arXiv:1610.00790v1 [cs.NE] 3 Oct 2016

Adaptive Neuron Apoptosis for Accelerating Deep
Learning on Large Scale Systems

Charles Siegel, Jeff Daily, Abhinav Vishnu
Pacific Northwest National Laboratory
Richland, WA 99352
charles.siegel @pnnl.gov, jeff.daily @pnnl.gov, abhinav.vishnu.pnnl.gov

Abstract—We present novel techniques to accelerate the con-
vergence of Deep Learning algorithms by conducting low over-
head removal of redundant neurons — apoptosis of neurons —
which do not contribute to model learning, during the training
phase itself. We provide in-depth theoretical underpinnings of
our heuristics (bounding accuracy loss and handling apoptosis
of several neuron types), and present the methods to conduct
adaptive neuron apoptosis. Specifically, we are able to improve
the training time for several datasets by 2-3x, while reducing
the number of parameters by up to 30x (4-5x on average) on
datasets such as ImageNet classification. For the Higgs Boson
dataset, our implementation improves the accuracy (measured by
Area Under Curve (AUC)) for classification from 0.88/1 to 0.94/1,
while reducing the number of parameters by 3x in comparison
to existing literature. The proposed methods achieve a 2.44x
speedup in comparison to the default (no apoptosis) algorithm.

I. INTRODUCTION

Deep Learning algorithms emulate computation structure of
a brain by learning models using neurons and their intercon-
nections (synapses, also known as parameters/weights) [1]].
Using a cascade of neurons, Deep Learning algorithms are
known to learn complex non-linear functions. These functions
can be applied to both supervised (input dataset with ground
truth labels) and unsupervised (input data with no labels)
problems. Naturally, Deep Learning algorithms are being
applied to several domains including Computer Vision [2],
Speech Recognition [3], and High Energy Physics [4]].

An important aspect of Deep Learning algorithms is the
topology of a Neural Network (used interchangeably with
Deep Learning with rest of the paper). A candidate topology
may have a single input and an output layer, with possibly
several hidden layers. Convolutional Neural Networks (CNN)
— a class of Deep Learning algorithms — may have several
convolutional layers, followed by several fully-connected lay-
ers. In practice, the neurons and synapses are implemented by
using matrices, where each row/column represents a neuron
and each element represents the strength (weight) of a synapse.
The output of a neural network is the weight matrices, which
may be used for Machine Learning tasks such as classification,
or clustering.

Usually, a neural network topology is user-specified, which
includes the number of hidden layers and number of neurons
in each layer (an example is shown in Figure [T] (a)). Deeper
neural networks (with more layers) are used for model gen-
eration from increasingly complex datasets, possibly learning

complex non-linear functions. Bigger networks — which have
larger number of neurons per layer — may also be used in
addition to deeper networks for this purpose.

However, deeper and/or bigger networks do not necessarily
provide better models. With increasing number of network
parameters (the overall number of synapses), the training time
per epoch increases significantly [5], [6]. Deeper networks
tend to suffer from problems such as vanishing gradients [7],
where the weights of network parameters change slowly. In
addition, deeper networks are known to cause overfitting — a
scenario in which the model has learned very well from the
training set, but does not generalize well on new samples. This
scenario generally occurs when a neural network has learned
a significantly more complex function than implied by the
training set. A few possible solutions such as Dropout [8]] exist
— but they do not reduce the overall time to solution. Lastly,
larger number of parameters have prohibitive storage and
computational requirements during the testing phase (when
the model is applied on new data) — which is problematic for
deployment on power/memory constrained devices.

A possible solution to this problem is to prune the neu-
ral network. Usually, this is conducted after the training is
completed by removing unnecessary weights (and possibly)
neurons [9]], [10], [11]. After pruning, the network is re-trained
to stabilize the parameters [10]] (The scenario is shown on the
right of Figure[T(b)). Usually pruning implies that unnecessary
parameters (and in a few cases neurons) may be removed,
without accuracy loss.

However, there are several shortcomings of existing ap-
proaches: 1) Re-training is a time-consuming process. As an
example, Han er al. report a slowdown of up to 2.5x when
re-training after pruning [10]. This is especially problem-
atic for large datasets, where increasing the training time is
unattractive. 2) Another problem with the current approaches
is the lack of theoretical underpinnings for network pruning.
Usually, this is not required for state of the art networks,
because they use the final network as starting point for re-
training. After each sub-step of pruning and re-training, the
accuracy is compared against the reference network — to ensure
no empirical loss of accuracy. However, this approach is not
always efficient, since this exploration is is expensive in time
due to several re-training steps.

Our objective in this paper is to remove unnecessary neu-
rons (and hence synapses) for Deep Learning algorithms by

Proposed Adaptive
Pruning During the
Training Phase

State of the art Pruning
After training, requiring
Re-training

Training Phase

v

Re-training Phase

(b)

Fig. 1. (a) An example of a Deep Neural Network (DNN) with two hidden layers (color coded - blue) (b) Comparison of our approach (adaptive apoptosis
during the training phase) to state of the art approaches, which conduct removal of non-contributing synapses after training is over. Unlike state of the

art approaches, the proposed approach does not require re-training

adaptively removing redundant neurons — neuron apoptosis —
during the training phase itself, while achieving similar accu-
racy as achieved without apoptosis using the original neural
network. Unlike existing approaches, our adaptive apoptosis
approach reduces the overall training time — which makes it a
very attractive solution for reducing the computational/storage
requirements, while gaining speedup during the training phase
itself.

A. Contributions:

Specifically, we make the following contributions in this

paper:

« We propose novel heuristics to adaptively conduct neuron
apoptosis during the training phase. We provide an in-
depth discussion of the point of initial apoptosis, subse-
quent apoptosis and degree of apoptosis. Our heuristics
rely on the intuition of the basic structure of the loss
function (independent of the dataset), in addition to
heuristics, which consider linear apoptosis.

o We provide theoretical underpinnings of our proposed
solution. These are intended to bound the loss of accuracy
incurred by neuron apoptosis and address challenges
of considering input/output synapses to neuron types
for apoptosis. Unlike existing literature — where neuron
pruning is executed after training to prevent accuracy
loss — this is a critical step to ensure the correctness of
proposed heuristics.

o We extend Caffe to use MPI (similar to FireCaffe [12]) —
so that the execution may be conducted on supercomput-
ers, and other large scale systems (such as cloud comput-
ing systems). With these extensions, our implementations
is able to utilize large scale clusters using native imple-
mentations with multi-core systems and accelerators such
as GPUs.

o« We evaluate our proposed implementations with two
clusters — one connected with Intel Haswell and In-
finiBand, and other connected with nVIDIA GPUs and
InfiniBand. We use several large datasets for evaluation
using multiple nodes on each cluster. Our evaluation

indicates a reduction of up to 30x in overall parameters,
a speedup of 2-3x — unlike existing approaches which
cause slowdown.

A very important science contribution of our paper is the im-
provement in classification accuracy of Higgs Boson Dataset
(represented by Receiver Operating Curve (ROC) - Area Under
Curve (AUC)) published in the literature by Sadowski et
al. [4]. We are able to improve the AUC by 6 percentage
points (from 0.88/1 to 0.94/1), while reducing the number
of parameters by 3x and obtaining a speedup of 2.44x in
comparison to the default (no apoptosis) algorithm. Another
important artifact of our approach is the reduction in space
and computational requirements of the neural networks (up
to 30x), which can be realized without incurring a penalty in
training time.

The rest of the paper is organized as follows: In section [II]
we present related work on neural network topologies. In
section we provide a brief introduction to neural networks
and Google TensorFlow. In section we present a solution
space to the problem of neuron apoptosis, possible design
choices, heuristics and perceived benefits. We also present the-
oretical underpinnings of our proposed solutions (section [V},
and provide a proof on bounds to accuracy loss. We present
detailed performance evaluation in section and present
conclusions in section

II. RELATED WORK

We split the related work section on Deep Learning algo-
rithms and implementations in research on large scale systems
and pruning/compression algorithms.

A. Systems (Multi-core/Many-core/Large Scale) Research

The most widely used algorithm for training Deep Learn-
ing algorithms is batch gradient descent. Several imple-
mentations of batch gradient descent methods are available
for sequential, multi-core and many-core systems such as
GPUs. The most prominent implementations are Caffe [13]]
(GPUs), Warp-CTC (GPUs), Theano [[14]], [15] (CPUs/GPUs),
Torch [16] (CPUs/GPUs), and Google TensorFlow [17] which

uses nVIDIA CUDA Deep Neural Network (cuDNN) and
a multi-threaded implementation of batch gradient descent
methods.

Caffe has emerged as one of the leading Deep Learning
software, which can be used for developing novel extensions,
such as ones proposed in this paper. Caffe supports execution
on single node (connected with several GPUs) and recent
extensions include support on Intel systems. While we conduct
the proposed research with Caffe, the proposed extensions can
also be applied with TensorFlow.

Classical neural networks were shallow (1-2 layers), where
batch gradient descent methods worked well. However, with
deeper networks, the algorithms frequently suffered from the
vanishing gradient problem [18]). The standard algorithm
for training them (described in section fails because the
gradients become smaller by several orders of magnitude as
the network becomes deeper. This problem was solved in [19]
and [20], who demonstrated that a network can be trained one
layer at a time with autoencoders [21], and then put it together
into a single network for classification [22]. Another solution,
that we will use, are rectified linear units, which have become
the standard in the field, though our results are valid for other
types of neurons as well. These optimizations are available in
Caffe and other Deep Learning packages.

B. Neural Network Pruning/Compression

Network pruning is typically considered for reducing the
memory and computational requirements for execution on em-
bedded devices. Compression algorithms are then applied on
these pruned networks for realizing further memory savings.

In biology, apoptosis — the death of neurons — and its
inverse neurogenesis, have been studied [23]], and it has been
determined that these processes can aid in learning effectively.
Chambers et al. modeled the apoptosis/neurogenesis process
by re-initializing the weights of randomly selected neurons
periodically. Their study concluded that periodic apoptosis can
improve the performance of a network. This forms the basis
of our paper — by conducting adaptive apoptosis during the
training phase.

Several researchers have conducted offline neuron apoptosis
— after the completion of the training phase. This is in sharp
contrast to our proposed approach, in which apoptosis is con-
ducted during the training phase itself, which reduces the over-
all training time, while reducing the space requirements. For
offline apoptosis, researchers have conducted neuron apoptosis
due to a lack of computational resources [24], regularization
to prevent overfitting [25], which provides algorithms for
removing synapses and possibly neurons. Kamruzzman et al.
have demonstrated similar results [26]], where the fundamental
objective is to remove redundant weights, and possibly neu-
rons. The pruning has been also applied for generating human-
usable rules for classification [27]]. Other researchers have
considered temporary neuron pruning — typically referred as
Dropout, proposed by Hinton et al. [28]. A selective Dropout
is proposed by other authors [29]. However, since the Dropout

is temporary, they do not affect the final topology of the neural
network — although they help with regularization.

Recently, Han et al. have proposed methods to remove non-
contributing weights after the training phase [10]. However,
this incurs significant slowdown (up to 2.5x). Other approaches
— such as HashedNets — compress the neural networks without
removing weights/neurons [30]. Murray and Chiang have pro-
posed methods to remove non-contributing synapses (which
are significantly different from our approach of removing
redundant neurons) [31]], [32]]. Since we are primarily focused
on removing redundant neurons adaptively, we consider our
approaches to be complimentary to their approach.

III. FUNDAMENTALS
A. Neural Networks

Neural Networks are a class of Machine Learning algo-
rithms, which emulate the computational structure of the brain
to learn nonlinear functions. The basic unit of a neural network
is a neuron, and neurons are interconnected using synapses.

1) Activation Functions: There are several common nonlin-
ear activation functions for neural networks. In this paper, we
will specifically focus on the two most widely used, rectified
linear units (ReLU) and sigmoid units.

1
sigmoid(z) = T o= (1)
ReLU(z) = max(0,z))

2) Convolutional Neural Networks: Convolutional Neural
Networks (CNN) are a widely used type of neural network,
which are specifically designed to preserve structure in the
data, such as the sequence of sounds in speech data or the
relative positions of pixels and features in an image.

The fundamental unit of computation in CNN is a convo-
lution — which are arrays in some dimension — unlike vectors
in DNN. Each neuron in a convolution layer considers input
from a small window (such as 3x3, 5x5) in an image, applies
a convolution and computes a value, which is an indirect
representation of the confidence of the feature detected by
the neuron. The window based computational structure is
useful for structured datasets, which can use a cascade of
convolutional layers to incrementally generate more complex
features. An example of CNN is shown in Figure [2] and
Figure [3] represents the features learned by a CNN using a
cascade of convolution layers. Besides convolution layers, a
neural network may also consist of pooling layers, which are
also used for alleviating overfitting to the presence of a feature
in an image.

B. Caffe

Caffe [13] is a popular software package which provides
abstractions for building neural networks of a wide range
of topologies and training them with a wide range of opti-
mizers. Caffe provides abstractions of operations on tensors
(multi-dimensional arrays), which are used for implementing
Deep Learning algorithms. Caffe builds a computational graph

(3: fmaps
16@10x10

54: Lmaps
(1: Feature Maps 16@5x5
INPUT 6@28x28

mi2

G5z Layer g, | qyer

A Fmaps Mg OUTRUTI0

6@14x14

N

B+]| -~~~ "2 X
- - B GSEa oo Ll ?
I [I I |

Canvolutions bsampli C i b li W Full
Full Connection
Cannection

Chairs

Elephants

ASN WY
NZB=O S
“AIRANN

=INEmE

ASNNIF
bl LN
24NN

=[NSlmS

Fig. 2. An example of CNN execution on letter “A” from MNIST with Fig. 3. Pictorial representation of features in 3 layers of a CNN [34].

LeNet-5 [33]

which consists of an input tensor followed by tensors for each
individual hidden layer and output. We choose Caffe because it
is heavily optimized, and can be modified effectively through
both the C++ backend and a Python interface.

Caffe’s runtime is implemented using C++ — which makes it
attractive for extracting native performance. We have modified
this code for distributed memory implementation on large scale
systems, using MPI to natively use network hardware and
obtain optimal performance. This is similar to FireCaffe [35],
another distributed memory implementation of Caffe. Ad-
ditionally, Caffe abstracts GPU computations by leveraging
nVIDIA CUDA Deep Neural Network Library (cuDNN). As
a result, the implementations are able to use large scale sys-
tems on traditional multi-core systems and many-core systems
connected with GPUs.

IV. NEURON APOPTOSIS SOLUTION SPACE

In this section, we present a solution space for neuron
apoptosis. There are several important design considerations:
the point of initial apoptosis, when to conduct the subsequent
apoptosis, apoptosis termination and degree of apoptosis. We
present design considerations for each of these topics.

A. Point of Initial Apoptosis

The intuition behind initial apoptosis comes from the mam-
malian brain. A significant apoptosis at any stage may have
drastic consequences — especially one very early or late in
life. However, the mammalian brain loses neurons periodically
while retaining the fidelity of previously learned models (such
as object, taste and voice recognition).

1) Quarter-Life: We take inspiration from particle physics
to consider half-life to be the point of initial apoptosis. It is
possible to calculate half-life statically (by using the number
of epochs/training time provided by the user — generally as
an input). However, with initial point as half-life, we would
possibly be conducting apoptosis at end of life. Hence, we
instead consider the point of initial apoptosis to be quarter-

life.

Notice the increasing complexity of features — although first level features
are the same

2) Random: 1t is also possible to consider random time-
stamp/epoch during training as the initial point of apoptosis.
In most cases, if the initial apoptosis occurs early, it would
lead to significant pruning with potentially significant damage
to the model accuracy. In other cases (such as quarter-life/half-
life/end of training), it would generate a high fidelity model,
albeit without observing speedup in training time.

3) End of Training: Previously proposed approaches per-
form apoptosis at the end of training. These techniques remove
synapses that fail to contribute, rather than redundant neurons.
However, this approach requires a re-training phase, as in Han
et al. [10]. To ensure that training time does not increase, we
do not pursue this heuristic.

B. Subsequent Apoptosis

Another important design consideration is when to conduct
subsequent apoptosis. We present intuition behind our design
choices here:

1) Fixed/Random: An intuitive heuristic is to conduct sub-
sequent apoptosis at fixed/random intervals. While there are
several advantages to fixed/random apoptosis, a high frequency
would result in many distance calculations, most of which will
not result in any significant apoptosis (as the weights would
not change dramatically). On the other hand, a low frequency
would likely conduct less apoptosis of neurons, but would
allow for a more significant change in weights when compared
to a high frequency.

2) Logarithmic: We draw inspiration from the properties
of loss functions in Deep Learning algorithms for making
a case of logarithmic number of apoptoses. In general, the
decay of the loss function can be well represented using an
exponential decay function. Hence, it is expected that the
subsequent apoptosis at logarithmic steps will handle half-life
of errors. Additionally, with logarithmic number of apoptosis,
the overall time spent in distance calculations would also be
minimized.

C. Temporal Degree of Apoptosis

Another design consideration is the temporal degree of
apoptosis. Essentially, it is important to consider whether

apoptosis should remain fixed, become increasingly aggressive
or conservative:

1) Fixed: The default choice is to use a fixed degree of
apoptosis. The expectation with this approach is to ensure that
rate of redundant neuron pruning is fixed over time.

2) Increasingly Aggressive: The intuition behind increas-
ingly aggressive apoptosis is that the overall possibility to
prune redundant neurons is diminished — as the termination
criteria is reached. The rate at which degree increases itself
has several choices (such as fixed-linear, random and others).
For simplicity, we propose to increase the degree of apoptosis
linearly — although without loss of generality, other functions
may be applied as well.

3) Increasingly Conservative: On the contrary, the intuition
behind conservative apoptosis is to save the remaining neurons
(after initial apoptosis) as much as possible, especially if
the early apoptosis already prunes the majority of redundant
neurons. Without loss of generality, we decrease the degree of
apoptosis with number of apoptosis steps.

D. Modeling Space-Time Complexity

An important aspect of apoptosis is to ensure that the
overhead of the proposed heuristics is negligible in terms of
space and time complexity. For each of the proposed heuristics
earlier, the space complexity is O(1), since we only need to
save a few scalars (such as parameters to a linear function
for degree of apoptosis). Hence, the space overhead of our
approach is fairly limited.

At each apoptosis step, we need to prune the redundant
neurons in each layer. Let n; represent the number of neurons
in the 4, layer. Hence we need to conduct n;2 calculations at
each layer (for each inter-neuron distance calculation). This is
particularly scalable in for multiple reasons: 1) The distance
calculation is computed sporadically (such as only log number
of iterations) 2) With each apoptosis, is it expected that a
significant number of redundant neurons are removed (n; <
n;), hence the subsequent distance calculations are relatively
insignificant — and easily amortized over the cost of overall
training and benefits received by adaptive apoptosis during the
training phase.

E. Other Design Considerations

1) Incoming vs. Outgoing Synapses: Every neuron has both
incoming and outgoing synapses, and they play different roles
(an example is shown in Figure [). In sigmoid neurons,
both sets of synapses can be used for apoptosis. With ReLU
neurons, however, only the incoming synapses can be used.
This is because no matter how similar the outgoing synapses,
if the incoming ones are very different, then for a large range
of data, one of the neurons will output zero and the other
will output an arbitrarily large positive number. In section
we give proofs of this restriction and on the amount of error
introduced by these operations.

Fig. 4. Neurons n1 and ngz have similar incoming synapses and n1 and ng4
have similar outgoing synapses. In section [V] we show that in both sigmoid
and ReLLU we can remove n3, but only in sigmoid can we remove n4.

V. PROOFS FOR SELECTING INPUT/OUTPUT SYNAPSES
AND BOUNDING ACCURACY LOSS

For any given neuron n, let v denote the incoming weights
which affect the argument of the function, and let w denote
the outgoing weights, which are the coefficients applied to the
value of the function before being input into the next layer
of neurons. We will use - to represent dot product and ® to
represent component-wise multiplication of a vector with a
scalar or another vector.

A. Selecting Input/Output Synapses

Proposition 1. Let ni and no be sigmoid neurons, v, and v
their incoming weights and w1 and wo their outgoing weights.
Then

w @o(v-x)+waOo(ve-2)mweo(v-x) (3)

holds for all x if either
1) v1 = wvy. Then w = wy + wy and v = vy.
2) wy = aws. Then w = w1 +wy and v = C“’Ojijlw so long
as a # —1.

Proof. Equation [3| is a system of equations in v and w.
If we take a linear approximation of o, which is given by
o(z) = 1 + 24 O(2?), we transform it into a linear system
of equations. Equating constants implies that w = w; + wo
(and note that this also means that far from the origin, the
approximation error will be very small, because sigmoid has
horizontal asymptotes.) Hence:

w1®v1-x+w2®v1-az:(w1+w2)®v-x 4)

We can solve this for each component of the vector v, which

gives us

wW1,;V1,k + W2 V2 k
vp = —2 AL @)
wy,j + wa,j

which must hold for all the components w; ; of the vectors
wy and ws, simultaneously.

Equation [3| is only possible if the w’s cancel or if both of
them have all entries the same, which is unlikely. The two
conditions in the statement, that v; = vo or w; = aws, both
result in cancellations, and upon simplifying, we get the value
for v given. O

Below, we will compute a bound for the error in the case of
similar incoming weights (vy & vs). The situation for outgoing
weights (w1 & ws) is similar, but bounded by larger error in
the worst case (proof not included due to space limitations). In

practice, though, this bound is not a very tight one. In section
IVII] we will use both forms of apoptosis for sigmoid neurons,
though we remark that this larger error bound does become a
problem when attempting to do apoptosis on input features.

The situation for ReLU neurons is simpler. No single ReL.U
neuron can closely approximate a general sum of two ReLU
neurons, an an extreme example of this failure is

ReLU(z) + ReLU(—xz) = |z (6)

However, if the two ReLU neurons have incoming weight
vectors pointing in almost the same direction, so that one is
approximately a positive scalar multiple of the other, we have

Proposition 2. Let n1,ns be ReLU neurons with incoming

weights vy, ve and outgoing weights w1, wo. Then, if v =~ avy
where o > 0, we have

w1 ® ReLU(vy -) + w2 ©® ReLU(ve -) = @)

(w1 + aws) ©® ReLU(v; -) (3)

Proof. The statement follows from the approximate sequence
of equations

wy © ReLU(vy -) + we ©® ReLU(vg -) 9)
w; ©® max(0,v1 -) + we ©max(0,v2-z) =~ (10)
w1 @ max(0,v; -) + wy ©@ max(0,avy -x) = (11)
w1 @ max(0,v; -) + wy © amax(0,v; - x) = (12)
(w1 + aws) @ max(0, vy - x) (13)

where error is only introduced in the substitution step where
vg is replaced by awv;. O

This situation replaces a pair of half-planes where the
neurons are active, with a single half-plane of activity, and
because the two half-planes are very close together, this is a
good approximation.

The above two propositions show that we can remove
sigmoid neurons that have incoming weights nearly identical to
another sigmoid neuron. We can also remove sigmoid neurons
where outgoing weights are a multiple of the outgoing weights
of another neuron (except -1). ReLU neurons whose incoming
weights are a positive multiple of those of another may be
removed as well, with minimal change to the output function.

B. Proofs on Error Bounds

In each of these cases, we can understand error bounds for
what happens after apoptosis by looking at how different the
initial and final output are.

Proposition 3. Let vy,vs be incoming weight vectors, and
assume that |va — avy| < € for some a > 0. Then

| ReLU(v; -) + ReLU(v2 -) — (1 + o) ReLU(v; - z)|

is at most
max(alvi[[z], [ve]|z], |z€).

Proof. The quantity in question is

ReLU(v; -) + ReLU(vg -) — (1 4+ o) ReLU(vy - x) (14)
max(0, vy -) + max(0,vg -) — (1 +) max(0, vy - z) (15)

max(0, vg -) — max(0, avy - x) (16)

Here, we encounter the difficulty of the shape of the
ReLU neuron, and have to do a case study. There are four
possibilities:

1) if v -2 <0 and vy - x < 0, then both are zero so the

difference is 0.

2) if vg -2 <0 and vy - & > 0, then max(0,vy - x) = 0 so

the difference is |av; - x| < vy ||z]

3) if vg-2 >0 and vy - <0, then max(0,v; -) =0 so

the difference is |vy - x| < |ua]|]

4) if vg-x > 0 and v -2 > 0, then the difference is |vg -2 —

avy - z| = |(vg — avy) - x|, which is |ve — avy||z|| cos 0].
This is then at most |z|e.

O

The dependence on |z| in this is a manifestation of the fact
that ReLU does not saturate, and can grow without bound.
The worst error regions, though, are where only one of v; - x
and v9 - x are positive, but these regions are small (measured
in angle) because vy closely approximates awi, so they are
nearly in the same direction in the first place. The fact that
the error can be without bound for arbitrary data does not arise
for sigmoid, which saturates.

We note that the same logic as in case 4 of Proposition [3|
implies that if |v; — va| < €, then

o1 - — vy - x| < |zle (17)
Proposition 4. Let |v; — va| < €. Then
lwr @o(v1-z)+wa@o(ve-x) — (w1 +we) ®o(vy-x)| (18)

is at most
|z||ws| max (| exp(vy -) — exp(vy - = + €|z|)])
(exp(vy - @) + 1)(exp(ve -) + 1)

19)

We note that the factors including |x| in the numerator are
dominated by the ones in the denominator, so as expected, for
large inputs, the horizontal asymptotes of sigmoid cause the
error to be very small.

Proof. We proceed in stages. First, we note that the terms
involving w; cancel, giving us |we @ o (vy-x) —we @ (vy -).
We can pull out the wo, to get the quantity |ws||o(ve -) —
o(vy -).

As |v; — va] < €, equation tells us that |ve -z — vy -
x| < |zle. So, if @ = vy - x and b = vy - x, we must only
determine the error in |o(a) — o(b)| for |a — b] < €|z|. But
jo(a) = o(b)] = rreblel POl and |exp(a) — exp(b)]
must at most be max (| exp(b) —exp(b=+|x|e)|), because a and
b are close together, which gives the result. [

Even for a fixed e, this derivation may result in significant
error due to the factor of |ws|, in practice |wy| will not be

so much larger than |v;| and |vs| that the exponentials in the
denominator will not cause the error to be small.

In practical use, however, fixing a single € is suboptimal.
This is due in part to the vanishing gradient problem inherent
in any back-propagation trained neural network. Because the
neurons in different layers will evolve in weight-space at
different rates, different values of ¢ would be needed for each
layer. An alternate approach is to define a scaling factor, f,
and for each neuron n with incoming weights v and outgoing
weights w, instead of looking for n’ with v' and w’ such
that |[v — v/| < € or |[w — w'| < €, we look for those with
o — '] < [o]/f or |w—w'| < [wl/f.

Fig. 5. Two pairs of neurons which are unit distance apart, but neurons p2
and p3 are closer

This handles several problems, most prominently the dimen-
sionality problem. Randomly chosen points are expected to be
farther apart in higher dimensional spaces. As they will also
be farther from the origin, this also allows the dimension to
affect the range being checked for apoptosis.

In Section when we conduct performance evaluation,
we will have five levels of apoptosis. The normal level will
have angle f = 1.75. The others will be conservative,
very conservative, aggressive and very aggressive, with f =
2,2.5,1.5 and 1.25 respectively.

VI. LARGE SCALE PARALLELIZATION

In this section, we present the solution space in distributed
memory implementation — including multi-core and many-
core architectures. Our objective is to extract the best possible
performance — while leveraging the accelerator based systems
(such as GPUs) and traditional multi-core architectures as well,
using multi-threading.

Our objective is also to leverage existing Deep Learning
software — such as Caffe/TensorFlow/Theano — for our large
scale implementations of the proposed heuristics, so that ex-
isting optimizations (such as Momentum, AdaGrad, Dropout)
can be combined with our own heuristics. We specifically use
Caffe, since it is an easily extensible dataflow programming
model, with already existing implementations on GPUs using
cuDNN and multi-threading implementations for multi-core
architectures.

A. Caffe Runtime Changes

Caffe sets up a solver and a network, the latter contains the
data and the weights of the model whereas the former dictates
the rules for performing gradient descent. Our implementation

is directly in the Caffe runtime, which speeds up performance
significantly compared to implementation in the Python inter-
face.

B. Distributed Memory Parallelization

We model our distributed memory implementation on the
existing Caffe multi-GPU parallelization. As such, our im-
plementation is based on data parallelism, where the model
is replicated and data is distributed, rather than model paral-
lelism, where the model is distributed across multiple nodes.
We use MPI [6], [36l], [37], which can use high performance
interconnects, like InfiniBand, natively, making it suitable for
use with supercomputers.

The solver has to be recreated after each apoptosis, but
this is not a computationally expensive procedure. Thanks to
the use of the Python interface, the data does not need to
be loaded every time, which leaves the memory requirements
approximately the same as if one solver is used continuously,
and cuts the time to recreate the solver down to a negligable
factor compared to training time.

VII. PERFORMANCE EVALUATION

In this section, we present a detailed evaluation of the
proposed heuristics on two InfiniBand clusters — one connected
with Intel Haswell CPUs and other connected with nVIDIA
Tesla K40m GPUs.

A. Hardware and Software Details

1) Hardware: Our Testbed consists of 27 compute nodes,
where each compute node has two sockets, and each socket is
10-core Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz. Each
compute node is connected with 750 GB of main memory,
and InfiniBand QDR interconnect. Six compute nodes are also
connected with nVIDIA Tesla k40m GPUs. We refer to our
multi-core cluster as CPU cluster and other testbed as GPU
cluster.

2) Software: We use OpenMPI v1.8.3 for performance
evaluation with Intel compiler 16.0.1. For using GPUs, we use
cuDNN v3, CUDA v7.0.28, and a version of Caffe modified
to work with MPI.

B. Datasets

We consider several well studied datasets for performance
evaluation. Our primary large datasets are Higgs Boson [4]]
classification dataset (11M samples) and well studied Ima-
geNet [2] classification datasets (=1.3M images). The evalu-
ation also includes Handwritten Digits recognition (MNIST)
to establish a baseline.

C. MNIST

MNIST is a well studied dataset in literature. We use
MNIST as one of the prominent datasets for studying the
impact of a large combination of heuristics proposed in
section V] We also study the scaling effect on CPU and GPU
cluster. For scaling, we utilize two main changes: 1) A single
process per and several threads per node for better memory
utilization and lesser replication of model 2) Higher learning

rate (0.1) to mitigate the effect of averaging the weights across
compute nodes.

Figures [and [7] show the results for CPU and GPU clusters
respectively. In Figure [f] we observe an overall speedup of
3.2x in comparison to default algorithm with Normal apoptosis
— with no loss of accuracy and 11x reduction in parameters.
The speedup and parameter reduction for aggressive apoptosis
is higher, but it leads to a loss of more than 5% accuracy — so
we do not consider it as a viable alternative. We observe an
accuracy of 96.5-97% accuracy for each of these executions
(except aggressive) — which matches with well published
literature for DNN and MNIST. For evaluation with CNN, we
use our GPU cluster as shown in Figure[/| We use 6 GPUs and
compare the speedup and parameter reduction. We observe a
3x reduction in parameters for normal apoptosis, accuracy ==
99.2% — which is state of the art for CNN executions.

Using MNIST as a reference set, for rest of the evaluation,
we use quarter-life with logarithmic subsequent apoptosis, and
fixed degree of apoptosis. Unless specified otherwise, we use
normal factor (1.75) for apoptosis.

25
21
20
15
15
11
10 o 8
5 o8 4.1 4 3 5 >
s R
o | [|
Default Conser. Normal Aggressive
m20 w40 w80 mParameter Reduction

Fig. 6. Relative Speedup and Parameter Reduction to Default using DNN
with 512x512 network with MNIST

4.5

4
4
3.5 3
3
2.4
2.5
2 1.4 Y
1.5 L 1.2
1
0

Default Conser. Normal Aggressive

Speedup M Par. Reduction

Fig. 7. Relative Speedup and Parameter Reduction using CNN with 32x64
Conv. Layers and 256 Fully connected layer network with
MNIST and 6 GPUs

D. Higgs Boson Particle Classification

The Higgs Boson particle classification dataset is a critical
dataset used for model generation and discovery of exotic
particles. Sadowski er al. published and studied the dataset
with Deep Learning algorithms using a three layer DNN
(500x500x500) network with neuron dropout [4]. Our ob-
jective with this workload is two-fold: 1) Reduce the training
time to learn the model, while conducting neuron apoptosis 2)
maintaining — and possibly improving — accuracy (measured
using area under curve (AUC), which is the probability that
a randomly selected positive sample will be rated higher than
a randomly selected negative example), as suggested by Sad-
owski et al.. For this purpose, we start with a bigger network
to possibly improve accuracy — while utilizing apoptosis to
remove redundant neurons. We execute this dataset using up
to 540 cores.

Figure [§] shows the results. With aggressive apoptosis, we
are able to observe a speedup of 6x — while no reduction in
Area Under Curve (AUC). We match the AUC reported by
Sadowski et al. [4], while providing a huge speedup.

140
120

100

117
82
80
60 47
37
40 . 28
") 15 ; s 15134 1818.4
1163 2235 . 3.74.1 77 | l
2 3 4 5 6

1

m Default Conser. Normal ™ Aggressive

Fig. 8. Higgs Boson Relative Performance to 1 Node using up to 540 cores
(One node has 20 cores) with 512x512x512 network

1) Science Results with Neuron Apoptosis: The peak AUC
reported by Sadowski et al. is 0.88/1. However, we wanted to
understand whether it is possible to create a neural network
topology — which can provide better prediction for a scientist
for separating Higgs Boson particle from other particles. We
used a deeper network than ever considered before with Higgs
by using a 512x512x512x512 network. Being a 4 layer
network, we used autoencoders for learning weights layer by
layer, conducted training on the output layer and compared
the results for apoptosis and the default algorithm.

Our evaluation indicates major contribution to the field:
1) Using deeper networks, our AUC is 0.94/1 — which is 6
percentage points better than previously published result 2)
With proposed apoptosis, we reduce number of parameters by
3x in comparison to the parameters in the best known AUC
for Higgs Boson particle classification — while achieving a
speedup of 2.44x in comparison to the no apoptosis algorithm.

E. ImageNet - ILSVRCI12 Results

In this section, we present results for ImageNet Large Scale
Visualization Research Challenge (ILSVRC12). The objective

TABLE I
IMAGANET EVALUATION. FIRST COLUMN SHOWS THE DEEP LEARNING
ALGORITHM USED; SECOND SHOWS THE SIZES OF HIDDEN LAYERS; THIRD
THE RELATIVE REDUCTION IN PARAMETERS; FOURTH CHANGE IN
ACCURACY AND FIFTH THE SPEEDUP

ALGO NETWORK PA. RED. Acc. (%) SPEEDUP
DNN 2048,2048 27X —-0.7 2.1x
DNN 4096 34x —0.5 2.3X
CNN 64,128 AND 2048 18x —-0.3 1.2x

of this evaluation is to compare the accuracy reported by
several neural networks — including DNN and CNN networks
— after a fixed training time provided to each of the approaches.
ILSVRC12 consists of 1.3M images, each of which is labeled
in one of the 1000 categories. The ultimate objective of the
challenge is to improve the classification accuracy — or reduce
the time to solution to achieve a given accuracy. We primarily
use GPU cluster for ImageNet evaluation — especially since
cuDNN is heavily optimized in comparison to CPU based
implementation.

During this investigation, we discovered that, although the
standard method of training AlexNet [38] calls for 360000
iterations through the dataset, if we use an exponentially
decaying learning rate with multiplicative factor 0.999964, the
model converges after only 60000 iterations. We used this
“quick” AlexNet solver in the evaluation below, along with
optimization by using as many as 8 GPUs.

For each non-AlexNet execution, we provide a training time
of eight hours using 6 GPUs. We observed the following
points: 1) DNN provided significant reduction in parameters,
with negligible accuracy loss, while providing speedup 2) With
CNN, the primary apoptosis is observed at the conjunction of
the convolution and fully connected layers. However, most of
the time is spent in convolutions, and hence the speedup is
lesser than the DNN networks.

For AlexNet, we trained using our improved solver for vari-
ous levels of aggressiveness of Apoptosis. For this network, the
results were mixed. For most apoptosis factors, either virtually
no (< 1%) of parameters were removed, or else the vast
majority (> 99.9%) were, and so obtained either no speedup
or else an extreme loss of accuracy. For factor 1.35, however,
72.48% of the parameters were removed, leading to a speedup
of 2.6x/iteration. However, while this reduced model recovered
the accuracy from before apoptosis, but did not, during the life
of the quick solver, converge to the usual test accuracy of 54%.

F. Discussion

There are a few important observation from the previous
sections: 1) In many cases, adaptive apoptosis results in signifi-
cant reduction of parameters and improvement in training time
2) In case of Higgs Boson dataset, we observed that deeper
networks — with lesser parameters than the original network
— produced better results. We also observed a conical shape
with reducing neurons per layer (starting from input layer and
ending at the output layer) in the neural network topology after

apoptosis. This can be explained by the fact that number of
features is much higher than the number of classes.

An important discussion is the guidance for future users
of this research. An advantage of the proposed methodology
is that a user may start with a very large network to build
models for its dataset, and expect that the apoptosis would
remove redundant neurons — while gaining speedup, and
possibly accuracy, especially if the stopping criteria is fixed
time/epochs. This is attractive for novice and advanced users
alike, as there is little guidance on specification of neural
network topology. The proposed approach generates a much
smaller, near optimal topology, which would be sufficient for
the user.

VIII. CONCLUSIONS

In this paper, we have presented novel techniques to adap-
tively remove redundant neurons (neuron apoptosis) for ac-
celerating Deep Learning algorithms (Deep Neural Networks,
Convolutional Neural Networks and Autoencoders) — during
the training phase itself on large scale systems. The proposed
techniques are in sharp contrast with existing approaches [10],
which require a re-training phase for removing the weights
which do not contribute — resulting in a significant slowdown
(2.5x reported by Han et al [10]) of the training time.

Our contributions in this paper include novel heuristics
for deciding on initial apoptosis, subsequent apoptosis and
degree of apoptosis during the training phase itself. We provide
theoretical underpinnings to study the apoptosis for several
neuron types, consider apoptosis for input/output synapses for
several neuron types and provide proofs on bounding accuracy
loss with apoptosis. We implement our proposed heuristics
using Caffe, by extending it to use MPI and allow multi-node
training. We evaluate our proposed heuristics with several large
datasets including Higgs Boson particle dataset, ImageNet
classification and MNIST handwritten digit recognition. We
use two clusters — one connected with Intel Haswell CPU and
InfiniBand QDR and other connected with nVIDIA GPUs and
InfiniBand. Our evaluation indicates significant improvement
in multiple dimensions — including a reduction in parameters
by 30x, and 2-3x speedup in time comparison to no apoptosis
implementation. A major contribution of our paper is also
an improvement in classification accuracy for Higgs Boson
particle dataset, by using apoptosis on a Deeper network than
published architecture. We are able to improve the Area Under
Curve (AUC), by 6 percentage points from best known result
0.88/1 to 0.94/1, while reducing the number of parameters by
3x in comparison to best result producing network [4] and
achieving a 2.44x speedup.

REFERENCES

[1] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V.
Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A. Tucker,
K. Yang, and A. Y. Ng, “Large scale distributed deep networks,”
in Advances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States., 2012, pp. 1232—1240. [Online]. Available:
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks

http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks

[2]

[4]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012. Proceedings of a meeting held
December 3-6, 2012, Lake Tahoe, Nevada, United States., 2012,
pp. 1106-1114. [Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification- with-deep-convolutional-neural-networks:

A. Graves and J. Schmidhuber, “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures,” Neural
Networks, vol. 18, no. 5-6, pp. 602-610, 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.neunet.2005.06.042

P. J. Sadowski, D. Whiteson, and P. Baldi, “Searching for
higgs boson decay modes with deep learning,” in Advances in
Neural Information Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada, 2014, pp. 2393-2401. [Online].
Available: |http://papers.nips.cc/paper/5351-searching-for-higgs-boson-
decay-modes- with-deep-learning

G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” CoRR, vol. abs/1503.02531, 2015. [Online]. Available:
http://arxiv.org/abs/1503.02531

A. Vishnu, C. Siegel, and J. Daily, “Distributed TensorFlow with MPL”
ArXiv e-prints, Mar. 2016.

S. Hochreiter, “The vanishing gradient problem during learning
recurrent neural nets and problem solutions,” Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., vol. 6, no. 2, pp. 107-116, Apr. 1998.
[Online]. Available: http://dx.doi.org/10.1142/S0218488598000094

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929-1958, 2014. [Online]. Available:

http://jmlr.org/papers/v15/srivastaval4a.html

Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. Smola, L. Song,
and Z. Wang, “Deep fried convnets,” in International Conference on
Computer Vision (ICCV), 2015.

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both
weights and connections for efficient neural network,” in
Advances in Neural Information Processing Systems 28, C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
Eds. Curran Associates, Inc., 2015, pp. 1135-1143. [Online].
Available: http://papers.nips.cc/paper/5784-learning-both-weights-and-
connections-for-efficient-neural-network.pdf|

F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.
[Online]. Available: http://arxiv.org/abs/1602.07360

F. N. Iandola, K. Ashraf, M. W. Moskewicz, and K. Keutzer,
“Firecaffe: near-linear acceleration of deep neural network training
on compute clusters,” CoRR, vol. abs/1511.00175, 2015. [Online].
Available: http://arxiv.org/abs/1511.00175

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, 1. J. Goodfellow,
A. Bergeron, N. Bouchard, and Y. Bengio, “Theano: new features
and speed improvements,” Deep Learning and Unsupervised Feature
Learning NIPS 2012 Workshop, 2012.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU
and GPU math expression compiler,” in Proceedings of the Python for
Scientific Computing Conference (SciPy), Jun. 2010, oral Presentation.
R. Collobert, S. Bengio, and J. Marithoz, “Torch: A modular machine
learning software library,” 2002.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

[32]

[33]

(34]

(35]

[36]

[37]

M. Bianchini and F. Scarselli, “On the complexity of neural network
classifiers: A comparison between shallow and deep architectures,” [EEE
Transactions on Neural Networks and Learning Systems, vol. 25, no. 8,
pp. 1553 — 1565, 2014.

G. E. Hinton and S. Osindero, “A fast learning algorithm for deep belief
nets,” Neural Computation, vol. 18, p. 2006, 2006.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy
layer-wise training of deep networks,” in Advances in Neural
Information Processing Systems 19, B. Scholkopf, J. C. Platt,

and T. Hoffman, Eds. MIT Press, 2007, pp. 153-160. [Online].
Available: |http://papers.nips.cc/paper/3048- greedy-layer- wise-training-
of-deep-networks.pdf

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504-507,
Jul. 2006. [Online]. Available: http://www.ncbi.nlm.nih.gov/sites/entrez?
db=pubmed&uid=16873662&cmd=showdetailview&indexed=google

P. Vincent, H. Larochelle, 1. Lajoie, Y. Bengio, and P-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in
a deep network with a local denoising criterion,” J. Mach. Learn.
Res., vol. 11, pp. 3371-3408, Dec. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1756006.1953039

R. A. Chambers, M. N. Potenza, R. E. Hoffman, and W. Miranker, “Sim-
ulated apoptosis/neurogenesis regulates learning and memory capabili-
ties of adaptive neural networks,” Neuropsychopharmacology, vol. 29,
no. 4, pp. 747-758, 2004.

J. Sietsma and R. J. Dow, “Neural net pruning-why and how,” in Neural
Networks, 1988., IEEE International Conference on. 1EEE, 1988, pp.
325-333.

R. Reed, “Pruning algorithms-a survey,” Trans. Neur. Netw., vol. 4,
no. 5, pp. 740-747, Sep. 1993. [Online]. Available: http://dx.doi.org/
10.1109/72.248452

S. M. Kamruzzaman and A. R. Hasan, “Pattern classification using
simplified neural networks,” CoRR, vol. abs/1009.4983, 2010. [Online].
Auvailable: http://arxiv.org/abs/1009.4983

A. N. Gorban, E. M. Mirkes, and V. G. Tsaregorodtsev, “Generation
of explicit knowledge from empirical data through pruning of trainable
neural networks,” in Neural Networks, 1999. IJCNN’99. International
Joint Conference on, vol. 6. 1EEE, 1999, pp. 4393-4398.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

B. Goodrich and I. Arel, “Neuron clustering for mitigating catastrophic
forgetting in feedforward neural networks,” in Computational Intelli-
gence in Dynamic and Uncertain Environments (CIDUE), 2014 IEEE
Symposium on. 1EEE, 2014, pp. 62-68.

W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen,
“Compressing neural networks with the hashing trick,” CoRR, vol.
abs/1504.04788, 2015. [Online]. Available: http:/arxiv.org/abs/1504.
04788

K. Murray and D. Chiang, “Auto-sizing neural networks: With appli-
cations to n-gram language models,” arXiv preprint arXiv:1508.05051,
2015.

H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
arXiv preprint arXiv:1607.03250, 2016.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical repre-
sentations,” in Proceedings of the 26th Annual International Conference
on Machine Learning. ACM, 2009, pp. 609-616.

F. N. Iandola, K. Ashraf, M. W. Moskewicz, and K. Keutzer, “Firecaffe:
near-linear acceleration of deep neural network training on compute
clusters,” arXiv preprint arXiv:1511.00175, 2015.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-Performance,
Portable Implementation of the MPI Message Passing Interface Stan-
dard,” Parallel Computing, vol. 22, no. 6, pp. 789-828, 1996.

A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. L. Lusk,
W. Saphir, T. Skjellum, and M. Snir, “MPI-2: Extending the message-
passing interface,” in Euro-Par, Vol. I, 1996, pp. 128-135.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. Burges, L. Bottou,

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://papers.nips.cc/paper/5351-searching-for-higgs-boson-decay-modes-with-deep-learning
http://papers.nips.cc/paper/5351-searching-for-higgs-boson-decay-modes-with-deep-learning
http://arxiv.org/abs/1503.02531
http://dx.doi.org/10.1142/S0218488598000094
http://jmlr.org/papers/v15/srivastava14a.html
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1511.00175
http://tensorflow.org/
http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&uid=16873662&cmd=showdetailview&indexed=google
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&uid=16873662&cmd=showdetailview&indexed=google
http://dl.acm.org/citation.cfm?id=1756006.1953039
http://dx.doi.org/10.1109/72.248452
http://dx.doi.org/10.1109/72.248452
http://arxiv.org/abs/1009.4983
http://arxiv.org/abs/1504.04788
http://arxiv.org/abs/1504.04788

and K. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097-
1105. [Online]. Available: http://papers.nips.cc/paper/4824-imagenet-
classification- with-deep-convolutional-neural-networks.pdf

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

	I Introduction
	I-A Contributions:

	II Related Work
	II-A Systems (Multi-core/Many-core/Large Scale) Research
	II-B Neural Network Pruning/Compression

	III Fundamentals
	III-A Neural Networks
	III-A1 Activation Functions
	III-A2 Convolutional Neural Networks

	III-B Caffe

	IV Neuron Apoptosis Solution Space
	IV-A Point of Initial Apoptosis
	IV-A1 Quarter-Life
	IV-A2 Random
	IV-A3 End of Training

	IV-B Subsequent Apoptosis
	IV-B1 Fixed/Random
	IV-B2 Logarithmic

	IV-C Temporal Degree of Apoptosis
	IV-C1 Fixed
	IV-C2 Increasingly Aggressive
	IV-C3 Increasingly Conservative

	IV-D Modeling Space-Time Complexity
	IV-E Other Design Considerations
	IV-E1 Incoming vs. Outgoing Synapses

	V Proofs for Selecting Input/Output Synapses and Bounding Accuracy Loss
	V-A Selecting Input/Output Synapses
	V-B Proofs on Error Bounds

	VI Large Scale Parallelization
	VI-A Caffe Runtime Changes
	VI-B Distributed Memory Parallelization

	VII Performance Evaluation
	VII-A Hardware and Software Details
	VII-A1 Hardware
	VII-A2 Software

	VII-B Datasets
	VII-C MNIST
	VII-D Higgs Boson Particle Classification
	VII-D1 Science Results with Neuron Apoptosis

	VII-E ImageNet - ILSVRC12 Results
	VII-F Discussion

	VIII Conclusions
	References

