
CER: Complementary Entity Recognition via Knowledge Expansion
on Large Unlabeled Product Reviews

Hu Xu∗, Sihong Xie†, Lei Shu∗, Philip S. Yu∗‡
∗Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA

†Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA
‡Institute for Data Science, Tsinghua University, Beijing, China

hxu48@uic.edu, sxie@cse.lehigh.edu, lshu3@uic.edu, psyu@uic.edu

Abstract—Product reviews contain a lot of useful information
about product features and customer opinions. One important
product feature is the complementary entity (products) that
may potentially work together with the reviewed product.
Knowing complementary entities of the reviewed product is
very important because customers want to buy compatible
products and avoid incompatible ones. In this paper, we
address the problem of Complementary Entity Recognition
(CER). Since no existing method can solve this problem, we
first propose a novel unsupervised method to utilize syntactic
dependency paths to recognize complementary entities. Then
we expand category-level domain knowledge about complemen-
tary entities using only a few general seed verbs on a large
amount of unlabeled reviews. The domain knowledge helps
the unsupervised method to adapt to different products and
greatly improves the precision of the CER task. The advantage
of the proposed method is that it does not require any labeled
data for training. We conducted experiments on 7 popular
products with about 1200 reviews in total to demonstrate that
the proposed approach is effective.

Keywords-Entity Recognition; Relation Extraction; Product
Relation; Complementary Entity; Complementary Product

I. INTRODUCTION

E-commerce websites (e.g., Amazon.com) contain a huge
amount of products reviews and most existing works of
sentiment analysis [1] (or opinion mining) on reviews focus
on extracting opinion targets (aspects or features) of the
reviewed product and the associated opinions [2]–[4] (e.g.,
extract “battery” and pos from “It has a good battery”).
Besides features about the reviewed product itself (e.g.,
“battery” or “screen”), one important feature is whether the
reviewed product is compatible/incompatible with another
product. We call the reviewed product target entity and
the other product complementary entity. A pair of a target
entity and its complementary entity forms a complementary
relation. They may work together to fulfill some shared
functionalities. So, they are usually co-purchased. For ex-
ample, in Figure 1, we assume there are some reviews of
several accessories (on the left) talking about compatibility
issues. We consider these accessories as the target enti-
ties and they have some complementary entities (on the
right side) mentioned in reviews. The target entities are
one micro SD card, one tablet stand and one mouse; the

Figure 1: Several target entities (reviewed products), their
complementary entities and complementary relations men-
tioned in reviews.

complementary entities are one Nikon DSLR, one iPhone,
one Samsung Galaxy S6 and one MS Surface Pro. An arrow
pointing from a target entity to a complementary entity
indicates that they have a complementary relation and shall
work together. For example, the micro SD card can help
the Samsung Galaxy S6 to expand its memory capacity.
Knowing these complementary entities is important because
compatible products are preferred over incompatible ones.
Thus, recognizing complementary entities is an important
task in text mining.

Problem Statement: In this paper, we study the problem
of Complementary Entity Recognition (CER) from reviews
(e.g., extracting “Samsung Galaxy S6” from “It works with
my Samsung Galaxy S6”). We observe that compatibility
issues are more frequently discussed in reviews of elec-
tronics accessories, so we choose reviews of accessories
for experiments. To the best of our knowledge, accessory
reviews are not well studied before.

Predicting complementary entities is pioneered by
McAuley et al. [5] as a link prediction problem in social
network. Their method mostly predicts category-level com-

ar
X

iv
:1

61
2.

01
03

9v
1

 [
cs

.C
L

]
 4

 D
ec

 2
01

6

patible products based on the learned representations of the
products. However, we observe that reviews contain many
complementary entities based on firsthand user experiences,
which provide practical fine-grained complementary entities.
We detail the discussions of their method in Section II.

The proposed problem has a few challenges and also
provides more research opportunities:

• To the best of our knowledge, the linguistic patterns of
complementary relations are not studied in computer
science. There is no largely annotated dataset for su-
pervised methods. We propose an unsupervised method,
which does not require any labeled data to solve this
problem (we only annotate a small amount of data for
evaluation purposes).

• Similar to the aspect (feature) extraction problem in
reviews [4], CER is also a domain-specific problem.
We leverage domain knowledge to help the unsu-
pervised method to adapt to different products. This
novel product domain knowledge is expanded using
a few seed words on a large amount of unlabeled
reviews under the same category as the target entity.
The idea of using reviews under the same category
as the target entity is that the number of reviews for
one target entity is small. We observe that products
(target entities) under the same category share similar
complementary entities (i.e., two different micro SD
cards may share complementary entities like phone or
tablet). So the domain knowledge expanded on reviews
from the same category is larger than that on reviews
from a single target entity. Therefore, there is almost
no labor-intensive effort to get domain knowledge. Our
domain knowledge contains candidate complementary
entities and domain-specific verbs.

• Although the problem may be closely related to the
well-known Named Entity Recognition (NER) problem
on surface [6], recognizing a complementary entity
requires more contexts. For example, given a review
for a micro SD card, we should not treat “Samsung
Galaxy S6” in “Samsung Galaxy S6 is great” as a
complementary entity. However, we should consider
the same entity in “It works with my Samsung Galaxy
S6” as a complementary entity. The domain knowledge
contains domain-specific verbs, which greatly help to
detect the contexts of complementary entities.

• We further notice that some linguistic patterns of
complementary relations are similar to other extraction
patterns (e.g., patterns for aspect extraction). Candidate
complementary entities in the domain knowledge can
help to filter out non-complementary entities extracted
by similar patterns.

The main contributions of this paper can be summarized
as the following: we propose a novel problem called Com-
plementary Entity Recognition (CER). Then we propose

a novel unsupervised method utilizing dependency paths
to identify complementary relations and extract entities
simultaneously. We further leverage domain knowledge to
improve the precision of extraction. The domain knowledge
is expanded on a large amount of unlabeled reviews from
only a few seed words (general complementary verbs) via a
novel set of dependency paths. The expanded domain knowl-
edge can greatly improve the precision of the unsupervised
method. We conduct thorough experiments and provide case
studies to demonstrate that the proposed method is effective.

II. RELATED WORKS

The proposed problem is closely related to product rec-
ommender systems that are able to separate substitues and
complements [5], [7]. Zheng et al. [7] first propose to
incorporate the concepts of substitutes and complements
into recommendation systems by analyzing navigation logs.
More specifically, predicting complementary relations is
pioneered by McAuley et al. [5]. They utilize topic mod-
els and customer purchase information (e.g., the products
in the “items also viewed” section and the “items also
bought” section of a product page) to predict category-
level substitutes and complements. However, we observe that
purchase information generated by the unknown algorithm
from Amazon.com tends to be noisy and inaccurate for
complementary entities since co-purchased products may not
be complementary to each other. We demonstrate that their
predictions are non-complementary entities for the products
that we use for experiments in Section VI. Also, category-
level predictions are not good enough for specific pairs of
products (i.e., DSLR lens and webcam are not complements).
Furthermore, their predictions do not provide information
about incompatible entities, which are valuable buying
warnings for customers. Thus, fine-grained extraction of
complementary entities from reviews that express firsthand
user experience is important. To the best of our knowledge,
the linguistic patterns of complementary relations are not
studied in computer science.

The proposed problem is closely related to aspect extrac-
tion [2]–[4], [8], which is to extract product features from
reviews. More specifically, extracting comparable products
(i.e, one type of substitutes, or products that can replace
each other) from reviews is studied by Jindal and Liu
[9]. Recently, dependency paths [10] are used for aspect
extraction [8], [11]. Shu et al. [12] use unsupervised graph
labeling method to identify entities from opinion targets.
However, since aspects are mostly context independent and
the same aspect may appear multiple times, aspect extraction
in general does not need to extract each occurrence of
an aspect (as long as the same aspect can be extracted
at least once). In contrast, the CER problem is context
dependent and many complementary entities are infrequent
(i.e., Samsung Galaxy S6 is infrequent than the aspect
price). We use dependency paths to accurately identify each

occurrence of complementary entities. Since extracting each
complementary entity can be inaccurate, we further utilize
domain knowledge to improve the precision.

CER is closely related to Named Entity Recognition
(NER) [6] and relation extraction [13]. NER methods uti-
lize annotated data to train a sequential tagger [14]–[16].
However, our task is totally different from NER since
we care about the context of a complementary entity and
many complementary entities are not named entities (e.g.,
phone). CER is also different from relation extraction [13],
[17]–[19], which assumes that two entities are identified
in advance. In reviews, the target entity is unfortunately
missing in many cases (i.e., “Works with my phone”). The
proposed method only cares about the relation context of a
complementary entity rather than a full relation.

III. PRELIMINARIES

In this section, we first formally define our problem. Then
we introduce basic ideas of the proposed method. Lastly, we
describe dependency paths used in later sections.

A. Problem Formalization

Our problem is to recognize entities that functionally
complement to the reviewed product. There are several
definitions involved in this problem.

Definition 1 (Target Entity): We define target entity eT as
the reviewed product.

We do not extract target entities from reviews but assume
that the target entity can be retrieved from the meta data
(product title) of reviews. This is because many mentions
of the target entity are co-referenced or implicitly assumed
in reviews. For example, if the reviewed product is a tablet
stand, “It works with my Samsung Galaxy S6” uses “It”
to refer to the target entity tablet stand; “Works well with
Samsung Galaxy S6” completely omits the target entity.

Definition 2 (Complementary Entity): Given a set of re-
views RT of a target entity eT , a complementary entity
eC is an entity mentioned in reviews that are functionally
complementary to the target entity eT . A target entity has a
set of complementary entities: eC ∈ EC .

A complementary entity can either be a single noun (e.g.,
iPhone) or a noun phrase (e.g., Samsung Galaxy S6). There
are two types of complementary entities: a named entity or a
general entity. A named entity is usually a specific product
name containing a brand name and a model name (e.g.,
Samsung Galaxy S6 or Apple iPhone). A general entity (e.g.,
phone or tablet) represents a set of named entities. General
entities are informative. For example, in a review of a tablet
stand, “phone” in “It also works with my phone” is a good
assurance for phone owners who want to use this tablet stand
as a phone stand.

Definition 3 (Complementary Relation): Each
complementary entity eC ∈ EC forms a complementary
relation (eT , eC) with the target entity eT .

Definition 4 (Complementary Entity Recognition):
Given a set of reviews RT for a target entity eT , the
problem of Complementary Entity Recognition (CER) is to
identify a set of complementary entities EC , where each
eC ∈ EC has a complementary relation (eT , eC) with the
target entity eT .

We do not extract an entity without a complementary
context (e.g., “Samsung Galaxy S6” in “Samsung Galaxy
S6 is great”, even though Samsung Galaxy S6 may be a
complementary entity).

Definition 5 (Domain): We assume that every target en-
tity eT belongs to a pre-defined domain (or category)
Dom(eT) = d ∈ D. A review corpora RDom(eT) is all
reviews under the same category as the target entity eT .

Definition 6 (Domain Knowledge): Each domain d has
its own domain knowledge. We consider two types of domain
knowledge: candidate complementary entity edC ∈ Ed

C and
domain-specific verb vd ∈ V d. All target entities eT under
the same domain share the same domain knowledge.

B. Basic Ideas

The basic idea of the proposed method is to use de-
pendency paths to identify complementary entities. Due to
different linguistic patterns, these dependency paths may
have different performance on extraction. Some dependency
paths may have high precision but low recall and vice
versa. To ensure the quality of extraction, high precision
dependency paths are preferred. The idea of using domain
knowledge is that high precision dependency paths can
expand high quality (precision) domain knowledge on a
large amount of unlabeled reviews, which in turn helps
low precision but high recall dependency paths to improve
their precisions. In the end, the domain knowledge serves
as a filter to remove noises in low precision paths. This
framework can potentially be generalized to any extraction
task when a large amount of unlabeled data is accessible. We
describe the proposed method in the following two parts:
Basic Entity Recognition: We analyze the linguistic pat-
terns and leverage multiple dependency paths to recognize
complementary entities. The major goal of the basic entity
recognition is to get high recall because each complementary
entity can be infrequent and we care about each mention of
a complementary entity. Due to similarity with other noisy
patterns, these paths tend to have a low precision.
Recognition via Domain Knowledge Expansion: We ex-
pand the domain knowledge on a large amount of unlabeled
reviews using a set of high precision dependency paths
to compensate for the low precision (noisy) dependency
paths. First, we extract candidate complementary entities for
each domain using only verbs fit and work. Then we use
the extracted candidate complementary entities to induce
domain-specific verbs (e.g., insert for micro SD card, or
hold for tablet stand). Finally, we integrate these two types

of domain knowledge into the dependency paths of basic
entity recognition to improve the precision.

C. Dependency Paths

In this subsection, we briefly review the concepts used
by dependency paths. We further describe how to match a
dependency path with a sentence.

Definition 7 (Dependency Relation): A dependency rela-
tion is a typed relation between two words in a sentence
with the following format of attributes:

type(gov, govidx, govpos, dep, depidx, deppos),

where type is the type of a dependency relation, gov is the
governor word, govidx is the index (position) of the gov
word in the sentence, govpos is the POS (Part-Of-Speech)
tag of the gov word, dep is the dependent word, depidx is
the index of the dep word in the sentence and deppos is the
POS tag of the dep word. The direction of a dependency
relation is from the gov word to the dep word.

A sentence can be parsed into a set of dependency rela-
tions through dependency parsing1 [10], [20]. For example,
“It works with my phone” can be parsed into a set of
dependency relations in Table I, which is further illustrated
in Figure 2.

Figure 2: Visualization of dependency relations of “It works
with my phone”: numbers indicates indices.

Definition 8 (Dependency Segment): A dependency seg-
ment is an abstract form of a dependency relation. A
dependency segment has the following format of attributes,
which is similar to a dependency relation:

(src, srcpos)
pathtype−−−−→ (dst, dstpos),

where src is the source word, srcpos is the POS tag of the
source word, dst is the destination word, dstpos is the POS
tag of the destination word and pathtype is the dependency
type of the segment. Similarly, the direction of an segment
is from the src word to the dst word.

Definition 9 (Dependency Segment Matching): A depen-
dency segment can have a dependency segment matching
with a dependency relation. To have such a match, we must
ensure that attributes src, srcpos, dst, dstpos and pathtype in
an segment match attributes gov, govpos, dep, deppos and
type in a dependency relation respectively. So the direction

1We utilize Stanford CoreNLP as the tool for dependency parsing.

Table II: Rules of matching attributes of dependency seg-
ments and dependency relations (all unspecified attributes
must have an exact match): [lem. word] means lemmatized
word, which matches multiple specific forms of the same
word (e.g., “work” matches “works” and “working”); CETT
indicates the complementary entity we want to extract.

Path Attr. Value Rel. Attr. Value
src/dst [lem. word] gov/dep [specific form]
src/dst * / CETT gov/dep [any word]
srcpos/dstpos N gov/dep NN NNP NNPS NP
srcpos/dstpos V gov/dep VB VBD VBG

VBN VBP VBZ
srcpos/dstpos J gov/dep JJ JJR JJS
pathtype nmod:cmprel type nmod:with nmod:for

nmod:in nmod:on
nmod:to nmod:inside
nmod:into

of a dependency segment also matches the direction of a
dependency relation.

To allow a matching to cover more specific dependency
relations, we further define a set of rules when matching the
attributes, which are summarized in Table II. Please note that
we finally want to extract the complementary entity covered
by tag CETT. Other kinds of attributes are defined to make
the dependency paths more compact.

Example 1: The segment:

(“work”, V)
nmod:cmprel−−−−−−−→ (CETT, N) (1)

can match the dependency relation 5 in Table I. This is be-
cause source word “work” is the lemmatized governor word
“works”; V covers VBZ; N covers NN; and nmod:cmprel
covers dependency type nmod:with. Since the tag CETT as
the destination word in the segment covers the dependent
word “phone” in dependency relation 5, this segment indi-
cates “phone” is a possible complementary entity.

Definition 10 (Dependency Path): A dependency path is
a finite sequence of dependency segments connected by a
sequence of src/dst attributes.

Given different directions of 2 adjacent dependency seg-
ments, there are 4 possible types of a connection: →→,
→←, ←→ and ←←.

Definition 11 (Dependency Path Matching): A
procedure of dependency path matching is specified
as the following: when matching a dependency path with
a sentence, we first check whether there are at least
one dependency relations for each segment. If so, we
further check whether the two directions of dependency
segments for each connection match the directions of
two corresponding dependency relations and whether the
connected governor/dependent words from two matched
dependency relations have the same index (they are the
same word in the original sentence).

Table I: Dependency relations parsed from “It works with my phone.”

ID Dependency Relation Syntactic Dependency Relation Type Explanation
1 nsubj(works, 2, VBZ, It, 1, PRP) nsubj: nominal subject Relate the 1st word “It”

to the 2nd word “works”
2 root(ROOT, 0, None, works, 2, VBZ) root: root relation Relate the 2nd word “works”

to the virtual word ROOT
3 case(phone, 5, NN, with, 3, IN) case: case-marking Relate the 3rd word “with”

to the 5th word “phone”
4 nmod:poss(phone, 5, NN, my, 4, PRP$) nmod:poss: possessive nominal modifier Relate the 4th word “my”

to the 5th word “phone”
5 nmod:with(works, 2, VBZ, phone, 5, NN) nmod:with: nominal modifier via with Relate the 5th word “phone”

to the 2nd word “works”

Finally, after we have a successful dependency path
matching, we extract the gov/dep in dependency relations
labeled as CETT by the dependency path.

Example 2: The following path

(*, V) nmod:with−−−−−→ (CETT, N)
nmod:poss−−−−−→ (“my”, PRP$) (2)

can match the sentence “It works with my phone” since the
two segments match dependency relation 5 and 4 respec-
tively. Here wildcard * matches word “works”. Further the
dependent word “phone” of the dependency relation 5 have
the same index (the 5th word described in Table I) as the
governor word of the dependency relation 4.

IV. BASIC ENTITY RECOGNITION

A. Syntactic Patterns of Complementary Relation

There are many ways to mention complementary relations
in reviews. Complementary relations are usually expressed
with or without a preposition. In the first case, the prepo-
sition is used to bring out the complementary entity and
is usually associated with a verb, a noun, an adjective or a
determiner; in the second case without a preposition, review-
ers only use transitive verbs to bring out the complementary
entities. The verbs used in both cases can either be general
verbs such as “fit” or “work”, or domain-specific verbs such
as “insert” for micro SD card or “hold” for tablet stand.
Complementary relations can also be expressed through
nouns, adjectives or determiners. We discuss the syntactic
patterns of complementary relations as the following:
Verb+Prep: The majority of complementary relations are
expressed through a verb followed by a preposition. For
example, “It works with my phone” falls into this pattern,
where the verb “works” and the preposition “with” work
together to relate the pronoun “It” to “phone”. The target
entity can appear in this pattern either as the subject or
as the object of the verb. In the previous example, subject
“It” indicates the target entity. In “I insert the card into my
phone”, “the card” is the object of the verb “insert”. The
target entity can also be implicitly assumed as in “Works
with my phone.”

Noun+Prep: Complementary relation can be expressed
through nouns. Those nouns typically have opinions. For
example, “No problem” in “No problem with my phone”
has a positive opinion on “phone”.
Adjective+Prep: Complementary relation can also be ex-
pressed through adjectives with prepositions. For example,
the adjective “useful” together with the preposition “for” in
“It is useful for my phone” expresses a positive opinion on
a complementary relation.
Determiner+Prep: Determiner “this” in “I use this for my
phone” refers to the target entity. It is associated with the
preposition “for” in dependency parsing.
Verb: Complementary relation can be expressed only
through verbs without using any preposition. For example,
in “It fits my phone”, subject “It” is related to the object
“phone” via only the transitive verb “fits”. This pattern has
low precision on extraction since almost every sentence has
a subject, a verb and an object. We improve the precision
of this pattern using the domain knowledge in Section V.

B. Dependency Paths for Extraction

According to the discussed patterns, we implement de-
pendency paths, which are summarized in Table III. For
patterns with a preposition (e.g., Verb+Prep, Noun+Prep,
Adjective+Prep, Determiner+Prep), we use dependency type
nmod:cmprel to encode all prepositions, because cmprel
represents with, for, in, on, to, inside and into as described in
Section III. Then type nmod:cmprel can relate verbs, nouns,
adjectives or determiners to the complementary entities.
As shown in Example 1 and 2, nmod:cmprel can match
nmod:with and relates the verb “works” to the complemen-
tary entity “phone” for dependency relation 5 in Table I.
This path is defined as Path 1 in Table III.

For pattern Verb, we use dependency type dobj to relate
a verb to the complementary entity. Since this pattern tends
to have low precision, we further constrain the pattern by
connecting a nsubj relation or a nmod:poss relation, as
described in Path 5 or Path 6 respectively in Table III. For
example, “It fits iPhone” has the following two dependency
relations: nsubj(“fits”, VBZ, 2, “It”, PRP, 1) and dobj(“fits”,

Table III: Summary of dependency paths: CETT indicates the complementary entity we want to extract; verb indicates any
verb for Section IV or domain-specific verbs for Section V.

Path Type ID Path Example

Verb+Prep 1 (verb, V)
nmod:cmprel−−−−−−−→ (CETT, N) It works/V with my phone[CETT].

Noun+Prep 2 (*, N)
nmod:cmprel−−−−−−−→ (CETT, N) No problem/N with my phone[CETT].

Adjective+Prep 3 (*, J)
nmod:cmprel−−−−−−−→ (CETT, N) It is compatible/J with my phone[CETT].

Determiner+Prep 4 (*, DT)
nmod:cmprel−−−−−−−→ (CETT, N) I use this/DT for my phone[CETT].

Verb 5 (verb, V)
dobj−−→ (CETT, N)

nmod:poss−−−−−→ (“my”, PRP$) It fits my phone[CETT].

6 (“it”/“this”, DT)
nsubj←−−− (verb, V)

dobj−−→ (CETT, N) It fits iPhone[CETT].

VBZ, 2, “iPhone”, NNP, 3). Path 6 can match these two
dependency relations separately and then check the two
“fits”s have the same index 2 in these two dependency
relations. So “iPhone” tagged as CETT can be extracted.

Finally, these paths may appear multiple times in a
sentence. So multiple complementary entities in a sentence
can be extracted. For example, “It works with my phone,
laptop and tablet” has 3 complementary entities. It has the
following 3 dependency relations: nmod:with(“works”, VBZ,
2, “phone”, NN, 5), nmod:with(“works”, VBZ, 2, “laptop”,
NN, 7) and nmod:with(“works”, VBZ, 2, “tablet”, NN, 9).
So Path 1 can have 3 matches to extract “phone”, “laptop”
and “tablet”.

Please note that Table III does not list all possible de-
pendency paths. For example, complementary entities can
also serve as the subject of a sentence: “My phone likes this
card”. We simply demonstrate typical dependency paths and
new dependency paths can be easily added into the system
to improve the recall.

C. Post-processing

Since a dependency relation can only handle the rela-
tion between two individual words, a complementary entity
(labeled by CETT) extracted from Subsection B can only
contain a single word. In reality, many complementary
entities are named entities that represent product names such
as “Samsung/NNP Galaxy/NNP S6/NNP”. Dependency rela-
tions usually pick a single noun (e.g., “S6”) and relate it with
other words in the phrase via other dependency relations
(e.g., type compound). We use the regular expression pattern
〈N〉〈N|CD〉* to chunk a single noun into a noun phrase2.
This pattern means one noun (N) followed by 0 to many
nouns or numbers. Nouns and numbers (model number) are
typical POS tags of words in a product name.

V. RECOGNITION VIA DOMAIN KNOWLEDGE
EXPANSION

Using the paths defined in Section IV tends to have
low precision (noisy) of extractions since syntactic patterns
may not distinguish a complementary relation from other

2We implement the noun phrase chunker via NLTK: http://www.nltk.org/

relations. For example, Path 6 can match any sentence with
type dobj. A sentence like “It has fast speed” uses type dobj
to bring out “speed”, which is a feature of the target entity
itself. To improve the precision, we incorporate category-
level domain knowledge (candidate complementary entities
and domain-specific verbs) into the extraction process. Those
knowledge can help to constrain possible choices of CETT
and verb in dependency paths defined in Section IV.

We mine domain knowledge from a large amount of
unlabeled reviews under the same category. We get those two
types of domain knowledge by bootstrapping them only from
general verb fit and work. We randomly select 6000 reviews
for each domain (category) to accumulate enough knowledge
(knowledge from reviews of a single target entity may not be
sufficient). One important observation is that products under
the same domain share similar complementary entities and
use similar domain-specific verbs. For example, all micro SD
cards have camera, camcorder, phone, tablet, etc. as their
complementary entities and use verbs like insert to express
complementary relations. But these complementary entities
and domain-specific verbs do not make sense for category
tablet stand. To ensure the quality of the domain knowledge,
we utilize several high precision dependency paths. These
paths have low recall, so applying them directly to the
testing reviews of the target entity has poor performance.
High precision paths can leverage big data to improve the
precision of other paths in Section IV.

A. Exploiting Candidate Complementary Entities

Knowing category-level candidate complementary entities
is important for extracting complementary entities for a
target entity under that category. For example, the sentences
“It works in iPhone”, “It works in practice” and “It works
in 4G” have similar dependency relations nmod:in(“works”,
VBZ, 2, “iPhone”/ “practice”/ “4G”, NN, 4). But only the
first sentence has a mention of a complementary entity; the
second sentence has a common phrase “in practice” with a
preposition “in”; the third sentence expresses an aspect of the
target entity. The key idea is that if we know that iPhone is a
potential complementary entity under the category of micro
SD card and “practice” and “4G” are not, we are confident

http://www.nltk.org/

Table IV: Summary of dependency paths for extracting Candidate Complementary Entities (CCE) and Domain-Specific
Verbs (DSV)

Type ID Path Example

CCE 7 (“fit”/“work”, V)
nmod:cmprel−−−−−−−→ (CETT, N)

nmod:poss−−−−−→ (“my”, PRP$) It works with my phone[CETT].

DSV 8 (verb, V)
nmod:cmprel−−−−−−−→ (CETT, N)

nmod:poss−−−−−→ (“my”, PRP$) I insert[verb] the card into my phone[CETT].

9 (“this”, DT)
dobj←−− (verb, V)

nmod:poss−−−−−→ (“my”, PRP$) This holds[verb] my phone[CETT] well.

to extract “iPhone” as a complementary entity.
We use Path 7 to extract candidate complementary entities

as described in Table IV. It has high precision because given
a verb like “fit” or “work”, a preposition that relates to
another entity and the possessive pronoun “my”, we are con-
fident that the entity modified by “my” is a complementary
entity. Lastly, all extracted complementary entities are stored
as domain knowledge for each category.

B. Exploiting Domain-Specific Verbs

Similarly, knowing category level domain-specific verbs
is also important. This is because each category of products
may have its own domain verbs to describe a complementary
relation. If we only use general verbs (e.g., fit and work),
we may miss many complementary entities that are bring out
via domain-specific verbs (e.g., insert for micro SD card or
hold for tablet stand), and this leads to poor recall rate.
In contrast, if we consider all verbs into the paths without
distinguishing them as in Section IV, we may bring in lots
of noisy false positives. For example, if the target entity
is a tablet stand, “It holds my tablet” and “It prevents
my finger going numb” have similar dependency relations
(dobj(“holds”/“prevents”, VB, 2, “tablet”/“finger”, NN,
4)). The former one has a complementary entity since
“holds” indicates a functionality that a tablet stand can have.
The latter one does not have one. So if we know hold
(we lemmatize the verbs) is a domain-specific verb under
the category of tablet stand and “prevents” is not, we are
more confident to get rid of the latter one. Therefore, we
design dependency paths to extract high quality domain-
specific verbs. This time, candidate complementary entities
can help to identify whether a verb has a semantic meaning
of complement. So we leverage the domain knowledge
extracted in Subsection A to extract domain-specific verbs.
In the end, we get domain-specific verbs from general seed
verbs fit and work.

Path 8 and 9 in Table IV are used to get verbs in pattern
Verb+Prep and Verb respectively. These paths also have high
precision because given possessive modifier “my” modifying
a complementary entity or determiner “this” indicating a
target entity it is almost certain that the verb between them
indicates a complementary relation. Then we keep the words
tagged by verb more than once (to reduce the noise) and
store them as domain knowledge. Please note that we do

Table V: Statistics of the annotated dataset on the num-
ber of reviews, the number of sentences, the number of
complementary relations and the number of reviews with
complementary relations

Product Revs. Sents. Rel. Revs. w/ Rels.
Stylus 216 892 165 116
Micro SD Card 216 802 193 149
Mouse 216 1158 221 136
Tablet Stand 218 784 154 115
Keypad 114 618 113 76
Notebook Sleeve 109 405 125 84
Compact Flash 113 347 99 82

not further expand domain knowledge to avoid reducing the
quality of domain knowledge.

C. Entity Extraction using Domain Knowledge

We use the same dependency paths in Section IV to
perform extraction. But this time we utilize the knowledge
of candidate complementary entities and domain-specific
verbs under the same category as the target entity. During
matching, we look up candidate complementary entities and
domain-specific verbs for tags CETT and verb respectively.
But there is an exception for CETT. Since a named entity
as a complementary entity may rarely appear again in a
large amount of reviews, we ignore such a check if the
word covered by CETT can be expanded into a noun phrase
(more than 1 word) during post-processing. Furthermore, we
notice that knowledge about target entities is also useful.
For example, “I insert this card into my phone” uses “this”
to bring out the target entities, which may indicate nearby
entities are complementary entities. However, knowledge
about a target entity may be expanded on reviews of that
target entity (test data) rather than reviews under the same
category because target entities are not the same under the
same category.

VI. EXPERIMENTAL RESULTS

A. Dataset

We select reviews of 7 products that have frequent men-
tions of complementary relations from the Amazon review
datasets [5]. We choose accessories because compatibility
issues are more frequently discussed in accessory reviews.
The products are stylus, micro SD card, mouse, tablet stand,

Table VI: Comparison of different methods in precision, recall and F1-score

Product NP Chunker OpenNLP UIUC NER CRF Sceptre
P R F1 P R F1 P R F1 P R F1 P@25

Stylus 0.21 0.96 0.35 0.03 0.13 0.05 0.41 0.21 0.28 0.69 0.46 0.55 0.04
Micro SD Card 0.26 0.99 0.41 0.04 0.14 0.07 0.34 0.39 0.36 0.85 0.47 0.6 0.16
Mouse 0.22 0.98 0.36 0.1 0.4 0.15 0.3 0.26 0.28 0.65 0.4 0.49 0.16
Tablet Stand 0.25 0.97 0.4 0.06 0.21 0.09 0.82 0.16 0.27 0.73 0.44 0.55 0.04
Keypad 0.2 0.98 0.33 0.05 0.21 0.08 0.4 0.25 0.31 0.63 0.24 0.35 0.04
Notebook Sleeve 0.33 0.97 0.5 0.05 0.1 0.06 0.79 0.26 0.4 0.64 0.26 0.37 0.0
Compact Flash 0.3 0.95 0.46 0.06 0.16 0.09 0.56 0.36 0.44 0.77 0.33 0.46 0.04

“My” Entity CER CER1K+ CER3K+ CER6K+
P R F1 P R F1 P R F1 P R F1 P R F1

Stylus 0.5 0.54 0.52 0.35 0.89 0.5 0.89 0.64 0.75 0.88 0.69 0.77 0.86 0.71 0.78
Micro SD Card 0.63 0.51 0.56 0.39 0.8 0.52 0.81 0.64 0.71 0.79 0.66 0.72 0.8 0.67 0.73
Mouse 0.54 0.37 0.44 0.35 0.91 0.5 0.69 0.69 0.69 0.66 0.7 0.68 0.66 0.72 0.69
Tablet Stand 0.58 0.43 0.49 0.41 0.84 0.55 0.68 0.39 0.5 0.75 0.69 0.72 0.75 0.72 0.74
Keypad 0.54 0.46 0.5 0.33 0.92 0.49 0.66 0.67 0.66 0.67 0.73 0.7 0.69 0.82 0.75
Notebook Sleeve 0.69 0.38 0.49 0.46 0.71 0.56 0.93 0.5 0.65 0.93 0.65 0.76 0.92 0.66 0.77
Compact Flash 0.75 0.61 0.67 0.46 0.88 0.6 0.86 0.63 0.73 0.86 0.68 0.76 0.85 0.7 0.77

Table VII: Running time (in seconds(s)) of expanding domain knowledge from 1K, 3K and 6K reviews and samples of
candidate complementary entities and domain-specific verbs

Category 1K(s) 3K(s) 6K(s) Candidate Complementary Entity Domain-Specific Verbs
Cat:Stylus 1.16 4.53 7.49 ipad 2, tablet, iPhone, Samsung Galaxy 2 scratch, match, press, draw, sketch, sign
Cat:Micro SD Card 1.23 3.67 5.58 laptop, psp, galaxy s4, Galaxy tab add, insert, plug, transfer, store, stick
Cat:Mouse 1.61 5.1 7.71 Macbook pro, laptop bag, MacBook Air move, rest, carry, connect, click
Cat:Tablet Stand 1.51 4.08 6.93 Nook, ipad 2, Kindle Fire, Galaxy tab, fire rest, insert, stand, support, hold, sit
Cat:Keypad 1.25 2.93 6.17 MacBook, MacBook pro, Mac hook, connect, go, need, use, fit, plug
Cat:Notebook Sleeve 1.11 2.79 5.46 backpack, Macbook pro, Lenovo x220 show, scratch, bring, feel, protect
Cat:Compact Flash 1.49 3.29 6.45 dslr, Canon rebel, Nikon d700 load, pop, format, insert, put

keypad, notebook sleeve and compact flash. We select nearly
220 reviews for the first 4 products and 110 reviews for
the last 3 products. We select 50% reviews of the first 4
products as the training data for Conditional Random Field
(CRF) (one supervised baseline). The remaining reviews of
the first 4 products and all reviews of the last 3 products
are test data. We split the training/testing data for 5 times
and average the results. We label complementary entities
in each sentence. The whole datasets are labeled by 3
annotators independently. The initial agreement is 82%.
Then disagreements are discussed and final agreements are
reached. The statistics of the datasets3 can be found in Table
V. We observe that more than half of the reviews have at
least one mention of complementary entities and more than
10% sentences have at least one mention of complementary
entities.

We also utilize the category information in the meta data
of each review to group reviews under the same category
together. Then we randomly select 1000 (1K), 3000 (3K),
6000 (6K) reviews from each category and use them for

3The annotated dataset is available on the first author’s website
https://www.cs.uic.edu/∼hxu/

extracting domain knowledge. We choose different scales of
reviews to see the performance of CER under the help of
different sizes of domain reviews and the scalability of the
running time of domain knowledge expansion.

B. Compared Methods and Evaluation

Since the proposed problem is novel, there are not so
much existing baselines that can directly solve the problem.
Except for CRF, we compare existing trained models or
unsupervised methods with the proposed methods.
NP Chunker: Since most product names are Noun Phrases
(NP), we use the same noun phrase chunker (〈N〉〈N|CD〉*)
as the proposed method to extract nouns or noun phrases and
take them as names of complementary entity. This baseline
is used to illustrate a close to random results.
OpenNLP NP Chunker: We utilize the trained noun phrase
chunking model from OpenNLP4 to tag noun phrases. We
only consider chunks of words tagged as NP as predictions
of complementary entities.
UIUC NER: We use UIUC Named Entity Tagger [21]
to perform Named Entity Recognition (NER) on product

4https://opennlp.apache.org/

https://www.cs.uic.edu/~hxu/

reviews. It has 18 labels in total and we consider entities
labeled as PRODUCT and ORG as complementary entities.
We use this baseline to demonstrate the performance of a
named entity tagger.
CRF: We retrain a Conditional Random Field (CRF) model
using 50% reviews of the first 4 products. We use BIO
tags. For example, “Works with my Apple iPhone” should
be trained/predicted as “Works/O with/O my/O Apple/B
iPhone/I”. We use MALLET5 as the implementation of CRF.
Sceptre: We also retrieve the top 25 complements for the
same 7 products from Sceptre [5] and adapt their results
for a comparison. Direct comparison is impossible since
their task is a link prediction problem with different labeled
ground truths. We label and compute the precision of the top
25 predictions and assume annotators have the same back-
ground knowledge for both datasets. We observe that the
predicted products are mostly non-complementary products
(e.g., network cables, mother board) and all 7 products have
similar predictions.
“My” Entity: This baseline extracts complementary entities
by finding all nouns/noun phrases modified by word “my”
via dependency type nmod:poss (e.g., “It works with my
phone”). The word “my” usually indicates a product already
purchased, so the modified nouns/noun phrases are highly
possible complementary entities. We use path

(CETT, N)
nmod:poss−−−−−→ (“my”, PRP$)

to extract complementary entities and use the same post-
process step as CER/CER1K/3K/6K+.
CER: This method uses all paths described in Section IV
without using any domain knowledge.
CER1K+, CER3K+, CER6K+: These methods incorporate
domain knowledge extracted from 1000/3000/6000 domain
reviews respectively, as described in both Section IV and V.

We perform our evaluation on each mention of com-
plementary entities and compute precision and recall of
extraction. We first count the true positive tp, the false
positive fp and the false negative fn of each prediction. For
each sentence, one extracted complementary entity that is
contained in the annotated complementary entities from the
sentence is considered as one count for tp; one extracted
complementary entity that are not found contributes one
count to fp; any annotated complementary entity that can
not be extracted contributes one count to fn. We run the
system on an i5 laptop with 4GB memory. The system is
implemented using Python. All reviews are preprocessed via
dependency parsing [20].

C. Result Analysis

Table VI demonstrates results of different methods. We
can see that CER6K+ performs well on all products. It
significantly outperforms CER for each product. This shows

5http://mallet.cs.umass.edu/

that domain knowledge can successfully reduce the noise
and improve the precision. More importantly, we notice
that using just 3K reviews already gets good performance.
This is important for categories with less than 6K reviews.
We notice that the F1-scores of CER are close or worse
than baselines such as CRF or “My” Entity. The major
reason of its low precisions is that Path 5 and Path 6 in
Table III can introduce many false positives as we expected.
Please note that removing Path 5 and 6 can increase the
F1-score of CER. But to have a fair comparison with
CER1K/3K/6K+ and demonstrate the room of improvement,
we keep noisy Path 5 and 6 in CER. “My” Entity has
better precision but lower recall than those of CER baselines
since not all complementary entities are modified by “my”.
CRF performs relatively good on these products. But the
performance drops for the last 3 products because of the
domain adaptation problem. In reality, it is impractical to
have training data for each product. Sceptre performs poorly,
we guess the reason is that products in “Items also bought”
are noisy for training labels. The overall recall of UIUC NER
is low because many complementary entities (e.g., general
entities like tablet) are not named entities. Please note that
the information of domain knowledge (or unlabeled data)
may help other baselines, but all those baselines may not
able to adopt domain knowledge easily. The running time
of all testing is short (less than 1 seconds), so we omit the
discussion here.

Next, we demonstrate the running time of domain knowl-
edge expansion and samples of domain knowledge in Table
VII. We observe that expanding knowledge is pretty fast and
scalable as the size of reviews grow. We can see that for each
category most entities and verbs are reasonable based on our
common sense. For example, for category Cat:Stylus, the
system successfully detects capacitive screen devices as its
candidate complementary entities and most drawing actions
as domain-specific verbs.

D. Case Studies

We notice that category-level domain knowledge is useful
for extraction. Knowing candidate complementary entities
can successfully remove many words that are not comple-
mentary entities or even entities. In the reviews of micro SD
card, many features such as speed, data, etc. are mentioned;
also, common phrases like “in practice”, “in reality”, “in the
long run” are also mentioned. Handling these cases one-by-
one is impractical since identifying different types of false
positive examples needs different techniques to identify.
But knowing candidate complementary entities can easily
remove those false positives.

Domain-specific verbs such as draw, insert and hold are
successfully mined for stylus, micro SD card and tablet stand
respectively. Taking tablet stand for example, the significant
improvement of the precision of CER1K/3K/6K+ comes
from taking hold as a domain-specific verb. Reviewers are

less likely to use general verbs such as fit or work for tablet
stand. The reason could be that a tablet is loosely attached
to a tablet stand. So people tend to use “It holds tablet well”
a lot. However, this sentence has a dobj relation that usually
relates a verb to an object, which can appear in almost
any sentence. Knowing hold is a domain-specific verb is
important to improve the precision. The major errors come
from parsing errors since reviews are informal texts.

VII. CONCLUSION

In this paper, we propose the problem of CER. Then we
propose an unsupervised method using dependency paths to
solve this problem. It further incorporates domain knowledge
mined from a large amount of unlabeled reviews to improve
its precision. Applications of our work can be found in
mining compatible/incompatible products, which is useful
for customers, manufacturers and recommender systems.
Future directions of our work are mining opinions on
complementary relations.

ACKNOWLEDGMENT

This work is supported in part by NSF through grants IIS-
1526499 and CNS-1626432. We gratefully acknowledge the
support of NVIDIA Corporation with the donation of the
Titan X GPU used for this research.

REFERENCES

[1] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sen-
timent classification using machine learning techniques,” in
Proceedings of the ACL-02 conference on Empirical methods
in natural language processing-Volume 10. Association for
Computational Linguistics, 2002, pp. 79–86.

[2] M. Hu and B. Liu, “Mining and summarizing customer
reviews,” in Proceedings of the tenth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining.
ACM, 2004, pp. 168–177.

[3] A.-M. Popescu and O. Etzioni, “Extracting product features
and opinions from reviews,” in Natural language processing
and text mining. Springer, 2007, pp. 9–28.

[4] B. Liu, Sentiment Analysis: Mining Opinions, Sentiments, and
Emotions. Cambridge University Press, 2015.

[5] J. McAuley, R. Pandey, and J. Leskovec, “Inferring networks
of substitutable and complementary products,” in Proceed-
ings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2015, pp.
785–794.

[6] D. Nadeau and S. Sekine, “A survey of named entity recogni-
tion and classification,” Lingvisticae Investigationes, vol. 30,
no. 1, pp. 3–26, 2007.

[7] J. Zheng, X. Wu, J. Niu, and A. Bolivar, “Substitutes or
complements: another step forward in recommendations,”
in Proceedings of the 10th ACM conference on Electronic
commerce. ACM, 2009, pp. 139–146.

[8] G. Qiu, B. Liu, J. Bu, and C. Chen, “Opinion word expansion
and target extraction through double propagation,” Computa-
tional linguistics, vol. 37, no. 1, pp. 9–27, 2011.

[9] N. Jindal and B. Liu, “Mining comparative sentences and
relations,” in AAAI, vol. 22, 2006, pp. 1331–1336.

[10] S. Kübler, R. McDonald, and J. Nivre, “Dependency parsing,”
Synthesis Lectures on Human Language Technologies, vol. 1,
no. 1, pp. 1–127, 2009.

[11] Q. Liu, Z. Gao, B. Liu, and Y. Zhang, “Automated rule selec-
tion for aspect extraction in opinion mining,” in International
Joint Conference on Artificial Intelligence (IJCAI), 2015.

[12] L. Shu, B. Liu, H. Xu, and A. Kim, “Lifelong-rl: Lifelong
relaxation labeling for separating entities and aspects in opin-
ion targets,” in Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2016.

[13] N. Bach and S. Badaskar, “A review of relation extraction,”
Literature review for Language and Statistics II, 2007.

[14] L. R. Rabiner and B.-H. Juang, “An introduction to hidden
markov models,” ASSP Magazine, IEEE, vol. 3, no. 1, pp.
4–16, 1986.

[15] A. McCallum, D. Freitag, and F. C. Pereira, “Maximum
entropy markov models for information extraction and seg-
mentation.” in ICML, vol. 17, 2000, pp. 591–598.

[16] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional
random fields: Probabilistic models for segmenting and la-
beling sequence data,” in Proceedings of the Eighteenth
International Conference on Machine Learning (ICML 2001),
Williams College, Williamstown, MA, USA, June 28 - July 1,
2001, 2001, pp. 282–289.

[17] A. Culotta and J. Sorensen, “Dependency tree kernels for re-
lation extraction,” in Proceedings of the 42nd Annual Meeting
on Association for Computational Linguistics. Association
for Computational Linguistics, 2004, p. 423.

[18] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant
supervision for relation extraction without labeled data,” in
Proceedings of the Joint Conference of the 47th Annual Meet-
ing of the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP: Volume 2-
Volume 2. Association for Computational Linguistics, 2009,
pp. 1003–1011.

[19] R. C. Bunescu and R. J. Mooney, “A shortest path depen-
dency kernel for relation extraction,” in Proceedings of the
conference on human language technology and empirical
methods in natural language processing. Association for
Computational Linguistics, 2005, pp. 724–731.

[20] M.-C. De Marneffe and C. D. Manning, “Stanford typed
dependencies manual,” Technical report, Stanford University,
Tech. Rep., 2008.

[21] L. Ratinov and D. Roth, “Design challenges and miscon-
ceptions in named entity recognition,” in Proceedings of the
Thirteenth Conference on Computational Natural Language
Learning. Association for Computational Linguistics, 2009,
pp. 147–155.

	I Introduction
	II Related Works
	III Preliminaries
	III-A Problem Formalization
	III-B Basic Ideas
	III-C Dependency Paths

	IV Basic Entity Recognition
	IV-A Syntactic Patterns of Complementary Relation
	IV-B Dependency Paths for Extraction
	IV-C Post-processing

	V Recognition via Domain Knowledge Expansion
	V-A Exploiting Candidate Complementary Entities
	V-B Exploiting Domain-Specific Verbs
	V-C Entity Extraction using Domain Knowledge

	VI Experimental Results
	VI-A Dataset
	VI-B Compared Methods and Evaluation
	VI-C Result Analysis
	VI-D Case Studies

	VII Conclusion
	References

