arXiv:1611.00481v2 [cs.LG] 6 Nov 2016

Online Multi-view Clustering with Incomplete Views

Weixiang Shao*, Lifang He', Chun-ta Lu* and Philip S. Yu*
*University of Illinois at Chicago, Chicago, IL
Email: {wshao4, clu29, psyu}@uic.edu
tShenzhen University, Guangdong, China
Email: lifanghescut@ gmail.com

Abstract—In the era of big data, it is common to have
data with multiple modalities or coming from multiple sources,
known as “multi-view data”. Multi-view clustering provides a
natural way to generate clusters from such data. Since different
views share some consistency and complementary information,
previous works on multi-view clustering mainly focus on how
to combine various numbers of views to improve clustering
performance. However, in reality, each view may be incomplete,
i.e., instances missing in the view. Furthermore, the size of data
could be extremely huge. It is unrealistic to apply multi-view
clustering in large real-world applications without considering
the incompleteness of views and the memory requirement.
None of previous works have addressed all these challenges
simultaneously. In this paper, we propose an online multi-
view clustering algorithm, OMVC, which deals with large-scale
incomplete views. We model the multi-view clustering problem
as a joint weighted nonnegative matrix factorization problem
and process the multi-view data chunk by chunk to reduce the
memory requirement. OMVC learns the latent feature matrices
for all the views and pushes them towards a consensus. We
further increase the robustness of the learned latent feature
matrices in OMVC via lasso regularization. To minimize the
influence of incompleteness, dynamic weight setting is intro-
duced to give lower weights to the incoming missing instances in
different views. More importantly, to reduce the computational
time, we incorporate a faster projected gradient descent by
utilizing the Hessian matrices in OMVC. Extensive experiments
conducted on four real data demonstrate the effectiveness of
the proposed OMVC method.

Keywords-Multi-view clustering; Online algorithm; Incom-
plete views; Nonnegative matrix factorization

1. INTRODUCTION

With the advance of technology, real data are often with
multiple modalities or coming from multiple sources. Such
data is called multi-view data. For example, in web image
retrieval, the visual information of images and their textual
tags can be regarded as two views; in web page clustering,
a web page may be translated into multiple languages, each
language can be seen as a view. Usually, multiple views
provide consistent and complementary information for the
semantically same data. By exploiting these characteristics
between multi-view data, multi-view learning can obtain
better performance of learning tasks than relying on just
one single view [28].

Multi-view clustering [4], as one of basic tasks of multi-
view learning, provides a natural way for generating clus-

ters from multi-view data. A number of approaches have
been proposed for multi-view clustering. Existing multi-view
clustering algorithms can be roughly categorized into four
categories [28]. Methods in the first category are based on
subspace [8, 15, 20, 25], which learn a latent space so that
different views are comparable in that space. Methods in the
second category are co-training based algorithms [4, 14],
which obtain the clustering results in an iterative manner.
The third category aims to learn a unified similarity matrix
among multi-view data, which serves as affinity matrix for
final clustering [7, 23]. The last category is called late fusion
[5, 9, 21]. Methods in this category first cluster each view
independently and then combine the individual clusterings
to produce a final clustering result.

Most of the above studies are based on the assumption
that all of the views are complete, i.e., each instance appears
in all the views. However, due to the nature of the data
or the cost of data collection, some views may suffer
from the incompleteness of data (i.e., instances within some
views missing). In order to deal with this problem, different
approaches have been explored [17, 25, 26, 29]. [29] is the
first to deal with incomplete views by utilizing information
from one complete view to refer to the kernel of incomplete
views. [17, 26] are among the first attempts to solve multi-
view clustering with none of the views complete. [25, 17]
are the first attempts to solve multiple incomplete views
clustering based on nonnegative matrix factorization (NMF).
All the previous works require that the multi-view data can
be fitted into the memory.

However, in reality, the size of data in multi-view may
be extremely huge. For example, in Web scale data mining,
one may encounter billions of Web pages and the dimension
of the features may be as large as (O(10%). Data with such
size and dimension clearly will not fit into the memory of a
single machine. In fact, even a small corpus like Wikipedia
has more than 3 x 107 pages in multiple languages. None
of the existing multi-view clustering algorithms can handle
data in such scale.

There are several challenges preventing us from applying
multi-view clustering algorithms to large-scale data.

1) With the memory limitation, how to combine various

views in different feature spaces and explore the
consistency and complementary properties of different

views to get better clustering solutions.

2) When the data are too large to fit into memory, how
to deal with incomplete views, i.e., how to minimize
the influence of incompleteness of views.

3) How to effectively and efficiently learn the clustering
solution even if the multi-view data are extremely
large.

In this paper, we propose OMVC (Online Multi-View
Clustering) to solve the above three challenges. To the
best of our knowledge, this is the first online approach
to solve the large-scale multi-view clustering problem with
incomplete views. Basically, OMVC aims to reduce memory
requirements by solving the problem in an online fashion.
Instead of holding all the data in memory, it processes
the multi-view data chunk by chunk. OMVC models the
problem of multi-view clustering with incomplete views as
a joint weighted nonnegative matrix factorization problem. It
learns the latent feature matrices for incoming data chunk in
each view and pushes them towards a common consensus.
By storing the information of previous chunks in an ag-
gregated form, OMVC does not store any specific previous
data chunks. Inspired by the idea of weighted NMF [13],
we use a dynamic weight setting to give lower weights to
the incoming missing instances in different views. Thus,
the proposed OMVC minimizes the negative influence from
the missing instances. As one of the most commonly used
regularization, ¢; (Lasso) regularization has been success-
fully applied in many algorithms [12, 17, 18]. By integrating
weighted joint nonnegative matrix factorization and ¢; norm,
OMVC tries to learn a latent subspace where the features of
the same instance from different views will be co-regularized
to a common consensus, while increasing the robustness
of the learned latent feature matrices. More importantly, to
reduce the computational time, OMVC incorporates a faster
projected gradient descent algorithm by utilizing the Hessian
matrices.

The contributions of this paper can be summarized as
follows:

1) The proposed OMVC method is the first attempt to
solve the problem of large-scale multi-view clustering
with incomplete views in an online fashion.

2) We model the multi-view clustering as a joint non-
negative matrix factorization problem. The proposed
method will capture the relation between different
heterogeneous views and learn a consensus latent
feature matrix across all the views.

3) We introduce lower weights for missing data in differ-
ent views to reduce the influence of incomplete views.
By using a dynamic weight setting, we can fill the
incoming missing data with a quick estimation and
give lower weights to the less informative estimations.

4) By utilizing lasso regularization, OMVC enforces the
sparsity of latent feature matrices, and increase its

Table I: Summary of the Notations

Notation | Description

N Total number of instances.
Ny Total number of views.
D, Dimensionality of features in the v-th view.
M Instance-view indicator matrix.

X) Data matrix for the v-th view.

w (@) Diagonal instance weight matrix for the v-th view.

u® Basis matrix for the v-th view.

v®) Latent feature matrix for the data chunk in the v-th view.
V* Common consensus, latent feature matrix across all the views.

robustness.

5) By doing multi-view clustering in an online fash-
ion and adopting a faster projected gradient descent
technique, OMVC can scale up to large data without
appreciable sacrifice of performance.

The rest of this paper is organized as follows. In Sec-
tion II, problem description and backgrounds are given.
The details of the OMVC method are presented in Sections
IIT and IV. Extensive experimental results and analysis are
shown in Section V. Related works are discussed in Section
VI and followed by conclusion in Section VIIL.

II. PRELIMINARIES

In this section, we will briefly describe the problem of on-
line multi-view clustering with incomplete views. Then some
background knowledge about clustering using nonnegative
matrix factorization will be introduced. Table I summarizes
the notations used throughout the paper.

A. Problem Description

Assume that we are given N instances in n, incomplete
views {X) v =1,2,....n,}, where X(*) € RP»*N repre-
sents the data in the v-th view and D,, is the dimensionality
of features in the v-th view. Each view may be incomplete,
i.e., each of the view may have instances missing. We define
an instance-view indicator matrix M € RV*" by

1 if the ¢-th instance is in the j-th view.
m; ;=) (D
0 otherwise.

where each column of M represents the instance pres-
ence in one view. Thus, in the incomplete views scenario,
Zf\il m; ; < N for j =1,2,...,n,. Our goal is to partition
all the N instances into K clusters by integrating all the n,
incomplete views in an online fashion.

B. Backgrounds

Let X € Rf *N denote the nonnegative data matrix where
each column represents an instance and each row represents
a feature. Nonnegative matrix factorization (NMF) aims to
factorize the data matrix X into two nonnegative matrices.
We denote the two nonnegative matrices as U € Rf *B and
V e Rf *R Here R is the desired reduced dimensionality.
To facilitate discussions, we call U the basis matrix and V

the latent feature matrix. The objective function of NMF can
be formulated as below:

. T2
= — .t. > >
win £ X -UV'|% st.U>0,V>0, @)

where ||-|| 7 is the Frobenius norm of the matrix. In clustering
problems, the latent feature matrix V is used to extract
the clustering solution. One option is to apply standard K-
means on V to get the clustering solution. Another option
is to add constraints to further restrict the rows of V and
get the clustering indicators directly from V. For example,
we can constrain), v; ; = 1 for every row 4. Thus, v; ;
will become the probability that the ¢-th instance belongs to
cluster j.

In general, it is difficult to solve Eq. (2) as the objective
function is not convex with U and V jointly. A common
solution is to use an alternating way to update U and V [2].
One of the most well-known algorithms for implementing
the alternating update rules is the multiplicative update
approach in [16], which iteratively updates U and V by
(XV)i; (X"0)i,;

Uiy ¢ Uiyl VUTU),,
3 Ui (UVTV),, (VUTU);,,

>0 Vi,j < Vi,j >0

Another algorithm that solves this problem is Projected
Gradient Descent (PGD) [19]. By fixing V, PGD updates
U using the first-order gradient:

U+ P[U - %Vu£L(U, V)] 3)

where Vy£L(U,V) is the gradient of £ in Eq. (2) with
respect to U, k is the index of the projected gradient
iterations, -y is the step size and P is defined as

Ui, 5, if Us,j5 2 0
Pluig] = {O, otherwise.

Similarly, PGD can be applied to update V with U
fixed. PGD iteratively updates U and V until convergence.
Both multiplicative update and PGD is proved to converge.
However, both of them only use the first-order information,
and thus the convergence rate is slow. To further accelerate
the solving process, we borrow the idea from Newton’s
method [3] by utilizing the second-order information (i.e.,
Hessian matrix) in our paper. Thus, the update equation for
U in Eq. (3) becomes:

U+ P[U—wH LU, V)VuL(U, V)], @

where H~1 [£(U, V)] is the inverse of the Hessian matrix.
Similarly, we can apply the second-order PGD to update
V with U fixed. We iteratively updates U and V until
convergence.

III. ONLINE MULTI-VIEW CLUSTERING

The proposed online multi-view clustering algorithm pro-
cesses the data in a streaming fashion with low computa-
tional and storage complexity. We will first describe how to
derive the objective function.

A. Objective of OMVC

Given a set of incomplete multi-view data {X() ¢
REUXN,D =1,2,...,n,}, we aim to find the latent feature
matrices for each of the view and a common consensus,
which represents the integrated information of all the views.
The objective function can be written as below:

Ty P
i L= X _ U('U)V(’U)T 2 + ; v _y* 2
{U<">}TI(HVI}">},V* ; I I Z“ l 7

v=1
5.t VE>0,UM >0 V® >0,0=1,2,..n,.

&)
where U™ ¢ REUXK and V() ¢ RfXK are the basis
matrix and latent feature matrix for the v-th view, V* &
Rf *K is the consensus latent feature matrix across all the
views, K is the number of clusters and «, is the trade-
off parameter between reconstruction error and disagreement
between view v and the consensus.

Due to the incompleteness of each view, we cannot
directly optimize the above objective function. One simple
solution is to fill the missing instances with average value of
the features first, and then solve the above objective function.
However, this approach depends on the quality of the filled
instances. For small incomplete percentages, the quality of
the information contained in the filled features may be
sufficient, whereas when the number of missing instance
increases, the quality is often poor or even misleading.
Thus, simply filling the missing instances cannot solve the
problem. To eliminate the influence of the incomplete data,
we borrow the idea from weighted NMF. We introduce a
diagonal weight matrix W) ¢ RNXN whose diagonal
element wz(vz) represents the weight of the i-th instance in
the v-th view. We give weight 1 to the instances that appear
in the view, and give lower weight to the missing instances
(average filled instances) in the view. We will discuss how
to dynamically adjust the weight later in this section. The
objective function after adding the weight matrices is:

Ty

U v ’UT
LZZH(X(U_U(VAR
v=1

WO 4 Do [WEI (V) = V)
v=1

(6)

By assigning different weights to instances in difference

views, we can give larger weights to more informative

estimations of the missing instances and lower weights to

less informative or misleading estimations. Additionally,

considering the nature of incomplete views, we adopt ¢;

norm to enforce the sparsity of the latent feature matrix,

which is robust to noises and outliers and widely used in
many algorithms [12, 17].

= v v v T v

[::Z”(X()_U()V())W()H%
v:lnv . (7)
+ 3 al[WOVE = VHE BV

v=1 v=1

where || - || is the ¢; norm and 3, is the trade-off parameter

between the sparsity and accuracy of reconstruction for the
v-th view.

In real-world applications, the data matrices may be too
large to fit into the memory. We propose to solve the above
optimization problem in an online/streaming fashion with
low computational and storage complexity. Note that the
objective function £ can be decomposed as:

Ny

L= Z Z ”w(v) (v) _ U(U)ng))H%

v=11i=1

ny N
+Zzav‘|w(v> (U)_V:)H%‘FZZ&)HV?)HI

v=11i=1 v=1i=1

®

where XZ(-U) is the i-th column of X(*) and vl(-v) € R¥ is the
i-th column of V()T Clearly, when all the basis matrices
U®™) are fixed, the calculation of ng) and v is independent
for different ¢. This property would allow us approximate the
optimal solution by processing the data one by one (chunk
by chunk). Let’s split the input data into chunks and at time
t, we process a chunk of data points in all the views {Xg”)
Rs*Dv }, where s is the size of the data chunk (number of
instances). Eq. (8) can be written as:

ny [N/s] T

=373 X~ UV)W
v=1 t=1 (9)

n, [N/s] ny [N/s]
20D WV VIR Y Bl Vil
v=1 t=1 v=1 t=1
where X" is the ¢-th data chunk in the v-th view, V") €
R$*K ig the latent feature matrix for the ¢-th data chunk,
and W") € R*** is the diagonal weight matrix for the ¢-th
data chunk.

B. Dynamic Weight Setting for Missing Instances

In the previous discussion, we mentioned that we will
fill the missing instances with the average values of the
features and assign different weights to them. We would
like to assign lower weights to the less informative es-
timations (averaged instances) and higher weights to the
more informative estimations. However, since the entire data
cannot be held in memory, the data can only be read in
a streaming fashion. Thus, the average values cannot be
directly calculated. Instead of filling the missing instances
with the global average values, we fill the missing instances
with the dynamic (up-to-date) average when we read in a
new data point/chunk:

i) = i o,
D ieq Miw
which can be calculated efficiently for every incoming
missing instances. The weight ngjt) is set dynamically to
the up-to-date percentage of the available instances in view
v:

10)

@) _ 1 if instance ¢ appears in view v.
otherwise.

Wi = Sty mi . an
t

We can observe that w(") is lower if the estimate of x(v) is
made under a higher percentage of missing instances. Thus,
wt(t) represents the quality of the estimated average features.
Next we will describe how to optimize the objective func-

tion in an online fashion.

IV. OPTIMIZATION ALGORITHMS

In this section, we first solve the objective function of
OMVC derived in the previous section. Then, we will
discuss the one-pass OMVC and the multi-pass OMVC
algorithms. The convergence and complexity analysis will
be given in the end of this section.

A. Solution

From Eq. (9) we can see that at each time ¢, we need to
optimize {U™}, {ng)} and V7. However, the objective
function is not jointly convex, so we have to update {U")},
{ng)} and V7 in an alternating way. Thus, there are three
subproblems in OMVC described as follows.

1) Optimize {U™} with {ng)} and V; Fixed: From
Eq. (9) we can observe that the optimization of U®) is
independent for different v with {ng)} and V7 fixed. To
optimize U®) for a specific view v at time ¢, we only need
to minimize the following objective:

t
v v v T v
TJOU) =3 IXY =IO WE
i=1

s.t. UM >0

12)

Taking the first-order derivative, the gradient of 7(*) with
respect to U®) is

t t
U VO T WOVE o3 xOw v
i=1 i=1
(13)

@) ORR AT @ w "
Here, W, = W,/ W = W_“W_" | For the sake
of convenience, we introduce two terms A,Ev) and BEU):

vI® W) =2

t t
i=1 i=1
which can be computed incrementally with low storage.
Thus, Eq. (13) can be written as:
vyPu) =2u A — 2B (14)

Therefore, the Hessian matrix of J®) (U(”)) with respect to
U® is
H [U(’“)] =24 (15)

Using the second order PGD, the update equation for U
at time ¢ is:

U(v %P[U(v %vj(t)((v))H [(1) }] (16)

where k is the number of iterations, and -y, is the step size.

For choosing an appropriate step size 7, we consider
the simple and effective Armijo rule along the projection
described in [2], that is, 7, = n¥*, and @y is the first non-
negative integer such that

T - 7Y < o (VIO U), U, - Uy
a7

where o € (0,1) and (-, -) is the sum of the component-wise
product of two matrices. The condition (17) ensures that
the sufficient decrease of the function value per iteration.
Bertsekas [3] has proved that by selecting the step sizes
1,8,B%,---, v > 0 satisfying (17) always exists and every
limit point of {U;Cv)} is a stationary point of (12).

Following [19], to reduce the computational cost, inequal-
ity (17) can be reformulated as:

1 -oyvgY), uy), - u)

1 v v v v v (18)
+ 5 (UL~ U MU (U, - 0)) < 0

2) Optimize {VEU)} with Vi and {U™} Fixed: Given
V; and {U®} fixed, the optimization of {V{")} is inde-
pendent for different v. To optimize ng) for the v-th view,
we only need to minimize the following objective:

v v v v T v
TV =X —uOvi w2
+a, [WO (V) V2 4 B,V (19
st. VY >0

Taking the first-order derivative, the gradient of J with
respect to V" is

VI(V) =W (vIu®T - x©Ty® 0
+20, W (VY = VI) 4+ Bu1
T
Let v”) be the i-th column of V") and wt(fil be the i-
th diagonal element of W,EU), then the Hessian matrix of

j(ng)) with respect to vgf) is

2
" [vg’)} =20, (UDTU 4+ a,Ix) Q1)

Using the second-order PGD, the update equation for vg’)
is:

Vil e P VD -1 VIV @

Here, is the step size. We use the similar search procedure
as the previous subsection to find the step size that satisfies
the Armijo rule.

3) Optimize Vi with {U™} and {Vg”)} Fixed: To
optimize V; with {ng)} and {U®)} fixed, we only need
to minimize the following objective function:

TV = a|[W (VI = Vi) s Vi>0 (23)

v=1

Algorithm 1: One-pass OMVC with mini-batch mode.

Input: Data matrices of all the incomplete views {X(")}.
The number of clusters K, the batch size s.
Parameters {a., } and {3, }.

Al =0, B{") = 0 for each view v. for t = 1: [N/s] do
Draw X" for all the views.
Fill in the missing instances and set the weights. repeat
for v=1:n, do
Update U™ according to Eq. (16).
Update V") according to Eq. (22).
Calculate V7 according to Eq. (25).
8 until Convergence;
b | A= AR, VWOV
w | BM =B, 4 XOWE VT
1 Extract clustering solution from V7

= Y T IRV SR

=

Here, we assume that «,, is positive. Taking the derivative
of the objective J in Eq. (23) over v; and set it to 0:

0T
av;

=320, WV =3 20, WV =0 (24)
v=1

v=1

Since Wg”) is a positive diagonal matrix and «, is positive,
- T

S a, W) = S ay W W s also a positive

diagonal matrix, whose inverse can be quickly calculated.

Solving Eq. (24), we have an exact solution for V;:

Ny -1 Ty
Vi = (Z avvvi”)) STaWIVT >0 @5)

v=1 v=1

B. One-Pass OMVC

The complete one-pass algorithm procedure is shown in
Algorithm 1. Several important points need to be noted.
First, at each time ¢, we do not need to recompute new

T -
A" and B{"). We only need to compute V{*)" W) v (")
and X\ W'V and add them to old A{") and B{",.

T ~
AV =AY VT WV (26)

Biu) _ Bgzi)l + Xiu)wiu)vgu) (27)

Second, in the algorithm, we need to calculate the inverse
of Hessian matrix (with dimension K x K) in the iteration.
The computation cost of inverse of a matrix will be high
if the number of clusters K becomes large. However, in
most of the cases, the number of clusters is limited to a
small number. Even if K is very large in some cases, we
can use other ways to approximate the inverse, such as the
diagonal approximation [30]. Third, the proposed alternative
update procedures for {U®), ng), V;} converge. The proof
of convergence is shown in Section IV-D.

C. Multi-Pass OMVC

In data stream scenario, often only one pass over the data
is available. In many other applications, it is feasible to
do multiple passes. In the one-pass OMVC, the consensus
latent feature matrix V*, which represents the clustering
assignment/possibility, is computed in a sequential greedy
way. It is expected that for the data points that come
first, the performance of clustering may not be satisfactory.
However, multi-pass OMVC gives a chance to improve the
performance for those earlier data points.

In the multi-pass OMVC, {V(")} and V* can be updated
using {U™)} in the previous pass. {A (")} and {B(®} from
previous pass can be used and updated. Also, the weights for
missing instances will be more accurate after the first pass.
Thus, the performance of clustering after multiple passes is
expected to be better than that of one-pass OMVC.

D. Convergence and Complexity

The convergence of the proposed algorithm OMVC can
be illustrated by the following theorem.

THEOREM I: Any limit point of the sequence
{U,(C”), VE?, V7. } generated by Algorithm 1 is a stationary
point of Eq. (19).

Proof: The Algorithm 1 can be viewed as the “block
coordinate descent” method in bound-constrained optimiza-
tion [2], where sequentially one block of variables is min-
imized under corresponding constraints and the remaining
two blocks are fixed. Regarding the convergence of “block
coordinate descent” methods, Grippo and Sciandrone [10]
have shown that for the case of three blocks, the convergence
can be ensured by requiring only the strict quasiconvexity
of the objective function with respect to one component.
Clearly, we can satisfy this condition over V*(), Therefore,
the proof of Theorem 1 is an immediate consequence of
Proposition 5 of [10]. [|

Next, we discuss the computational complexity of OMVC
algorithm. There are three subproblems for OMVC algo-
rithm: optimizing U("), optimizing Vﬁ”) and optimizing V7.

To optimize U(”), we need to calculate the gradient
VJ(U®™) and the Hessian matrix H[U®)]. Assume that
K <« D, and K < s. From Eq. (14) and Eq. (15), we can
see that the complexity is O(K D, s) for the gradient and
O(K?s) for the Hessian, where K is the number of clusters,
D, is the feature dimension in the v-th view and s is the size
of data chunk. Also, the complexity to update U) using
gradient and Hessian is O(K? 4+ D, K?), where K? is the
time complexity for the inversion of Hessian matrix. Since K
is usually very small, the inverse will be done very quickly.
So the complexity for updating U() once is O(KD,s).
According to [19], the complexity for searching the step size
satisfying Eq. (18) is ¢;, K 2D,, where t;,, is the number of
iterations to find the step size. So the overall complexity for
updating U™ is O(KD,s + t;n K2D,)) < O(tin K D,s).

Similarly, we can find that the overall time complexity for
updating ng) is O(KDys + tin K2s) < O(tin KD,s).

Another subproblem of OMVC is optimizing V. From
Eq. (25), we can see that it takes O(n, K's) to calculate V7,
where n,, is the number of views. Thus, the complexity for
one data chunk in one pass will be O(tyuitinn,KDs +
toutNo Ks) = O(tourtinnyKDs), where i, is the av-
erage number of iterations to update V,Ev) and U™ and
D is the average feature dimension for multiple views.
Thus, the overall time complexity of one pass OMVC
is O(touttinny, K DN), where N is the total number of
instances.

The complexity of some most recent NMF based off-line
multi-view clustering methods such as MultiNMF [20] and
MIC [25] are O(touttinno, K DN), which is in the same
order as OMVC. However, all the off-line algorithms require
O(nyDN) memory space. When the data are too big to
fit in the memory, the off-line algorithms will not work.
The proposed OMVC only requires O(n,,Ds) memory space
(s < N), which makes it work for really large data.

When the data size is large, the IO cost can be a
significant (sometimes dominating) portion of the total cost.
Our experiment results will verify that we often do not need
many passes to achieve very accurate results.

V. EXPERIMENT
A. Dataset

In this paper, two small datasets and two large datasets are
used to evaluate the proposed method OMVC. The summary
of the datasets is shown in Table II, and the details of the
datasets are as follows:

o Web Knowledge Base (WebKB)': It is a subset of
web documents from four universities [27]. The data
contains 1,051 documents from two classes, course
or non-course. Each document has two views: 1) the
textual content of the web page and 2) the anchor text
on links in other web pages pointing to the web page.

o Handwritten Dutch Digit Recognition (Digit)>: This
data contains 2,000 handwritten numerals (“07-“9”)
extracted from a collection of maps. Five views are
used in our experiments: (1) 76 Fourier coefficients of
the character shapes, (2) 216 profile correlations, (3) 64
Karhunen-Loeve coefficients, (4) 240 pixel averages in
2 x 3 windows, (5) 47 Zernike moments.

o Reuters Multilingual Text Data (Reuters)’: This
data contains features of 111,740 documents originally
written in five different languages (English, French,
German, Spanish and Italian), and their translations,
over a common set of 6 topic categories [1].

Uhttp://vikas.sindhwani.org/manifoldregularization.html
Zhttp://archive.ics.uci.edu/ml/datasets/Multiple+Features
3http://archive.ics.uci.edu/ml/machine-learning-databases/00259/

Table II: Summary of the datasets

Dataset # of instances views # of clusters
‘WebKB 1,051 Content(3,000), Anchor text (1,840) 2
Digit 2,000 Fourier (76), Profile (216), Karhunen-Loeve (64), Pixel (240), Zernike (47) 10
Reuters 111,740 English (21,531), French (24,893), German (34,279), Spanish (15,506), Italian (11,547) 6
YouTube 92,457 Vision (512), Audio (2,000), Text (1,000) 31
0.4 09 0.6 0.6
08 s 05 W SRECHOSE 05 W o o
_ / st oor S04 SR HHHHR KN e 04
z < Zomve z | <
o e H T e 1/ e
MultiNMP ONMF-I >MUItiNMF ¢ MultiNMF
-ONMF-DA 0.2 9-ONMF-DA 0.2 9-ONMF-DA
o ONMF-| 05 - — = ONMF-I_|| ONMF-I

0 5 10 15 20 25 0 5 10 20 25

15
Pass Pass
Figure 1: NMI on WebKB Figure 2: AC on WebKB

0.22 0.38 [+-OMVC
4 ONMF-DA
ONMF-1
0.2
= 0.36
2 2
0.18
016 FFOMVC 034 f W
SONMF-DA
ONMF-I
0.14 0.32
5 70 15 o 5 70 is

Pass Pass

Figure 5: NMI on Reuters Figure 6: AC on Reuters

Table III: Summary of the comparison methods

Methods Multi-view | Incomplete | Sparsity | Online
OMVC v v v v
MultiNMF v X X X
MIC v v v X
ONMEF-I X X X v
ONMF-DA X X X v

« YouTube Multiview Video Games (YouTube)*: This
data contains about 120,000 videos from 31 classes
corresponding to 30 popular video games and other
games [22]. We select one vision view (512 cuboids
histogram features), one audio view (2,000 MFCC
features) and one text view (1,000 LDA features from
descriptions, titles and tags) in the experiments. We
removed some instances with label 31 and kept 92,457
instances to create a more balanced dataset.

B. Comparison Methods

We compare OMVC with several state-of-the-art methods.
The differences between these comparison methods are
summarized in Table III, and the details of comparison
methods are as follows:

« OMVC: OMVC is the proposed online multi-view
clustering method in this paper. To facilitate compari-
son, we set a,,s (3,5) to be the same for all the views.

o MultiNMF: MultiNMF is the state-of-the-art off-line
multi-view clustering method based on joint nonnega-
tive matrix factorization [20] for complete views.

e MIC: MIC is one of the most recent works that
solve the off-line multi-view clustering problem with

“https://archive.ics.uci.edu/ml/datasets/YouTube+Multiview
+Video+Games+Dataset

20 25 0 5 10 15 20 25
Pass

Pass
Figure 3: NMI on Digit Figure 4: AC on Digit

0.104 |
0.16 b
FOMVC 0.102
0.14 -ONMF-DA|
ONMF-I 04 /\6\6\9\

o
<

01 W 0.098 W
[FFOMVC
0.08 0.096 ©-ONMF-DA|
ONMF-I
0.094
0085 5 10 15 0 5 10 15

Pass

Pass
Figure 7: NMI on YouTube Figure 8: AC on YouTube

incomplete data via weighted joint NMF [25].
ONMEF: ONMF is an online document clustering algo-
rithm for single view using NMF [30]. In order to apply
ONME, we simply concatenate all the normalized views
together to form a big single view. We compare two
versions of ONMF from the original paper. ONMF-I
is the original algorithm that calculates the exact inverse
of Hessian matrix, while ONMF-DA uses diagonal
approximation for the inverse of Hessian matrix.

It is worth mentioning that MIC and MultiNMF are off-line
methods which take all data into consideration and can often
achieve better performance than on-line methods.

C. Experiment Setup

In our experiments, two widely used evaluation metrics,
accuracy (AC) and normalized mutual information (NMI),
are used to measure the clustering performance [31]. Note
that all the four datasets are complete. In order to simu-
late situations with missing instances, we randomly delete
instances (0% to 40%) from each view to make the views in-
complete. Since all the methods except ONMF have several
parameters, we do a grid search for all the parameters in the
comparison methods and present the best results obtained.
Furthermore, MultiNMF, ONMF-I and ONMF-DA cannot
handle incomplete views. In order to apply these methods,
we fill the missing instances with average features. In the
evaluation, we use K-means to get the clustering solution
from the consensus latent feature matrix. Since K -means
depends on initialization, we repeat clustering 20 times with
random initialization and report the average performance.

Table IV: Run time for different methods
Run Time (seconds)

‘WebKB Digit Reuters | YouTube
OMVC/Pass 16.69 27.47 1963.82 | 1547.78
ONMEF-DA/Pass | 14.53 31.08 1018.97 | 1201.90
ONMEF-1/Pass 14.39 27.26 1213.50 | 2589.94
MIC 113323 | 2187.88 | - -
MultiNMF 974.12 747.64 - -
D. Results

To show the performance of proposed mult-pass OMVC,
we randomly deleted 40% of the instances in each view for
all the datasets, and run the comparison methods. The chunk
size s for online methods is set to 50 for small datasets and
2000 for large datasets. We report both NMI and AC for
different passes. The results are shown in Figs. 1-8 and the
run times are reported in Table IV. It is worth noting that
both MIC and MultiNMF are off-line methods with one pass,
so the NMI and AC are two horizontal lines in the figures.

From Figs. 1-4 on WebKB and Digit, we can observe
that for the three online methods (OMVC, ONMF-DA and
ONMEF-I), both NMI and AC increase as the number of
passes increases. The performance of the online methods
converges as the number of passes increases. Although
the off-line method MIC achieves the best performance,
the proposed OMVC gets close performance within a few
passes and outperforms the other three comparison methods
by a large margin. Even in the first pass, the proposed
OMVC already outperforms the other two online methods
and even the off-line MultiNMF. This shows that even one-
pass OMVC can achieve reasonable performance. From
these figures, we can see that the comparison methods can
be grouped into two groups by the performance. The first
group, MIC and OMVC, achieves better performance than
the other three methods. It is because that both MIC and
OMVC utilize a weight matrix for each view to eliminate
the influence of the incomplete data and enforce the sparsity
of the latent features, while the other three methods do not
consider the incompleteness and sparsity of the data.

Figs. 5-8 demonstrate the performance on the two large
data datasets, Reuters and YouTube. However, as the data
is too large, the two off-line methods (MIC and MultiNMF)
cannot be applied. We only report the NMI and AC for the
three online methods. In the four figures, OMVC outper-
forms the other two online methods in all the passes.

From Figs. 1-8, we can conclude that the proposed OMVC
outperforms all the other online methods and perform on
par with the best off-line method within a small number
of passes. Another interesting observation we can get from
the figures is that ONMF-I performs better than ONMF-DA
on all the datasets except for YouTube, which indicates that
the diagonal approximation sacrifices the accuracy for the
computation efficiency in the three datasets.

We also reported the run time for the comparison methods
on the four datasets in Table IV. From the table, we can see
that all the three online methods are much faster than the

two off-line methods. Although the ONMF-DA and ONMF-I
run faster than the proposed OMVC, OMVC achieves much
better performance than ONMF-DA and ONMF-I.

In OMVC, we need to set the size of data chunk. In
order to study the performance of OMVC with different
chunk sizes, we conducted another set of experiments.
Moreover, to show how the instances incomplete rate affects
the performance, We ran the comparison methods with
different chunk sizes on WebKB and Digit with different
incomplete rates and report the NMI after 10 passes in
Table V and Table VI. From the tables, we can first observe
that OMVC outperforms the other online methods in all the
cases and is very close to the best off-line method, if not
better. If we look at the performance for different incomplete
rates, we can see that as the incomplete rate increases, the
performance for all the methods decreases. It is because
as the incomplete rate increases, the useful information
contains in each view decreases, and all the methods suffer
from the incompleteness of views. We can also observe that
for each incomplete rate, when the chunk size is too small
(e.g., s = 2), all the online methods show low performance.
This is because the more data in one chunk, the more
information we can use to improve the performance. When
s is large enough (larger than K), the performance of online
methods will improve. From the tables, we can see that when
s 18 50 or 250, the performance is already pretty close to the
best off-line method. Also, using larger chunks means fewer
iterations, which reduces the 10 cost significantly comparing
with using smaller chunks.

E. Convergence Study

We use the average loss to measure the performance of
OMVC after reading each data chunk ¢ in each passes. The
average loss is defined as follows:

1 AN (o : :

AN ZZ (P® + @@ + IVl)

T (28)
where P = (X! = UV)W"||2, is the recon-
struction error for the ¢-th data chunk in v-th view and
QY = W (V") — V)12 is the distance between the
latent features for the ¢-th data chunk in the v-th view and
the common consensus.

We run OMVC on all the four datasets with 40% incom-
plete views and report the average loss in Figs. 9-12. From
Fig. 9 for WebKB and Fig. 10 for YouTube, we can observe
that for each pass, the average loss goes up first and then
slowly drops to a certain value. If we compare the lines for
different passes, we can see that, at the end of each pass,
all the lines converges to one value and the average loss for
later pass is lower than the previous pass. From Fig. 11 for
Digit and Fig. 12 for Reuters, we can clearly observe that
for each pass, as more chunks of data come, the average loss
drops and converges. At the end of each pass, the average

r® —

Table V: NMI on WebKB with different incomplete rates and chunk sizes

0% 20% 40%
s=2 s=10] s=50 | s=250 || s=2 s=10] s=50 | s=250 || s=2 s=10 | s =50 5:250\
OMVC 0.5852 | 0.5959 | 0.5954 | 0.5529 0.2686 | 0.2990 | 0.4339 | 0.4139 0.1438 | 0.1966 | 0.3462 0.3486
ONMF-DA | 0.1857 | 0.3172 | 0.3689 | 0.3769 0.1498 | 0.2407 | 0.2463 | 0.2518 0.1322 | 0.1290 | 0.1560 | 0.1903
ONMF-I 0.4014 | 0.4172 | 0.3428 | 0.2505 0.1623 | 0.2337 | 0.2507 | 0.2597 0.1290 | 0.133 0.188 0.2114
[MIC [0.6010 | 0.4013 | 0.3512 |
| MultiNMF _ | 0.5890 I 0.3884 I 0.2198 |
Table VI: NMI on Digit with different incomplete rates and chunk sizes
0% 20% 40%
s = s=10 | s=50 | s=250 || s=2 s=10 | s=50| s=250 || s=2 s=10 | s =50 | s =250
OMVC 0.4631 | 0.7203 | 0.7303 | 0.7258 0.3240 | 0.6590 | 0.6614 | 0.6527 0.2594 | 0.4635 | 0.48385 | 0.4976
ONMF-DA | 0.2762 | 0.2994 | 0.4218 | 0.4195 0.3752 | 0.2933 | 0.6118 | 0.3600 0.2205 | 0.1473 | 0.3103 | 0.3136
ONMF-I 0.2545 | 0.3142 | 0.6735 | 0.6688 0.1892 | 0.1792 | 0.3318 | 0.3102 0.2588 | 0.3146 | 0.3785 | 0.4138
[MIC [0.7305 | 0.6569 I 0.4903 |
| MultiNMF_| 0.7313 I 0.6412 | 0.4304 \
w107 22100 «10° w10
2 ~OMVC-Pass 1 2 ~-OMVC-Pass 1 " +OMVC-Pass 1
21 +-OMVC-Pass 2 y +-OMVC-Pass 2| :OMVC:PassZ
2 R sovermy Sgiverat
g 8 22 |~ OMVC-Pass 5| 81.25
g8 %1'9 31 12
§ = §1e § §
2 oG Pase 2 2 2 2
-+OMVC-Pass 3 17
16 ~OMVC-Pass 4 16 1. 1.4
‘ 50 ° it‘l}?()hunks‘5 & 1‘50 10 40 50 1 20 0 #uf%ohunk % !! ‘ DEO 0 2 #of Sgunks “0 5 80

20 30
of Chunks

Figure 9: Average Loss vs # of Figure 10: Average Loss vs # of Figure 11: Average Loss vs # of Figure 12: Average Loss vs # of

chunks on WebKB chunks on YouTube

(a) Digit (b) WebKB

Figure 13: Sensitivity analysis.

losses for later passes are lower than previous passes and
converge to a certain value.

F. Sensitivity Analysis

There are two sets of parameters in the proposed methods:
{a,} and {f,}. Here we explore the effects of the two
parameter sets. As mentioned in the previous section, we
set o, () to be the same for all the views. For simplicity,
assume that o, = « and (5, = (8 for all the views. We run
OMVC with different values for o and 5 on WebKB and
Digit data. To save space, we only show the results w.r.t.
NMI in Fig. 13 since we have similar observations in AC.

From Fig. 13a, we can observe that OMVC achieves
the best performance when « is about 1072 and 8 is
about 10~7. Parameter a controls the importance of co-
regularization between views and the consensus. When it
becomes too small, the consensus has little contribute to the
learning of each view, and the performance will decline.
When « increases, the consensus has too much influence
to each view and the performance will drop. Parameter

chunks on Digit chunks on Reuters

[controls the sparsity of the latent feature matrices. We
can observe that when it is too small, we barely enforce
the sparsity, and thus the performance decline. When it is
too large, most of the entries in the latent feature matrices
will be 0, and the performance will drop. We can have
similar observation from Fig. 13b. These results show that an
appropriate combination of these two parameters is crucial
for OMVC to improve the performance.

VI. RELATED WORK

Multi-view clustering [4] provides a natural way for
generating clusters from multi-view data. In the introduction,
we have discussed four categories of multi-view clustering
algorithms. Here we particularly address several subspace
based multi-view clustering methods [8, 20, 25, 29]. [8]
proposed a CCA based multi-view clustering method to
learn the subspace, in which the correlations among views
are maximized. [20] approached the problem by learning a
common consensus based on a co-regularized joint NMF
framework. Recently, [29] proposed to solve multi-view
clustering with at least one complete view based on CCA.
Later, [25, 17] proposed two NMF based methods that can
solve multi-view clustering even without any complete view.
Although various methods have been proposed to integrate
heterogeneous views, none of the previous methods can
handle large-scale data that cannot fit into the memory.

Nonnegative matrix factorization [16], especially online
NMF is the second area that is related to our work. Since
traditional NMF cannot deal with really large data, online

NMF was first proposed to handle really large data or
streaming data [6]. Different variations were proposed in the
last few years. For example, [11] proposed an efficient online
NMEF algorithm that takes one chunk of samples per step and
updates the bases via robust stochastic approximation. [30]
proposed an online NMF algorithm for document clustering.
It utilizes the second-order Hessian matrix to optimize
the objective incrementally. [24] added graph regularization
to an online joint NMF framwork for multi-view feature
selection. However, none of them can deal with multiple
incomplete views. OMVC uses a weighted joint NMF model
to handle the incompleteness of the views and enforces the
sparseness of the learned latent feature matrices.

VII. CONCLUSION

In this paper, we present possibly the first attempt to
solve the online multi-view clustering with incomplete views
where each view may suffer from missing some instances.
Based on NMF, the proposed OMVC learns the latent feature
matrices for each individual incomplete view and pushes
them towards a common consensus. To achieve the goal, a
joint NMF algorihm is used to not only incorporate individ-
ual matrix factorizations but also minimize the disagreement
between the latent feature matrices and the consensus.
By giving missing instances lower weights dynamically,
OMVC minimizes the negative influences of the missing
data. OMVC also enforces the sparsity of the learned latent
feature matrices by introducing lasso regularization, which
makes the method robust to noises and outliers. Most
important, OMVC does not require holding the entire data
matrix into memory, which reduces the space complexity
dramatically. It processes the data one by one (or chunk
by chunk), learns the latent feature and updates the basis
matrix simultaneously. Extensive experiments conducted on
both small and large real data demonstrate the effectiveness
of the proposed OMVC method comparing with other state-
of-the-art methods.

ACKNOWLEDGMENT
This work is supported in part by NSF through grants IIS-1526499,
CNS-1626432, NSFC through grants 61503253, 61672357, and NVIDIA
Corporation with the donation of the Titan X GPU used for this research.

REFERENCES

[1] M. R. Amini, N. Usunier, and C. Goutte. Learning from mul-
tiple partially observed views - an application to multilingual
text categorization. In NIPS, 2009.

[2] D. Bertsekas. Nonlinear Programming. Athena Scientific,
1999.

[3] D. P. Bertsekas. Projected newton methods for optimization
problems with simple constraints. SIAM Journal on control
and Optimization, 20(2):221-246, 1982.

[4] S. Bickel and T. Scheffer. Multi-View Clustering. In /ICDM,
2004.

[5] E. Bruno and S. Marchand-Maillet. Multiview Clustering: A

Late Fusion Approach Using Latent Models. In SIGIR, 2009.
[6] B. Cao, D. Shen, J.-T. Sun, X. Wang, Q. Yang, and Z. Chen.

Detect and Track Latent Factors with Online Nonnegative
Matrix Factorization. In IJCAI, 2007.

(71
(8]

[91

[10]

(1]

[12]

[13]
[14]
[15]

[16]

(171

(18]

[19]
[20]
[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

X. Cao, C. Zhang, H. Fu, S. Liu, and H. Zhang. Diversity-
induced multi-view subspace clustering. In CVPR, 2015.

K. Chaudhuri, S. M. Kakade, K. Livescu, and K. Sridharan.
Multi-view Clustering via Canonical Correlation Analysis. In
ICML, 20009.

D. Greene and P. Cunningham.
Approach for Integrating Multiple Data Views.
PKDD, 20009.

L. Grippo and M. Sciandrone. On the convergence of
the block nonlinear gauss—seidel method under convex con-
straints. Operations Research Letters, 26(3):127-136, 2000.
N. Guan, D. Tao, Z. Luo, and B. Yuan. Online nonnegative
matrix factorization with robust stochastic approximation.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 23(7):1087-1099, 2012.

P. Hoyer. Non-negative sparse coding. In /2th IEEE
Workshop on Neural Networks for Signal Processing, pages
557-565. 1IEEE, 2002.

Y. Kim and S. Choi. Weighted Nonnegative Matrix Factor-
ization. In ICASSP, 2009.

A. Kumar and H. D. Ill. A Co-training Approach for Multi-
view Spectral Clustering. In ICML, 2011.

A. Kumar, P. Rai, and H. D. III. Co-regularized Multi-view
Spectral Clustering. In NIPS, 2011.

D. Lee and S. Seung. Learning the Parts of Objects by
Nonnegative Matrix Factorization. Nature, 401:788-791,
1999.

S. Li, Y. Jiang, and Z. Zhou. Partial Multi-View Clustering.
In AAAIL 2014.

G. Lilis, D. Angelosante, and G. Giannakis. Sound field
reproduction using the lasso. IEEE Transactions on Audio,
Speech, and Language Processing, 18(8):1902-1912, 2010.
C. Lin. Projected gradient methods for nonnegative matrix
factorization. Neural computation, 19(10):2756-2779, 2007.
J. Liu, C. Wang, J. Gao, and J. Han. Multi-View Clustering
via Joint Nonnegative Matrix Factorization. In SDM, 2013.
B. Long, P. S. Yu, and Z. Zhang. A General Model for
Multiple View Unsupervised Learning. In SDM, 2008.

O. Madani, M. Georg, and D. A. Ross. On using nearly-
independent feature families for high precision and confi-
dence. Machine Learning, 92:457-477, 2013.

P. Muthukrishnan, D. Radev, and Q. Mei. Edge weight
regularization over multiple graphs for similarity learning. In
ICDM, 2010.

W. Shao, L. He, C.-T. Lu, X. Wei, and P. S. Yu. Online
unsupervised multi-view feature selection. In /CDM, 2003.
W. Shao, L. He, and P. S. Yu. Multiple Incomplete Views
Clustering via Weighted Nonnegative Matrix Factorization
with Ly | Regularization. In ECML PKDD, 2015.

W. Shao, X. Shi, and P. Yu. Clustering on multiple incomplete
datasets via collective kernel learning. In /ICDM, 2013.

V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point
cloud: from transductive to semi-supervised learning. In
ICML, 2005.

S. Sun. A survey of multi-view machine learning. Neural
Computing and Applications, 23(7-8):2031-2038, 2013.

A. Trivedi, P. Rai, H. Daumé III, and S. DuVall. Multiview
Clustering with Incomplete Views. In NIPS 2010: Workshop
on Machine Learning for Social Computing, 2010.

F. Wang, P. Li, and A. Konig. Efficient document clustering
via online nonnegative matrix factorizations. In SDM, 2011.
W. Xu, X. Liu, and Y. Gong. Document clustering based on
non-negative matrix factorization. In SIGIR, 2003.

A Matrix Factorization
In ECML

