed file system. The
overhead from communication and I/O of this approach
often dominates overall performance. For this reason,
HD/MR is poor for complex applications and algorithms
that are typically composed of simpler calculations, which
in-and-of-themselves are well-suited to HD/MR. SciDB, on
the other hand, not only indexes the data it ingests for fast
extraction and retrieval, but also provides an attractive,
mathematical/statistical toolbox for data analysis. Like
HD/MR, SciDB exploits the affinity of compute and data.

One of the primary disadvantages of Spark, compared to
a full DBMS solution such as SciDB, is its loose coupling
between the datastore and the execution framework. While
Spark provides several primitives for efficient data
manipulation such as sharing and partitioning, we can
leverage these primitives only after data are loaded into
Spark’s execution engine. Therefore, Spark cannot directly
exploit regularities in structured data. Instead, it must
effectively “rediscover” such structure every time data are
accessed, leading to a certain degree of unavoidable
overhead. Fortunately, there are datastore systems, such as
Cassandra, that allow better integration with Spark into a
semi-DBMS solution.

Cassandra is an in-memory, “distributed storage system
for managing large amount of structured data spread out
across commodity servers, while providing highly available
service with no single point of failure” [20]. Cassandra
implements column datastore that ensures data locality for
its partitions. A partition in Cassandra, however, may be
split across multiple files locally and data locality within a
partition is not guaranteed. That is, it may need to read
multiple local files in order to arrive at the specific rows or
columns of interest. This has pertinence in analytic
processing because, unlike SciDB (also using column store),
operations requiring the full list of attributes or columns
(such as projection in SciDB) may not be optimal.

B. Multidimensional Arrays
Scientists typically work with multidimensional arrays.

An array can be thought of as a grid of cells, such as that of
a numerical weather prediction model, which is often
multidimensional and each array cell often contains multiple
attributes, e.g. pressure, temperature, humidity, etc. A cell of
this more abstract array, hitherto referred to simply as
“array”, is filled, if all of its attributes are present and valid,

or empty if all of its attributes are absent or invalid,
otherwise it is partially filled.

There have been efforts to build array data processing on
top of table-based RDBMS, but the process of translating
array-specific operations to RDBMS’ primitives is
nontrivial, and such efforts generally fail to exploit effective
multidimensional partitioning and indexing [9]. In contrast,
array-oriented systems such as SciDB directly manipulates
multidimensional arrays and supports many array operations
out-of-the-box with efficiency.

Finding an optimal strategy for indexing arrays has been
a major focus of existing works on multidimensional array
data. The standard approach is to partition an array into
“chunks”, each of which typically resides on a node in a
cluster and can be considered as a unit of work for parallel
processing [9]. Selection of partitioning, or chunking,
heuristics is important as they affect the efficiency of the
storage system.

There are two basic chunking approaches: regular and ir-
regular [9]. Regular chunking (REG) partitions the array
cells into uniform chunks regardless whether they are filled
or empty, whereas irregular chunking (IRR) may partition
them into different sizes, where each chunk often holds
roughly the same number of filled array cells to even the
workload of an operation over nodes and achieve better
overall performance. One advantage of REG is its
amortization of seek times and any fixed-costs associated
with processing a chunk, but IRR can avoid straddling over
skewed data, which occurs often with sparse arrays [9].

More complex chunking approaches can be derived from
these basic ones, such as REG-REG, where each chunk of
the array is subdivided into smaller regular chunks that can
be used to efficiently determine the relevant set of data for
an operation, or IRR-REG where each chunk of roughly the
same data volume of the array is partitioned into smaller,
equally spaced chunks to take advantages of the regular
chunking scheme. Sparse arrays, often unevenly distributed
in their coordinate space and thus poorly skewed, are
particularly hard to partition for efficient parallel
processing.

Existing works have shown that the majority of Earth
Science data, where the natural dimensions are time,
latitude, and longitude, are sparse arrays in the
spatiotemporal coordinate space. Moreover, data often
exhibits irregular spatial pattern over time, further
complicating the situation. Although it is possible to create a
denser array by using only the temporal dimension for
indexing, this causes inefficiency in other array operations,
such as aggregation operations over spatial areas (aggregate
value grouped by spatial subsets). Upon consideration, we
choose the REG-REG chunking scheme for Spark in this
study, because our arrays are dense and it has been reported
to be optimal for various types of array processing workload
[8]. For fairness sake, a similar regular chunking scheme is
also used in SciDB.

C. Importance of Data Layout
Queries on multidimensional arrays typically involve

scan, dicing, join and overlap operations [9]. Array scans,
such as filter, processes all chunks of an array. Array
dicing, such as subsample, may involve a subset of an
array. While array scans and subsamples are trivial to
parallelize because they operate on each chunk
independently, it is more efficient if only relevant chunks
are processed. Binary operations, such as join and
merge, can get more complex depending on the join
predicate [9,15]. But what is critical to efficient binary
operators is that the same logical chunks from both input
arrays are co-located on the same instances, which avoids
computationally expensive repartitioning to align the
corresponding pairs of chunks. Overlaps, such as clustering
or connected component labeling, is difficult to implement
efficiently and its implementation details often depends on
the problem at hand [16].

The queries in this paper focus on scan and binary
operations. Our goal is to evaluate the performance
characteristics the selected technological approaches. As
mentioned previously, performance of binary operations can
vary, depending on how corresponding arrays are initially
partitioned. Evaluations are carried out for both scenarios:
When the arrays are aligned and mis-aligned for a join
operation. Alignment of arrays requires not only they have
the same shape, i.e. same dimensionality and same range in
each dimension, but also the same partition configuration. In
SciDB, the same array schema ensures both and guarantees
that corresponding chunks physically reside on the same
node, or aligned.

D. Multidimensional arrays in Spark/HDFS and
Spark/Cassandra
Since Hadoop distributed file system (HDFS)

automatically determines the physical placements of the
HDFS blocks of a file, in order to have a fairer evaluation of
these two dissimilar analytic systems, we first generate a
sequence file for the pair of aligned arrays, a step that
resembles the re-dimensioning and chunking operation in
SciDB. A “chunk” so-emulated is represented as a key-
value pair, where its key is the coordinate space of the
chunk and its value holds the data inside each chunk of the
compatible arrays. This endows Spark+HDFS with the
similar advantage of chunk co-location as that in SciDB.

With a column datastore such as Cassandra, however,
co-location of data records with similar keys is possible.
Because Cassandra consistently hashes a user-defined
partitioning key, if we use the coordinate space of chunks as
partitioning key, aligned arrays can have their chunks
distributed in similar ways in the cluster. We implement
each array in Cassandra as a table, whose dimension ranges
of a chunk are partition keys, and each row encapsulate data
for a chunk, whose attribute is a column with its value being

a binary representation of data for this attribute within this
chunk.

III. USE CASE DESCRIPTION
In order to study the performance characteristics

between SciDB and Spark, we use a concrete set of typical
queries in Earth Science domain. The queries operate on 2
multidimensional datasets described below.

A. Datasets
Two regularly gridded datasets for the period of Winter

2010, i.e. from 1 December 2009 to 28 February 2010, are
used to conduct our experiments. The first one is extracted
from hourly datasets of the NASA Modern Era
Retrospective-analysis for Research and Applications
(MERRA) [22] data collection and the second from
National Mosaic and Multi-sensor QPE (NMQ, where QPE
stands for quantitative precipitation estimate) [23].

MERRA has global coverage, whereas NMQ is only
available for the contiguous United States (CONUS),
specifically 20°N-55°N in latitude and 130°W–60°W in
longitude. They are also of different resolutions. For
MERRA it is ⅔°×½° (longitude×latitude) in space and
hourly in time, whereas it is 0.01°×0.01° in space and every
5 minutes in time for NMQ. Therefore, homogenization of
these datasets is the necessary first step of our data
placement experiment.

In the preparation of the MERRA array, we first
resample the original MERRA array in the longitude
direction to ½° equivalent and then replicate the resampled
array by a factor of 5×5 for each ½°×½° grid cell in space,
from which a CONUS subset is extracted. The CONUS
subset is subsequently replicated 12× in time. The resultant
MERRA array effectively mimics 0.1°×0.1° resolution in
space and 5-min in time. Accordingly, we perform a 10×10
average in space for the NMQ array, bringing its resolution
down to 0.1°×0.1° in space and 5-min in time as well. After
the homogenization, both arrays have array dimensions of
700×350 in space and 25,920 (=12×24×90) in time, i.e. the
same shape.

B. Regridding queries
One of the typical queries that Earth scientists perform

on spatiotemporal data is averaging over predefined
intervals in each dimension. Similar queries are used in this
case to homogenize the two arrays to the same shape. In
SciDB, a query can be written in Array Query Language
(AQL) and/or Array Functional Language (AFL) [21]. We
use AFL in our SciDB queries. (AFL code for the queries
can be obtained from us upon request.)

Q1. Resample MERRA array to 0.1°, in both latitude and

longitude, and 5-minute resolution.
Q2. Average NMQ array also to 0.1° and 5-minute

resolution.

Platform Rpl. Q1 Q2 Q3 Q4 Q5
cross-join join cross-join join

SciDB None 6.40 100.91 33.17 13.47 9.40 28.87 5.84
SciDB 2× 6.72 113.47 49.34 11.70 8.39 40.85 5.41

Spark+HDFS 2× 5.76 193.67 42.43 — 11.49 32.89 —
Spark+Cassandra 2× 3.80 157.50 38.15 — 10.53 29.36 —

 Table 1. Average running time of queries for 5-day data on 3-node cluster (in minutes).

Q1 selects the total precipitation attribute (PRECTOT)

first. The outer xgrid-regrid-xgrid operations transform
MERRA into the 0.1° and 5-minute resolution. Similarly,
Q2 changes the original NMQ array into the same resolution
as that of MERRA.

C. Comparison queries
Another common type of operations in earth science is

comparing the values of the same geophysical quantity (in
this case, precipitation) obtained with different means.

Q3. Repartition resampled MERRA array on the fly to

compare precipitation rates with coarsened NMQ
array.

Q4. Repartition to align resampled MERRA with coarsened
NMQ array.

Q5. Compare precipitation rates using aligned arrays.

The purpose of Q3 is to find the difference in

precipitation rates between corresponding cells of the 2
arrays. Since the arrays’ placements are not aligned,
repartitioning of one array (in this case the MERRA array)
to align with the corresponding chunks of the other is
necessary, which is done via repart in SciDB. Since
SciDB partitions intermediate arrays of queries and offline
arrays in similar manner, only 1 array needs to be
repartitioned. In Spark, however, this is not possible unless
the coarsened NMQ array has been previously repartitioned
by Spark itself.

Q4 and Q5 attempt to study the effect of placement
alignment by aligning the arrays in advance. Q4 saves the
results of the alignment operation of Q3 and Q5 performs
the join operation in order to calculate the difference in
precipitation rates between each pair of corresponding cells.

Since Spark does not have a similar high-level query
language as SciDB, we have to implement our own. In
implementing these queries we strive to use operators that
are as similar as possible to the data flow pattern of SciDB.
Spark code for the queries are also available upon request.

We describe our computing environment and report
evaluation results of the evaluation experiments in the next
section.

IV. PERFORMANCE EVALUATION EXPERIMENTS AND
RESULTS

A. Computing Environment
Two virtual clusters, one with 3 nodes and the other 28

nodes, are set up to carry out our experiments. Each node
resides on a separate, unique physical container. All the
nodes have the same features: 32 GB of main memory (or
random access memory, RAM), an 8-core CPU, and ~16 TB
of local spinning disk storage and they all run Centos 6.5
Linux operating system. The nodes are interconnected with
Infiniband (Mellanox MT27500 FDR IB).

We use the enterprise edition of SciDB release 15.7,
which supports replication and advanced linear algebra
operations, such as singular value decomposition (SVD),
that are not available in the community edition. As to Spark,
version 1.6 of the Cloudera CDH5.4.2 distribution is used.
To ensure fairness of the comparison, all the technological
approaches are configured on and use the same clusters.

The HDFS configuration employs a replication factor of
2 and 3, respectively, on the 3-node and 28-node clusters.
The same replication factors are used for SciDB as well on
respective clusters. However, performance numbers are also
obtained for SciDB with no replication (equivalent to
replication factor of 1) because the community version of
SciDB does not offer replication. For the Spark+Cassandra
integration, we use Datastax Cassandra version 3.07.1159
with MurmurHashPartitioning strategy. We also configure
Cassandra to have the same replication factors as those used
with HDFS on the respective clusters. Finally, our Spark’s
implementation of the array models is written in Java.

For all technological approaches, we configure as much
as possible to have the same resources for utilization. For
example, each Spark job is executed with 2 8GB, 4-core
executors. Similarly, there are 2 SciDB instances running on
each node. Each query is repeated three (3) times for each
technological approach and on each cluster. The averaged
performance of the 3 runs are reported below. The timing
variation of the 3 runs is always around only few percent.

B. Evaluation
In this section, we present the results of our experiment

for different configurations of our clusters on the queries

Platform Rpl. Q1 Q2
Q3 Q4

Q5
cross-join join cross-join join

SciDB None 23.99 245.44 148.43 75.65 77.28 90.18 14.85
SciDB 3× 24.48 241.69 146.64 72.67 78.79 90.01 14.96

Spark+HDFS 3× 30.26 297.90 257.76 — 94.72 159.13 —
park+Cassandra 3× 24.50 255.07 202.24 — 84.14 156.36 —

Table 2. Average running time of queries for 3-month data on 28-node cluster (in minutes).

mentioned above. Since the data volume of the entire 3-
month is too much for the 3-node cluster, a 5-day subset is
used instead. The 28-node cluster, however, operates on the
entire 3-month (or 90-day) datasets.

There are two operators available for joining operations
in SciDB: cross-join and join. The former, i.e.
cross-join, is a generic join operator that makes no
assumptions about the schemas of the array operands, while
the latter, i.e. join, requires the array operands to be
aligned (i.e. corresponding chunks co-located on the same
nodes). The performances of both are reported for SciDB.
Spark, however, does not have similar options.

Table 1 tabulates the average running times (in minutes)
of the queries on the 3-node cluster. Best performing
number in each query is boldfaced in the table.
Spark+HDFS is consistently the worst performer. This
aligns well with our earlier discussion regarding
Spark+HDFS that it does not leverage resident memory as
SciDB or Spark+Cassandra does. Spark+Cassandra
performs the best only in Q1. SciDB is consistently the best
performer. For Q2, SciDB (both with or without replication)
is ~50% faster than the next best, Spark+Cassandra.
However, it is curious that SciDB with 2× replication is
significantly slower than without replication on cross-
join for both Q3 and Q5. We currently have no good
explanation to this. The most striking result is perhaps the
efficiency of SciDB join operator, which offers 3 to 5 times
the speed than that of the otherwise best performer, i.e.
SciDB cross-join, in Q3 and Q5.

The performance advantage of SciDB is even more
apparent on the 28-node cluster, for which Table 2 tabulates
the timing results. Unsurprisingly, Spark+HDFS is still the
worst performer. Both SciDB configurations, i.e. with or
without replication, beats Spark+Cassandra in all 5 queries,
often with wide margins. However, while the performance
advantage margin of SciDB over Spark-based approaches
has narrowed for Q2, it has grown for Q3 and Q5 on
cross-join. More interestingly, we do not see the large
disparity between the two SciDB configurations on
cross-join in Q3 and Q5 anymore. SciDB join still
offers the best performance and considerable advantage over
cross-join.

To compare how the technological approaches scale
from 3 nodes to 28 nodes, roughly an order of magnitude,
we compute the following ratio as a measure for scalability:

(t3/5/3)/(t28/90/28),

where t3 and t28 are performance times of the 3-node and 28-
node clusters, respectively. Basically, it is the ratio of the 3-
node performance time to 28-node performance time, after
both have been normalized by the data volume (number of
days) and number of nodes. Larger ratios thus correspond to
better scalability. The results of this comparison are
tabulated in Table 3, with the best performer of each query
boldfaced as before. It is apparent that SciDB is still the best
overall performer in scalability. SciDB without replication
scales better for join, whereas SciDB with replication
scales better for cross-join. Spark+HDFS breaks its
losing streak by having the highest ratio in Q2. However,
due to limited computing resources available to us, we are
unable to perform scalability comparisons to larger clusters
up to, more realistically, thousands or even tens of
thousands of computing nodes. The results presented here
therefore should not be considered conclusive.

V. DISCUSSION AND FUTURE WORKS
Our experiments have demonstrated the potential of an

array-based DBMS system, SciDB, particularly for the
Earth Science domain. In most of the experiments, SciDB
yields better performance than general analytic systems such
as Spark, and provides more convenient, mature analytic
toolbox for working with multidimensional arrays. It is
worth noting here that SciDB aims at end users who are
interested in using high-level queries rather than in
developing complex analytic algorithms. SciDB also
appears to scale better. In addition, we have demonstrated
that array data processing can be built on top of general
purpose analytic systems such as Spark, with respectable
efficiency.

Based on the evidence presented, we conclude that best
performance is achieved when data placements are aligned
for the query because it eliminates the need for
computational expensive repartition operation. For a Big
Data analysis system, however, it is impossible to have data
placements aligned for all possible queries. Therefore, to
reap the greatest benefit and attain the greatest value, the
Big Data analysis system should align data placements for
the most common and frequent queries.

In Earth Science, analysis scenarios predominantly
require spatiotemporal coincidence. For example, when
investigating precipitation events or systems, we almost
always need the environment conditions for the same
location and same time (i.e. spatiotemporal coincidence) of
the events or systems. Unfortunately, this simple concept of
data placement alignment presents a formidable challenge in

Platform Rpl. Q1 Q2
Q3 Q4

Q5
cross-join join cross-join join

SciDB None 0.51 0.79 0.43 0.34 0.23 0.62 0.76
SciDB 3X/2X 0.53 0.91 0.65 0.31 0.21 0.88 0.70

Spark+HDFS 3X/2X 0.37 1.25 0.32 — 0.23 0.40 —
Spark+Cassandra 3X/2X 0.30 1.19 0.36 — 0.24 0.36 —

Table 3. Approximate throughput comparison.

practice and in implementation, because a diverse set of data
models exists for representing Earth Science data. One of
our research goals is thus to find and identify an effective
indexing scheme that 1) can be applied to, preferably, all
data models, 2) supports data placement alignment, and 2)
exerts little or no negative impact on data analysis
performance, all at the same time. Our research indicates
that Hierarchical Triangular Mesh (HTM) [24] is a
promising approach that meets the requirements. The
evaluation of HTM performance in various Earth Science
data analysis scenarios is thus an important component of
our future efforts.

ACKNOWLEDGEMENT
This work was primarily funded by the NASA Earth

Science Technology Office (ESTO) through its Advanced
Information Systems Technology (AIST) Program. It is also
partially supported by the National Science Foundation’s
(NSF) EarthCube program.

REFERENCES
[1] Dean, J., Ghemawat, S. (2004). MapReduce: Simplified Data

Processing on Large Clusters. clusters. In Proceedings of Operating
Systems Design and Implementation (OSDI). San Francisco, CA.
137-150.

[2] Apache Hadoop. (2014, September 12). In Wikipedia, The Free
Encyclopedia. Retrieved 03:21, August 23, 2014, from
http://en.wikipedia.org/w/index.php?title=Apache_Hadoop&oldid=62
5239666

[3] Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., DeWitt, D. J.,
Madden, S., & Stonebraker, M. (2009, June). A comparison of
approaches to large-scale data analysis. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of data
(pp. 165-178). ACM.

[4] Stonebraker, M., Abadi, D., DeWitt, D. J., Madden, S., Paulson, E.,
Pavlo, A., Rasin, A. (2010 January). MapReduce and Parallel
DBMSs: Friends or foes? Comm. of the ACM, 53(1), 64-71.

[5] Stonebraker, M., Brown, P., Zhang, D., and Becla, J., (2013 May-
June). SciDB: A Database Management System for Applications with
Complex Analytics. Computing in Science & Engineering, 15(3), 54-
62.

[6] Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K.,
Wang, Z., Illingworth, A. J., O’Connor, E. J. Rossow, W. B., Durden,
S. L., Miller, S. D., Austin, R. T., Benedetti, A., Mitrescu, C., and the
CloudSat Science Team (2002 December). The CloudSat mission and
the A-Train: A new dimension of space-based observations of clouds
and precipitation. Bull, Amer. Meteor. Soc., 83(12), 1771-1790

[7] Simpson, J., Adler, R.F., North, G.R. (1988, March). A proposed
Tropical Rainfall Measuring Mission (TRMM) satellite. Bull, Amer.
Meteor. Soc., 69(3), 278-295.

[8] Kummerow, C., Barnes, W., Kozu, T., Shiue, J., Simpson, J. (1998
June). The Tropical Rainfall Measuring Mission (TRMM) sensor
package. J. Atmos. Oceanic Technol. 15, 809-817.

[9] Soroush, E., Balazinska, M., & Wang, D. (2011, June). Arraystore: a
storage manager for complex parallel array processing. In
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data (pp. 253-264). ACM.

[10] FLANN - Fast Library for Approximate Nearest Neighbors,
http://www.cs.ubc.ca/research/flann/

[11] kd-tree. (n.d.). - RoboWiki. Retrieved May 12, 2014, from
http://robowiki.net/wiki/Kd-tree.

[12] Stonebraker, M. (1986). The case for shared nothing. IEEE Database
Eng. Bull., 9(1), 4-9.

[13] Stonebraker, M., Brown, P., Poliakov, A., & Raman, S. (2011,
January). The architecture of SciDB. In Scientific and Statistical
Database Management (pp. 1-16). Springer Berlin Heidelberg.

[14] Paradigm4, Inc. | Big Analytics. (n.d.). Paradigm4 Inc. Retrieved July
12, 2016, from http://www.paradigm4.com

[15] K. Doan, A. Oloso, K.-S. Kuo, T. Clune, (2014), Performance
Comparison of Big-Data Technologies in Locating Intersections in
Satellite Ground Tracks, 2014 ASE BigData/SocialInformatics/
PASSAT/BioMedCom Conference, December 14-16, 2014, Harvard
University, Cambridge, MA, USA.

[16] A. Oloso, K.-S. Kuo, T. Clune, P. Brown, and A. Poliakov,
“Implementing Connected Component Labeling as a User Defined
Operator for SciDB,” 9th Extremely Large Databases Conference
(XLDB 2016), 24-26 May 2016, Menlo Park CA http://www-
conf.slac.stanford.edu/xldb2016/

[17] K.-S. Kuo, A. Oloso, Doan, K., T. Clune, Yu, H. Implications Of
Data Placement Strategy To Big Data Technologies Based On
Shared-Nothing Architecture For Geosciences. IGARSS 2016.

[18] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica,
I. (2010). Spark: cluster computing with working sets. HotCloud, 10,
10-10.

[19] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley,
M., ... & Stoica, I. (2012, April). Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In
Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation (pp. 2-2). USENIX Association.

[20] Lakshman, A., & Malik, P. (2010). Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Systems Review,
44(2), 35-40.

[21] SciDB Documentation. Retrieved July 12, 2016 from
http://www.paradigm4.com/resources/documentation/

[22] Bosilovich, M. G., R. Lucchesi, and M. Suarez. "MERRA-2: File
specification." (2015).

[23] Zhang, Jian, et al. "National Mosaic and Multi-Sensor QPE (NMQ)
system: Description, results, and future plans." Bulletin of the
American Meteorological Society 92.10 (2011): 1321.

[24] Rilee, M., Kwo-sen, Kuo., Clune, T., Oloso, A. Addressing the Big-
Earth-Data Variety Challenge with the Hierarchical Triangular Mesh.
IEEE BigData (2016).

