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Abstract—Managed Hadoop in the cloud, especially SQL-on-
Hadoop, has been gaining attention recently. On Platform-as-a-
Service (PaaS), analytical services like Hive and Spark come pre-
configured for general-purpose and ready to use. Thus, giving
companies a quick entry and on-demand deployment of ready
SQL-like solutions for their big data needs. This study evaluates
cloud services from an end-user perspective, comparing providers
including: Microsoft Azure, Amazon Web Services, Google Cloud,
and Rackspace. The study focuses on performance, readiness,
scalability, and cost-effectiveness of the different solutions at
entry/test level clusters sizes. Results are based on over 15,000 Hive
queries derived from the industry standard TPC-H benchmark.
The study is framed within the ALOJA research project, which
features an open source benchmarking and analysis platform that
has been recently extended to support SQL-on-Hadoop engines.
The ALOJA Project aims to lower the total cost of ownership
(TCO) of big data deployments and study their performance
characteristics for optimization.

The study benchmarks cloud providers across a diverse range
instance types, and uses input data scales from 1GB to 1TB,
in order to survey the popular entry-level PaaS SQL-on-Hadoop
solutions, thereby establishing a common results-base upon which
subsequent research can be carried out by the project. Initial
results already show the main performance trends to both hard-
ware and software configuration, pricing, similarities and architec-
tural differences of the evaluated PaaS solutions. Whereas some
providers focus on decoupling storage and computing resources
while offering network-based elastic storage, others choose to keep
the local processing model from Hadoop for high performance,
but reducing flexibility. Results also show the importance of
application-level tuning and how keeping up-to-date hardware
and software stacks can influence performance even more than
replicating the on-premises model in the cloud.

I. INTRODUCTION

Enterprise migration of big data services remains among
the last barriers for complete migration to the cloud [17]. The
migration and operation process can represent a significant
economic investment, mainly due to the cost of data movement
and storage, though there are also concerns regarding data
security and governance. Cloud providers are required to offer a
service that meets these needs at a price and performance that is
competitive with traditional offerings. Historically, on-premises
local deployments have been favored, in part due to Hadoop
systems being designed for commodity local hardware. The
classical Hadoop-model takes advantage of application-based
data replication and locality, and exclusive access to the physical
resources. However, in recent years, new managed enterprise big
data services have emerged in most cloud providers [17], facili-
tating software-defined on-demand big data deployments. These
services create compelling technical reasons for migration, such
as elasticity of both compute and storage, while maintaining
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a simplified infrastructure management i.e. via virtualization.
Furthermore, with such services often using a Pay-as-you-Go
or even Pay-as-you-Process pricing model, they are becoming
increasingly economically attractive to customers.

This study focuses on Platform-as-a-Service (PaaS) deploy-
ments with managed Hadoop, in which popular services like
Hive and Spark usually come pre-configured, saving enterprise
time and effort when looking for ready-to-use SQL-like so-
lutions. Cloud providers make the complex configuration and
tuning process [20] transparent to their clients, while providing
features such as data security and governance. On top of this,
by having multiple customers, service providers can potentially
improve their software-stack from user feedback, as upgrading
services more often than smaller companies. As a result, the
client can benefit from the immediate availability of a tested and
generically-optimized platform with upgrade management. It is
the intent of this work to compare out-of-the-box performance
of the most popular available solutions and give an insight into
the life-cycle of the services.

The recent study conducted by Forrester Market Re-
search [17] compared performance across a range of cloud
providers, highlighting the leaders in the field. The services
offered by four of those providers are examined in this re-
port, namely those of Microsoft Azure, Amazon Web Services
(AWS), Google Cloud Platform, and Rackspace. Different Vir-
tual Machine (VM) instance types are tested for each of the
providers, with a focus on the provider selected defaults, and
a fixed cluster size to 8 data nodes for the main results. A
complementary extension is also included, showing the scala-
bility from 4 to 32 datanodes on the Azure platform. In order
to provide results reflective of an out-of-the-box experience, no
fine-tuning of the execution environment is carried out in any
of the PaaS instances. In order to compare the impact of fine-
tuning the software stack, a local commodity Hadoop cluster
is also benchmarked. Tests were carried out across a range of
data scales from 1GB to 1TB (where supported) using a TCP-H
derived benchmark for Hive. Hive was chosen over SparkSQL,
firstly as it is the most mature and stable alternative of the two,
as well as because all the selected providers have Hive better
configured and offer similar versions, providing a better baseline
for comparison.

Objectives and contributions:

1)  Survey the popular entry level PaaS SQL-on-Hadoop
solutions from main cloud providers and compare their
default offerings.

2)  Study the hardware architectural differences and ex-
plore elasticity and performance of the choices for
analytical services using Hive.
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3)  Characterize the cost-effectiveness of the solutions and
how the software configuration affects performance.

4)  Give insights on scalability in data and compute, and
the life-cycle of the services.

The initial results show main performance trends, limits
and differences of the evaluated PaaS solutions. For example,
while some providers prefer to decouple with network-based
elastic storage, separated from the computing resources, others
prefer to keep local processing models, maintaining Hadoop
classical design. However, classical Hadoop configuration does
not necessarily imply fast execution of analytical queries (i.e.,
Hive), where keeping up-to-date versions and fine tuning can
influence the performance more than local compute. The life-
cycle analysis also shows how services are updated constantly,
both in hardware and software stacks, improving the perfor-
mance of services and lowering costs. The provided flexibility
and simplified management by current PaaS offerings can be
very attractive features for enterprises when migrating or starting
big data services in the cloud. As results show, users can
expect comparable performance in mid-sized clusters compared
to traditional setups, as well to frequently updated services. As
a note, prices and even performance numbers in this report
represent only a snapshot of the fast-paced cloud environment,
in which cloud providers are constantly surpassing one another
in terms of performance and pricing.

Organization: The rest of the article is organized as follows:
Section II presents the tested systems, their prices, and main
characteristics. Section III introduces state of the art on which
this study is framed. Section IV explains the methodology
followed in the experiments, as well as presents a summary
of execution times for the different data scales, the costs per
run, and the cluster size scalability tests. Section V presents a
detailed analysis on how the selected hardware and software
configuration impact query running times, providing examples
on the update life-cycle of two providers, and compares the
running time variability between different instances. Finally,
Section VI provides a discussion of the lessons learned, presents
the conclusions, and future work.

II. PROVIDERS AND SYSTEMS-UNDER-TEST (SUTS)

This section presents and compares the different providers
and Systems-Under-Test as well as the selection criteria for the
different options and software versions. The Hive-based SQL-
on-Hadoop PaaS services from 4 major cloud providers are
compared:

e  HDInsight (HDI) from Microsoft Azure.
e (Cloud Big Data (CBD) from Rackspace.

e  Elastic Map Reduce (EMR) from Amazon Web services
(AWS).

e  Cloud Dataproc (CDP) from Google Cloud Platform.

There are different reasons justifying the selection of each
provider. HDI and CBD have both been studied previously [19,
20], and as such, their APIs are already well-integrated into
the ALOJA platform (see Section III-1). EMR was the first
major Hadoop PaaS solution, and currently has one of the
largest usage shares [17]. Both AWS and EMR are commonly
used as bases of comparison in the literature [24, 26, 27].
CDP from Google Cloud has been included due to it being
identified as a leading provider [17], as well as for being a new

service (GA in 2016) which could potentially have a different
architecture. Additionally, results are presented from a classical
commodity on-premises local cluster, with a general vs. a fine-
tuned configuration, to contrast the performance of the cloud
solutions to both a general installation and an expert-managed
solution.

A. Virtual Machine instances

When creating a new Hadoop cluster, one of the main
decisions that has an impact on performance and pricing is
the choice of the type of VM instance and the number of data
nodes. In this study, default VMs from each provider are com-
pared with the higher-performance alternatives, to evaluate the
price/performance benefit. Table I summarizes the specifications
of the different VMs that were tested and the prices for the 8
data nodes clusters and 5TB of HDFS capacity required for the
main experiments. Default VMs are highlighted in bold.

1) HDInsight: for HDI, benchmarks were run on three
generations of VM: D3v2 (current default), D3v1 (previous
default), and Large (also referenced as A3 and default during
2015)—all with 4-cores, and D4v2 featuring 2x the specs of
D3v2 including 8-cores. The HDFS on all HDI instances is
backed by the Azure Blob store (through the WASB driver).
This means that it is an object-store over the network. As a
consequence, the storage on HDI is decoupled from compute
and can grow elastically, as well as be used from outside the
HDEFS cluster on other shared services and users. Local disks,
backed by SSD drives on the D-series, are ephemeral and used
for temporary or intermediate data only. Deployment times in
Azure took close to 25 minutes on most builds.

2) Cloud Big Data: in CBD on the other hand, the proposed
default option is based on the OnMetal40 instance. As the name
implies, the OnMetal40 (from now on referred as OnMetal)
instance is dedicated hardware that is managed as a VM through
their API/Web, and offers a high-end setup: 40-cores, 128GB
of RAM, and 2 local SSDs. For this reason and to match a
closer pricing and specs to the rest of the SUTs, we have set
the OnMetal-based clusters to 4 data nodes only, while all the
rest have 8, as highlighted in Table I. The OnMetal cluster
is the only SUT besides our on-premises cluster that is not
potentially shared with other cloud users. CBD also offers multi-
tenant VMs like the rest of the providers; we have tested VMs:
hadoop1-7, hadoop1-15 (the shared default), hadoop1-30, where
the last digits represent the amount of RAM per node. In the
case of CBD, HDFS is mounted on the provided local disks,
offering a similar setup to on-premises deployments. CBD also
offers the option of adding external stores to HDFS i.e., the
Cloud Block Store (CBS) and AWS S3 compatible, but this was
not tested in this work, partially due to having enough local disk
space for our tests, which resulted in a saving in storage costs.
Deployment times for CBD were similar to Azure, at around
25 minutes.

3) Elastic Map Reduce: for EMR, the default m3.xlarge
instance was tested, which comes with 80GB local SSD disk
per node (an EBS option is also available); and so was the
m4.xlarge, an EBS-only storage subsystem instance. The sys-
tems, both with 4 cores, have 15GB and 16GB RAM respec-
tively, but the m4-series contains a newer hardware generation.
EBS stands for Elastic Block Store, Amazon’s over-the-network
storage. EBS has 4 different throughput (IOPS) plans, according
to the technology backing the storage. The plans being being



TABLE L.

COMPARISON OF THE DIFFERENT SUTS SPECS AND PRICES FOR 8 DATANODES AND 5TB STORAGE

Provider Instance type Default? g(:;f:/ 113113(11\:/ Storage/Node COStg:t):rn::)l;::er 8 Cost/5TB/hr ~ Deploy time
m3.xlarge Yes 4 15 2x40GB Local SSD (EBS option) $3.36 .
Amazon EMR m4.xlar§e No 4 16 EBS size defined on deployp $2.99 3007 ~10 mins
A3 (Large) (old def.) 4 7  Elastic (WASB) + 285GB SATA $ 2.70
Azure HDI D3 vl and v2 Yes 4 14 Elastic (WASB) + 200GB SSD $ 525 $0.17 ~25 mins
D4 v1 and v2 No 4 14 Elastic (WASB) + 400GB SSD $ 10.48
nl-standard-4 Yes 4 15 GCS size defined on deploy $ 1.81
Google CDP nl-standard-4 1SSD No 4 15 1x375GB SSD + GCS $1.92 $0.18 ~01 min
nl-standard-8 No 8 30  GCS size defined on deploy $3.61
hadoop1-7 No 2 7 1XxSATA 1.5TB (CBS option) $2.72
hadoop1-15 (2nd def.) 4 15  2xSATA 2.5TB (CBS option) $ 5.44 N/A (local )
Rackspace CBD hadoolfl 30 No 8 30  3xSATA 5TB (CBS oplfon) $ 10.88 CBS é; 0.07) ~25 mins
OnMetal40 Yes 40 128 2xSSD 3TB (CBS option) (4-nodes) $ 11.80
On-premises Intel Xeon E5-2630L N/A 12 64 6x1TB SATA + 300GB SSD $ 3.50 N/A (local) N/A

high-performance or regular, for both SSDs and rotational
drives; we chose the regular SSDs. Since the m3.xlarge comes
with only 80GB of local store per node, we also used EBS disks
to reach the STB capacity needed. Deployment times were faster
than HDI and CBD at around 10 minutes.

4) Cloud Dataproc: for CDP, we have evaluated the nl-
standard-4 default instance with 4-cores and 15GB RAM,
both with Google Cloud Storage (GCS)—the network based
storage—and with one additional local SSD reported as a second
SUT. In CDP, up to 4 SSDs can be added per node at creation
time and the volumes are not ephemeral as in HDI, but part of
the HDFS tiered storage. The third CDP SUT is a nl-standard-8
instance, with 2x the specs of the nl-standard-4, that is 8-cores
and 30GB of RAM. Deployment times were surprisingly fast
for CDP, with cluster build times at around 1 minute.

It is interesting to note, that the default cloud-based VMs for
each provider all have 4 virtual CPU cores each and about 16GB
of RAM (highlighted in bold in Table I) providing a comparable
common ground among providers—with the OnMetal exception
that was adjusted to a smaller cluster to be comparable. Default
settings provide roughly 4GB of RAM per CPU core on most
SUTs. Software configuration is later analyzed in Section V-C.
All four providers also include at least two master and auxiliary
servers for High Availability (HA) and cluster management.
These extra nodes, which can be used for monitoring, can be
customized to different specs than the datanodes, defaulting to
lower-end VMs that are included in the price. This is a difference
with our on-premises cluster, where we benchmark a test-
only solution without the HA and production tools available in
providers. The on-premises cluster is from 2012 and composed
of Intel Xeon CPU E5-2630L with two CPU sockets with 12-
cores total, 64GB of RAM, 6x1TB SATA drives as JBOD, and
1x300GB SDD for temporary storage. For these tests a setup
with 8 datanodes and Ubuntu Linux 14.04 is used.

B. Pricing and Elasticity

Contrasting the similarity of CPU and RAM specs for default
instances, Table I also shows the diverse pricing of the complete
clusters. Prices range from USD 1.81 to 11.80 per hour, with
CDP being the least expensive and CBD OnMetal40 the most
expensive respectively. Another important factor that affects
final pricing is that not all instance types include the I/O used.
Only the instances that use the local disks (as opposed to
networked storage) have no extra charges in both data storage
and operations (IOPS) consumed during usage and make use
of the default Hadoop Distributed File System (HDFS) storage.

However, networked/remote storage has the advantage of elastic
scaling of data. This means that the user is not tied to the
maximum amount of local disk storage, but that storage can
increase as the user needs, paying only for what is used i.e., as in
HDI. Furthermore, data replication, a common feature of HDFS,
is handled by the storage driver for each provider, leaving each
provider with the task of optimizing the networked storage for
their architectures, which can lead to differentiated Quality-of-
Service (QoS). The price-to-performance ratio of each approach
is later analyzed in Section IV-B.

All of the providers offer a way to elastically scale the
number of processing—compute—nodes through their APIs, as
opposed to the on-premises cluster which is fixed. However,
providers differ on the storage approach at cluster creation time.
On CBD it is optional and local processing is preferred, on
EMR it depends on the instance model e.g., optional for the
m3.xlarge but not for the m4.large we have tested; while on HDI
and CDP it is mandatory for all clusters. While both Google’s
GCS and Amazon’s EBS are network-based stores and with
user-defined sizes, in both, the user needs to specify the size
when creating the cluster. This means that each subsequent
datanode added in the future will be fixed to this initial size
and the user pays for this capacity even if it is not used. On
the other hand, on HDI the user does not have to make a
decision on the cluster size and pays for only what is used,
benefiting from the system being more elastic and completely
disaggregated. Having disaggregated storage also means that a
cluster can grow in compute independently. In this case, the user
can choose to add more computing capacity depending on the
type of jobs that will be run to improve execution speed, but
to operate only a minimal cluster—or even shut it down—when
it is not being used, as the storage is maintained (and charged)
independently. In HDI, this is the only option available, as local
disks are considered ephemeral and not permanent storage. This
is to contrast with on-premises clusters, where sizes are fixed
and upgrades years later result in newer, but heterogeneous
hardware. Another advantage of disaggregated storage, is that
different teams from the same company can deploy different
clusters, and link them to the same data stores or access part of
the data independently of each other.

C. Software stack and versions

While EMR, dating back to 2009, was the first major PaaS
Hadoop solution, the other main providers have caught up
in packaging Hadoop with other popular ecosystem services.
Currently, all of the four providers tested ships with both Hive
and Spark for SQL-like analysis on top of Hadoop, as well



as other services and tools i.e., HBase, Pig, etc... There are
differences in security and governance features, but these are
not compared in this work. In relation to the software versions,
both Azure and Rackspace base their PaaS solutions on the
Hortonworks Data Platform (HDP) [10], a popular Hadoop
distribution that users might already be familiar with. Both HDI
and CBD services were released in 2013. HDI supports both
Ubuntu Linux 14.04 and Windows Server, while CBD uses
CentOS 7 as its operating system. During the main experimental
period—March to July 2016—HDI added support for HDP
version 2.4, while continuing to support 2.3, but both shipping
with Hive 1.2 and Hadoop 2.71. The HDI results presented
in Section IV are only for 2.4, while Section V-D compares
both versions on 4 data nodes clusters as a separate experiment.
CDB still used HDP version 2.3.4. AWS uses a custom-built
stack for EMR, as well as a custom Linux version called the
Amazon Linux AMI. The EMR tests were run with the latest
version available at the time of testing, EMR 4.7. EMR instances
came with Hive 1.0.0-amzn-5 and Hadoop 2.7.2-amzn-2. During
August 2016, EMR upgraded to version 5.0, and so we also
present a brief comparison between versions in Section V-D
as an extra experiment on 4 data nodes. Like AWS, Google’s
Cloud Dataproc also uses a custom distribution. Tests were run
on version 1.0, which includes Hadoop 2.7.2 and Hive 1.21
on a Debian Linux 7 OS. Versions tested for the SUTs are
the default ones offered at time of cluster deployment when
using the command-line tools during March to July 2016. More
information on the software versions can be found on the
release notes of each provider. Relating to data center zones, we
have tested HDI at South Central US, EMR at us-east-1, CDP
at west-europe-1, and CBD at both Chicago and Dallas data
centers. For our on-premises cluster, we have used the versions
in ALOJA during the test period which include Hadoop 2.7.1,
Hive 1.2.1, and Tez 7.0. This meant that EMR was the only
provider with Hive 1.0, while the rest were in the 1.2.x versions.
Specific Hadoop and Hive configurations are compared later in
Section V-C.

III. BACKGROUND AND RELATED WORK

The motivation behind this work is to expand the ALOJA
benchmarking and analysis platform from Hadoop Map Reduce
(M/R) jobs [19, 20], into SQL-on-Hadoop systems. The desire
to expand in this direction is driven by the current transition
of the market [17, 25]. In a previous study with Ivanov et.
al., collaborations with the SPEC research group in big data
benchmarking [9] led to the generation of a “Big Data Bench-
mark Compendium” [22], which surveys and classifies the most
popular big data benchmarks. This work represents an expansion
into SQL-like open source systems, the results of which are
publicly accessible through the ALOJA project described below.

1) The ALOJA project [20]: The ALOJA project is an open
initiative from the Barcelona Supercomputing Center (BSC) to
explore and automate the characterization of cost-effectiveness
for big data deployments. BSC is a research center of excellence
with over 8 years of research expertise in Hadoop environments.
The project relies on support from both big data product and re-
search groups within Microsoft, as well as cloud resources from
the Azure4Reseach [7] program, and recently from Rackspace
Inc [21], and collaborates with Intel Inc. ALOJA attempts to
provide solutions to an increasingly important problem for the
big data community, which is the lack of understanding of
what parameters, either software or hardware, determine the

performance of big data workloads. The selected configuration
determines the speed in which data is processed, and most
importantly, the hosting budget. In this work, the current state
of PaaS SQL-on-Hadoop is surveyed, in terms of both price
and performance of the different offerings, in order to later
optimize and make recommendations to both the providers of
these platforms and to the end-users.

2) Hive [11]: has become the de facto data-warehousing en-
gine on top of Hadoop, providing data summarization, analysis,
and most importantly, support for SQL-like queries. The Hive
engine can be controlled using HiveQL, an SQL-like language
designed to abstract the Map/Reduce (M/R) jobs involved in
such queries for analysts. As an example, Hive queries have been
gradually replacing the use of M/R in large companies such as
Facebook and Yahoo! [25]. Likewise, SparkSQL, a library for
Spark including SQL-like queries, is also gaining momentum.
While SparkSQL is offered by the surveyed providers, this work
focuses only on Hive, as it is considered to be more mature
and providers share similar versions and configurations. In
Hive the default engine to manage task executions is Hadoop’s
M/R. However, in the latest versions Hive added support for
different execution engines. Namely Tez [25] (from the Stinger
project) is a popular drop-in replacement, which improves on
the M/R model to provide lower latency and performance. The
Hive configuration employed by the different SUTs is described
further in Section V-C.

3) TPC-H [23]: In the data-warehousing context, the bench-
mark of choice for this study is TPC-H [23], as it is the de
facto standard for testing the data warehouse capability of a
system. TPC-H is a well-understood benchmark used by both
industry and academia [22]. TPC-H also offered this study a
common base upon which to compare the proposed Hadoop-
based systems, between themselves and with traditional engines
from disclosed reports. We have extended a derived version
of the benchmark adapted for Hive for the purpose of these
experiments, described in Section IV. In TPC-H, instead of rep-
resenting the activity of any particular business segment, TPC-H
models any industry that sells products, making it applicable to
different settings. The benchmark is technology-agnostic, which
makes it also suitable to test big data systems, that might not
support all the expected features of traditional OLAP databases.
The benchmark is composed of 22 queries designed to stress
system functionality representative of complex decision support
applications. The definition of the workload can be found in
the latest specification [23]. TPC-H was adapted and derived
very early in the development of Hive [12]. However, in order
for TPC-H results to be published for a given system, it needs
to support full ACID transactions, and be fully audited. In this
sense, this study only reports running times of queries as devel-
oped and as such, is not comparable directly to the published
TPC-H results. Technical details of the different queries and
their choke points can be found In “TPC-H Analyzed” [3].

4) Related work: Most recent evaluations of SQL-on-
Hadoop systems measure the power run performance of on-
premises SUTs. This particular work extends the “SQL-on-
Hadoop: Full Circle Back to Shared-nothing Database Archi-
tectures” [6] by Floratou, Minhas and Ozcan, where authors
compare both Hive with M/R and Tez with Impala on on-
premises servers. This is the first attempt to measure price-
performance of cloud-based SUTs and make comparisons be-
tween the main providers. There are already several tests of
Amazon’s EMR services in the literature: Sruthi [24] presents



the performance and costs models of EMR (PaaS) vs. AWS
(TaaS) using the Intel HiBench [13] benchmark suite, but
only includes a minimal Hive-test benchmark based on Pavlo’s
CALDA[18] benchmark, concluding that PaaS solutions benefit
from being provider-optimized. Zhang et. al. [26, 27] focuses
on scheduling of jobs in EMR and on Hadoop configuration
using micro-benchmarks similar to our previous work [20].
In addition, Malik et. al. [16] and [15] both compare AWS
Redshift to Google’s Big Query services, also with a TPC-
H derived benchmark, but not including the Hadoop stack.
In [5] Floratou et. al. describe the current problems associated
with benchmarking SQL-on-Hadoop systems, and advocate the
standardization of the process. Until a consensus is reached, we
believe that the TPC-H and TPC-DS are the current standards.
However, BigBench [8]—the new TPCx-BB—benchmark might
replace them in the near future, as it is more representative of
big data workloads. In ALOJA, BigBench is currently supported,
and it is a future extension of this work to combine SQL queries
with user code, alongside Machine Learning algorithms.

IV. METHODOLOGY AND RESULTS

The configuration of the different deployed PaaS clusters is
left as the provider pre-configures them, so that the out-of-the-
box performance can be measured. This means that the HDFS
configuration, default execution engine i.e. M/R or Tez, Hive,
and OS are all left unmodified. Specific configurations are later
discussed in Section V-C. Our intentions are not to produce
the best results for the hardware as in our previous works, but
instead to survey different instance combinations, and test the
clusters as the provider intended for a managed general purpose
usage. In doing this, the aim is to provide an indication of
experience that an entry-level user might be expected to have on
a given system without having to invest in additional fine-tuning.
To contrast a general purpose configuration to a domain expert
fine-tuned setup, for our on-premises cluster, two configurations
are presented as different SUTs: while the first has Hadoop
(M/R, HDFS, YARN) properly configured and using the default
configuration of the [12] repository with M/R; results are also
shown for a second fine-tuned configuration with Tez [25] as
the execution engine. Specific configurations are compared later
in Section V-C.

As test methodology, the 22 TPC-H queries are run sequen-
tially and at least 3 times for each SUT and scale factor, cap-
turing running times. Another query—query ALL—is created
as a post-processing step, which accounts for the total time of
the full run, when all the previous 22 queries ran successfully.
According to the data scale factor used, some SUTs fail to run
either some or all queries; this is analyzed in a later section. We
test each SUT with scale factor 1, 10, 100, 500 (a nonstandard
scale factor, used only for the scalability subsection), and 1000
(1TB). Results are reported only for the scale factors in which
the SUT was able to run the 22 queries. Besides query ALL,
query 16 is used in later sections when drilling down into both
resource usage metrics and variability analysis. Query 16 has
been identified [3, 15] as being the most representative query as
having filtering, aggregation, expressions, joins, and sub-joins.
All of the runs are power runs, which means that they run in
isolation (within a public VM) and with no concurrency. The
metrics we present are the execution times of each individual
query and the cost of running each query.

The tests were run between March and July 2016, and the
reported pricing and specs correspond to this period. All of

the instances are using the on-demand (non-discounted) pricing,
which usually is the highest. To calculate the execution cost,
we multiply the run time by the cost per hour normalized to
seconds of the particular setup previously presented in Table 1.
The reported costs do not take into account idle times or
deployment and are always calculated based on the time per
second, regardless of whether the service is usually charged
for based on different units of time. This approach facilitates
comparison between the providers, who currently measure usage
time in different intervals. It appears that the industry is shifting
to measuring usage to a higher precision, as there are already
providers doing so by the second [1]. As a side note, prices
should only be regarded as indicative; during this 4-month test
period, prices were changed at least 2 times for some providers,
while also new versions of the software stack were released e.g.,
HDI rolling HDP v2.4 from v2.3 and ERM from v4.7 to v5.0, a
major version upgrade, discussed later in Section V-D. Pricing
for the on-premises cluster was calculated by amortizing the
HW to 3 years (at the time of purchase) and adding maintenance
and upgrade costs, as described in more detail in our previous
work [20].

The driver (query executor) for the tests is the ALOJA
benchmarking engine. The code of the implementation can be
reviewed on the project’s page [4]. The DDLs and queries have
been adapted for Hive and HiveQL based on the Hortonworks
hive-testbench repository [12], which is the most popular adap-
tation of TPC-H for Hive, and used frequently to test regressions
and improvements in Hive versions. It also includes a M/R
based distributed datagen tool, to generate the data distributively
using across the whole cluster, speeding up the data generation
process. Due to the fact that the minimum scale factor supported
by the M/R generator is 2GB, the official TPC-H datagen is used
for 1GB scale. The source code, DDLs, and SQL queries used
in the experiments are available in the D2F git repository [14].
The D2F repository is based on the hive-testbench [12] from
Hortonworks, but with improved query syntax, that besides
fixing some errors, makes the code HDP-agnostic to work with
generic Hive. Configuration settings for Hive bucketing—13
buckets—and the use of ORC compressed columnar format has
been left as in the original repository when generating the data
files and used in all the reported tests.

A. Results for SUTs and scale factors

Table II shows the average TCP-H full run (query ALL)
results from the benchmark runs on the different SUTs. Results
are composed of more than 260 successful full TPC-H runs—
this is the sum of the sequential run time of 22 queries for the
different data scales of each SUT. It is organized by provider,
instance type following the same order as the previous Table I,
so that columns i.e. the cost per hour of the cluster specs can
be compared. Default instance types are highlighted in bold.
The next group of columns presents the average execution times
from 1GB to 1TB. Following this is the corresponding execution
cost for each run, also for the same scale factors. The hadoop1-
7 instance was not able to process the 1TB data scale, denoted
by Failed for both the time and cost fields. Main errors found
are later discussed in Section V-C.

1) Execution times: The scalability of the different SUTs
with respect to data size can be seen in Table II. Running times
range from 20 minutes to over 1 hour for 1GB, and from 4 hours
to a full day for the fastest to the slowest SUT, respectively.
Relating to the best average response times, the HDI D4v2 gets



TABLE II.

SUMMARY OF TOTAL RUNNING TIME AND COST BY SUT AND SCALE FACTOR

Provider

Instance type

AVG execution time in secs

Average execution cost in USD

1GB 10GB 100GB 1000GB 1GB 10GB 100GB 1000GB

Amazon EMR m3.xlarge 2,703 s. 4,472 s. 11,329 s. 73,381 s. $252 $4.17 $ 10.57 $ 68.49
m4.xlarge 2,350 s. 3,929 s. 9,624 s. 63,841 s. $1.95 $3.26 $7.99 $53.02

A3 (Large) 2,147 s. 3,446 s. 12,071's. 79,208 s. $1.61 $2.58 $9.05 $ 59.41

Azure HDI D3vl 1,665 s. 2,658 s. 9,536 s. 36,946 s. $243 $ 3.88 $ 13.91 $ 53.88
D3v2 1,171 s. 2,076 s. 5,442 s. 26,857 s. $1.71 $3.03 $7.94 $ 39.17

D4v2 701 s. 1,655 s. 3,449 s. 14,205 s. $2.04 $4.82 $ 10.04 $ 41.35

nl-standard-4 2304 s. 4437s.  11,517s. 84,065 s. $1.16 $2.23 $5.79 $42.27

Google CDP nl-standard-4 1SSD 2,272 s. 4,353 s. 11,204 s. 86,452 s. $1.21 $233 $ 598 $ 46.18
nl-standard-8 1,538 s. 4,406 s. 8,877 s. 42,646 s. $1.54 $4.42 $ 8.90 $ 42.76

hadoop1-7 3,739 s. 4,111 s. 25,353 s. Failed $2.83 $3.11 $ 19.16 Failed

Rackspace CBD hadoop1-15 4,044 s. 6,357 s. 17,501 s. 84,997 s. $6.11 $9.61 $26.45 $ 128.44
hadoop1-30 3,490 s. 5,294 s. 11,853 s. 84,414 s. $10.55 $ 16.00 $ 35.82 $ 255.12

OnMetal40 2,981 s. 4,104 s. 5,892 s. 20,676 s. $9.77 $ 1345 $19.31 $67.77

on-premises 12cores-M/R 4,080 s. 6,374 s. 12,749 s. 41,677 s. $3.97 $ 6.20 $12.39 $ 40.52
12cores-TEZ 1,386 s. 1,998 s. 4,505 s. 17,931 s. $ 135 $1.94 $ 438 $17.43

the best times for all of the tested data sizes. While the D4v2,
with 8 cores, has a higher spec than most of its competitors
by default, it is still surprising that it outperforms both the on-
premises system in either configuration (M/R and Tez) and the
OnMetal40 cluster, which both have higher specs than the D4v2.
The HDI D4v2 also performs over twice as fast as the CDP nl-
standard-8 and the CDB hadoop1-30, which both have 8 cores
and similar RAM. After the D4v2, the on-premises 12-cores-
TEZ gets the second-best times at all data sizes except for 1GB.

From the SUTSs with 4 cores—the defaults and in bold, the
HDI D3v2 gets the best average running times, followed by the
D3vl (previous generation CPU) at scales from 1GB to 10GB.
Between 100GB and 1TB, the OnMetal40 performs better than
the D3v1, as well as the nl-standard-8 at 100GB. Continuing
to look at the 4-core VMs, the CDP nl-standard-4 performs
better than both the EMR m3.xlarge and the m4.xlarge. The
EMR m4.xlarge is faster than the previous generation m3.xlarge,
even though it is EBS-only and the m3.xlarge has part of
the data on a local SSD. Similarly, on CDP, while the nl-
standard-4 with one SSD gets slightly better results than without
(except at the 1TB scale), the difference is minimal. So with
the current configuration of CDP, for Hive, adding SSDs leads
to marginal reductions in execution times while increasing the
cost. Besides the OnMetal40, the rest of the CBD SUTs have
high running times, as well as scaling poorly to large data sizes.
Details on system-level benchmarks and query performance is
later analyzed in Section V, and scalability is later analyzed in
Section IV-C. The on-premises cluster was run with the M/R
and Tez execution engines; one can quickly notice the run time
improvement of about 3X from 1GB to 100GB, and 2X for 1TB
with Tez.

As an additional test, an specialized data-warehouse in the
cloud, namely the Azure DW system, with similar resources
as the 4-core SUTs has been benchmarked. The 1TB TPC-H
workload executes in 1 hour and 15 mins on the Azure DW
system, as compared to 4 hours for the fastest Hive system. Of
course, the Hadoop-based SUTs are general purpose and open-
source data engine, but it was interesting to note the current gap
at this data scale with specialized stores.

B. Price-to-performance ratio

While raw performance is important, especially when opti-
mizing a system, one of the most important features of cloud-
based systems is the Pay-as-you-Go model. For illustration pur-
poses of the price-to-performance snapshot of cloud providers

at time of writing, Table II shows the total cost in USD of the
average full run of each SUT. Prices range from just above one
to ten USD at 1GB, and from below forty to over two hundred
fiftty USD at 1TB. The HDI D4v2 got the best running times,
however, it also has higher specs than the default multi-tenant
SUTs (highlighted in bold in the table). Price-to-Performance
ratios give an insight into the actual gain relative to the cost
and are easily estimated for the compute part of cloud systems.
Of course, one could choose to pay more and finish an analytical
job earlier, but if there is no tight deadline, cost-efficiency might
be desirable.

As we can see from Table II, the most cost-performing SUTs
are the CDP nl-standard-4 between 1 to 100 GB, and from
100GB the HDI D3v2. At 1GB, CDP with the SSD version
is the most cost-effective, while from 10 to 100 GB, without
the SSD would be cheaper to run. At 1TB scales, however,
the HDI D3v2 is the most cost-effective system, with a couple
of USDs difference from CDP nl-standard-4. The main reason
for this shift is the decrease in scalability of the CDP SUTs
when increasing the input data, compared to the D3v2 and D4v2
systems. In the same vein, the OnMetal40 scales well with data
size, while its cost is higher than the CDP and HDI results—at
1TB, it has a similar price to the EMR m3.xlarge. It is likely that
at higher data scales e.g., 10TB, price-to-performance rankings
will keep changing since cost and performance are proportional
for a given SUT. An example of this relation can be seen with
the D3 series instances: while both the vl and the newer-gen
v2 have the same price, the v2 is faster, so the cost for the run
is lower.

The cost-effectiveness bubble diagram is shown in Figure 1.
It places each SUT at an (x,y) location of a bi-dimensional
space, where the x- and y-axis represent the execution time in
seconds and running cost in USD respectively. The closest to
point (0,0) would be the most cost-effective and the bubble
size relates to the number of repeat runs for each system. CBD
hadoop1-N SUTs were omitted from the chart, to make it easier
to differentiate the best performing SUTs. The diagram shows
visually how fast—closer to the y-axis—and how cheap—closer
to the x-axis—each cluster is. One can quickly see that since
the nl-standard with 1 SSD has similar time to the GCS-only
version, due to the extra cost of the SSD, it is placed higher.
One can also see how the nl-standard-8 moves along the X-axis
in a linear fashion reducing the running time while keeping total
cost similar, representing a good scalability of the instance at
this data scale. On the other hand, the D3v1 which has the same
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price as the newer gen D3v2 due to taking more time is placed
higher in the chart.

C. Scalability to data size

Table II presented the data size scalability of each SUT on
8 data nodes. As a different experiment of scalability to cluster
sizes in the cloud, Figure 2 compares the scalability of the HDI
D3v2 only between 4- to 32 data nodes. At 1GB scale factor
all four cluster sizes obtain similar numbers. At 100GB, the
4- and 8-node systems perform similarly, while the 16 and 32
nodes are just 14% faster. Figure 2 shows the scalability to data
sizes of 4 clusters having 4 to 32 datanodes with the X-axis in
logarithmic scale. It can be seen that by increasing the number
of nodes in the cluster, one can obtain lower execution times for
the full TPC-H run as expected. At 100GB, 32 nodes is 2.6X
faster than having a 4 datanode cluster size, while at S00GB and
1TB the improvement increases to 4.3X and 5.5X respectively.
Scalability in datanodes is less than linear (ideal), but one can
see that the larger the data size, the more efficient the larger
clusters are. At 1TB data scales the full benefit of larger cluster
i.e., 16- to 32 data nodes is still not reached, and larger data
scaled would be needed to compare them more fairly. The same
can be said of the OnMetal instance, where more tests and larger
data and cluster scales would be needed.

V. IMPACT OF HARDWARE AND SOFTWARE ON RUNTIMES

This section compares the Hardware (HW) and Software
(SW) differences between the providers and SUTs, primarily to
rationalize the performance differences that have been observed,
while also providing an insight into the architectural variations
between each service. Additionally, a complementary set of
TPC-H experiments are included, to provide an insight into the
life-cycle of the PaaS services.

A. System-level benchmarks

To further understand and verify HW performance limits of
the SUTSs, micro-level benchmarks of CPU, memory, network,
and disk I/O bandwidth (BW) have been run, utilizing standard
Linux tools already implemented in ALOJA [4]. The intention
of these tests is to provide additional information about the
application TPC-H based benchmarks and validate assumptions.
However, the following results should only be considered indica-
tive. In order to get further insights, access to the underlying HW
would be required, but these additional tests are considered to
be out of the scope of this initial survey. For example, low-level
HW architectures are generally abstracted by the hypervisor
of the VMs in the cloud. Furthermore, as cloud VMs are
usually very different among providers, a common approach
for comparing cross-provider VMs is to compare servers with
similar CPU core counts and RAM sizes. However, as not all
CPUs and memory buses are from the same generation and
frequency, we have run CPU and RAM memory (MEM) BW
benchmarks using the sysbench package in ALOJA.

1) CPU-MEM: the sysbench tests were run using 1-thread
configuration to get a comparable measure between CPU-MEM
generations, as the SUTs had varied core counts. We classified
results from the SUTs into 3 groups of CPU/MEM performance.
Firstly, the OnMetal nodes scored at least 2x higher than the rest
of the systems followed by the on-premises cluster, as expected.
Secondly, for the shared VMs, the EMR m4.xlarge got the best
numbers, followed closely by both the CDP nl-standard series
and the HDI D-series which shared almost the same scores
both for CPUs and memory BW. Finally, the HDI A3s, the
EMR m3.xlarge, and the CBD hadoopl-series had the lowest
performance. In conclusion, even though EMR, CPD, and HDI
default to 4-core nodes, they belong to at least two different
generations, and a third if the OnMetal SUT is included. All
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of the CPUs were reported as being Intel Xeons, except for the
CDB shared VMs, which also featured AMD Opterons.

2) NET: to measure network BW between two nodes in the
SUT clusters we used the iperf network utility with 100GB of
total payload and with varying numbers of threads, including 1
and the number of cores of the node. In this case, EMR had
the best scores with numbers close to 10Gbp/s on both SUTs.
EMR was followed by CDP, with numbers that varied between
5-8Gbp/s between runs, then CBD, which had a maximum
throughput of about 5Gbp/s. On HDI, the network bandwidth
varied depending on the SUT, meaning that the network is throt-
tled according to the VM size: for the D4v2-series, bandwidths
of up to 6Gbp/s were obtained, whereas for D3v2 the maximum
was 3Gbp/s, for D3vl, 2Gbp/s, and for the A3s, a limit of
1Gbp/s was observed. The on-premises cluster had a close to
1Gbp/s result, which matches the physical network bandwidth.
It is noteworthy that besides the on-premises results, there was
great variation between the iperf runs e.g., the 5-8Gbp/s on
CDP, indicating that the network is shared with other cloud
tenants and not as reliable.

3) Disk I/0: for big data systems, traditionally local disk
Input/Output (I/0) has been the main bottleneck. To account for
disk Read/Write (R/W) BW, we have run simple tests using the
hdparm and dd linux commands also with at 100GB payload
on the mount points used for the HDFS. The OnMetal SUT
again had the best numbers, having high performing SSDs
with 2000/1000 MB/s R/W each; disk specs can be reviewed
in Table I. HDI again has different numbers by SUT series:
The D4s 500/250—getting the best shared VM numbers, D3s
250/100, and the A3s 120/100 MB/s R/W respectively. The rest
of the SUTs had similar numbers to those of the A3s (and in
general to SATA drives) around 120/100 MB/s including our on-
premises cluster, except for the VMs with extra SSD and the
CBD shared VMs. The CDP SUT with 1 SSD that achieved
400MB/s symmetrically for R/W, and the EMR m3.xlarge
achieved 280/125 MB/s R/W. On CBD, all shared VMs showed
a very low write throughput, around 20 MB/s, and needs to be
investigated further.

4) DFSIO [20]: opposed to classical Hadoop, most of the
benchmarked cloud systems store the HDFS data on networked
disks through custom drivers and vendor specific settings, using
local disks for temporary data only. Furthermore, the disk I/O
tests measure single disk performance, the total aggregated
BW of combining multiple disks was not measured. To better
understand the total BW available to the Hadoop applications,
we have also run tests of the DFSIO benchmark, again using
ALOIJA [4]. DFSIO are simple test benchmarks that either write

CBD OnMetal40

query 1 query 6

== query 2 == query 16

CBD hadoop1-15 on-premise-M/R  on-premise-TEZ

Average execution times of scan queries (1 and 6) vs. join queries (2 and 16) at 1TB for default SUTS and on-premises M/R and Tez

or read data using M/R, but without making use of the data.
Results Read/Write MB/s results for DFSIO are : CDB OnMetal
615/315; CDP nl.standard series 50/29, with 1 SSD 321/91;
HDI D4v2 57/50, D3v2 46/38, D3vl 32/35, A3 30/16; EMR
m3.xlarge 30/16 and the m4.xlarge 35/31; CBD cloud based
hadoop1-7 30/3, hadoopl-15 29/4, hadoop1-30 73/5; and the
on-premises 50/228 MB/s R/W respectively. Analyzing results,
again the OnMetal high-end dedicated HW scored best in this
test, the combined use of SATA drives in the on-premises cluster
gave good BW write results. HDI scored again by VM type
and the CBD cloud-based had a poor write BW and in the
disk I/O tests and has been reported. CBD also had an older
version of HDP (HDP 2.3) which contains a buggy version of
DFSIO which might also have contributed to the low results.
Interestingly, the CDP nl.standard system with 1 SSD gets the
best BW number for raw HDFS I/O—after the OnMetal, this
benefit is not translated to good scalability on the Section IV-Al
TPC-H results. Another remark is that the EMR m4 gets higher
BW than the m3 SUT which has 2 local SSD drives indicating
also newer generation of HW on the m4, as well as the general
good performance of EBS.

B. TPC-H performance metrics

Going back to the TPC application-level benchmark, queries
can be classified by the SQL predicates and operations they per-
form and in general to their system resource bottlenecks [3, 15].
For example, queries 1 and 6 are mainly scan type queries,
which implies that they should be highly parallelizable and
their main bottleneck is I/0O. Query 1 also requires some CPU
for aggregates. On the other hand, queries 2 and 16, contain
multiple joins, creating the need to shuffle data often between
nodes requiring fast networks, high-CPU for calculations, and
being more complex to parallelize.

In this context at 1TB scale, we found that the CBD OnMetal
and HDI D4 and D3 series performed the best respectively, on
both queries 1 and 6; while CDP, only with the nl.standard.8
for scan-type queries. Both EMR SUTs, CDP nl.standard.4
with and without local SSD—in contrast to DFSIO, and the
shared CBD SUTs performed poorly on I/O type queries. For
queries 2 and 16—join-types, HDI D4s got the best runs,
followed by the CBD OnMetal, then the HDI D3s. It was
interesting to see, that the D4s with only 8-cores and using
remote disks were able to obtain better numbers than the CBD
high-end OnMetal cluster for join-type queries. Figure 3 shows
the average execution times for queries 1, 2, 6, and 16 for
the defaults SUTs and both on-premises configurations. The
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Fig. 4. CPU peformance details of Query 16 on default SUTSs

on-premises configurations shows the difference of fine-tuning
Hive, over a baseline configuration.

As the ALOJA platform is used to drive the benchmarks,
detailed performance metrics and logs are captured for each
query. Figure 4 shows the CPU percentage usage when running
TPC-H query 16 (the most representative query) with 1TB data
scale, averaged across data-nodes, but excluding the master node
as it has a different behavior. To highlight main differences of
default SUTs and for space limitations, only CPU% of default
systems are presented here. CPU% charts gives an indication
on how busy the cluster was during the different phases of the
query execution (usually seen as humps) of the map and reduce
and sub-jobs. CPU% charts show the different modes (system,
user, I/O wait) on all the node CPUs (Y-axis) over the duration
of the query run (X-axis) in seconds; a high I/O wait indicates
either disk or network bottlenecks. From Figure 4, we can see
that while the CDP, EMR, and CBD OnMetal SUTs follow a
similar trend each having 5 main stages—humps, the HDI SUT
has a very distinct pattern containing spikes. The CBD hadoop1-
15 shows a very high I/O wait, leaving the processor under-
utilized and impacting the total running time. Similar, but less
pronounced, the CDP instance also presented a with I/O wait
and under utilization. Other interesting differences are that on
the CBD OnMetal SUT, the CPU is the least busy and likely
has over-dimensioned HW for the tested data scales; the EMR
m3.xlarge is the most used, also with the highest percentage
of system mode. The distinctive pattern of the HDI SUTs and
in general its good results over the rest of the providers for
similar HW, led us to analyze further the SW configuration
SUTs detailed in the next section; as well to replicate a similar
configuration of HDI on our on-premises cluster as shown in
Figure 3.

C. Software configuration differences

While this work focuses on the out-of-the-box performance
of PaaS services, the difference in execution times from Sec-
tion IV-Al for SUTs with similar HW led us to compare
configuration choices in detail as summarized by Table III.
Note that while the Java versions varied from 1.7 to 1.8, all
providers used the OpenJDK versions, as opposed to our on-
premises cluster, which used Oracle’s JDK 1.7 as traditionally
recommended. At the HDFS level, all providers used their object
networked-based storage, except for CBD and our on-premises

cluster. As object stores are typically replicated besides by
Hadoop, and in the case of OnMetal using HW RAID, it was
interesting to see that only CDP and CBD lowered the HDFS
replication to 2 copies. Most block sizes were the default at
128MB, while only EMR used the default file buffer sizes. EMR
and CBD both compressed the map outputs by default, and each
tuned the I/O factor and the I/O MBs.

While there were some differences at the Java/Hadoop level,
tuning Hive had the most significant impact on performance. It
was remarkable that only HDI had the Tez execution engine
enabled by default. Tez is a project closely related to the HDP
platform used by HDI and CBD, and HDI having a more recent
version of HDP might be part of the reason it is enabled by
default. To verify the impact of Tez, for the on-premises cluster
we have also tested with the Tez engine. As can be seen from the
main results in Table II, Tez reduces the total TPC-H running
time by 2-3x. However, to implement Tez support in ALOJA it
took over three weeks of effort to have it installed outside the
HDP distribution and especially to fine tune it by a domain
expert to achieve the performance improvements presented.
There were also differences in other Hive parameters among
providers, such as using the cost-based optimizer, vectorized
execution and bucket settings. The provider that enabled most
performance improvements in Hive i.e., HDI, got the best results
for similar HW. As a note on an EMR release after the tests
were performed, it has been verified that EMR also enables
Tez by default (among other upgrades), which improves the
performance on their platform significantly.

Errors found during tests: while results presented are only
for runs that have finished successfully—except for the CBD
hadoopl-7 SUT at 1TB scale, there were errors on our first
approach to the systems and on some runs later on. None of
the problems that we experienced arose from HiveQL syntax
errors, as we found that the smallest factor (1GB) always ran
successfully on all SUTs. Initially the intention was to use 4 data
nodes clusters for this study, however, not all of the tested SUTs
were able to scale up to 1'TB which was our target data size. This
was mainly due to the Hadoop containers per node surpassing
the memory capacity using the provider’s default configurations.
This fact was confirmed by looking at the specific errors
in the Hadoop/Hive logs, as well running the tests at larger
node counts successfully without changing the configurations.
Another common error that we had was surpassing the HDFS



TABLE IIL

MOST RELEVANT HADOOP-STACK CONFIGURATIONS FOR PROVIDERS

Category  Config EMR HDI CDP CBD (On Metal) on-premises
Svstem [N Linux AMI 4.4 Ubuntu 14.04 Debian 7.0 CentOS 7.0 Ubuntu 14.04
¥ Java version OpenJDK 1.7.0_111 OpenJDK 1.7.0_101 OpenJDK 1.8.0_91 OpenJDK 1.8.0_71 JDK 1.7
File system Local + EBS WASB GCS Local Local
HDFS Replication 3 3 2 2 3
Block size 128MB 128MB 128MB 256MB 128MB
File buffer size 4KB 128KB 64KB 256KB 64KB
Output compression SNAPPY FALSE FALSE SNAPPY FALSE
M/R IO Factor / MB 48 /200 100 / 614 10 /100 100 / 358 10 / 100
Memory MB 1536 1536 3072 2048 1024 | 4096
Hive version 1.0.0-amzn-5 1.2.1000.2.4.2.4 1.2.1 1.2.1.2.3.4.0 1.2.1
Engine M/R Tez M/R M/R M/R | Tez
Hive ORC config Defaults Defaults Defaults Defaults Defaults
Vectorized exec FALSE Enabled FALSE FALSE Enabled
Cost Based Op FALSE Enabled Enabled Enabled Enabled
Enforce Bucketing FALSE TRUE FALSE FALSE TRUE
Optimize bucket map join ~ FALSE TRUE FALSE FALSE TRUE
le+05 S R N running benchmarks on Azure systems (see [19, 20]), the HDI
r HDI-D3v2-4 | 1 service has continued to upgrade the underlying hardware of its
iggi'izj > ] VMs, from the A3 (Large) default during 2014, to the D3vl
r e 7 during 2015, and now the D3v2. Both machines in the D-
> series have local SSD drives and faster networking (10Gbp/s),
2 as previously noted. In an earlier test, response times for the 3
-3 systems of full TPC-H runs on HDP 2.3 and 4 datanodes were
8 le+04 benchmarked, the data size scalability improvement can be seen
3 in Figure 5. Over this time, not only has the A3 system halved
5 in price but the D3v1 when launched offered a 2.2x performance
improvement over its predecessor. In 2016, the D3v2 is the
5 current default, at the same pricing as the D3v1, while offering
— a newer gen CPU. The D3v2 is 3.4x faster than the original A3
le403 =+« il C el C and 0.55x faster than the D3vl1, resulting in faster performance
1 0 100 1000 for the same price in less than a year’s time. The improvement
Data scale (GB) . . . .
is not only in execution times on all the scale factors, but also
Fig. 5. Log-log plot showing scalability over HDI default VM generations in reliability. In Figure 5, one can see 100GB is the maximum

capacity when running initial tests, specifically for EMR and
CDP. When dimensioning storage capacity one has to account
for HDFS replication and it differs by provider in Table III, as
well as the amount of intermediate data depends on the specific
configuration of the SUT. In EMR and CDP you have to select
the size of each data disk on cluster creation, we had to recreate
clusters to increase the capacity on the same node-count. On
EMR there was a setting present in the YARN configuration that
would shutdown all the nodes when reaching 90% disk capacity,
and was difficult to spot. After some experimentation we found
that we needed 5STB of data to fit all of our experiments, sizing
the SUTs to at least this capacity, but having to pay for the
extra capacity not used. In HDI, storage is completely elastic,
so the problems we found have been capacity based on system
resources i.e., machines were swapping (out of RAM). We found
that this was not only because of Hadoop YARN tasks, but due
to auxiliary services, e.g. Ambari metrics collector, having a
high RAM utilization. The errors found along the way have
been reported and the metrics collector error was fixed in HDP
2.4.

D. Software and Hardware improvement over time

Cloud providers constantly update and upgrade their services
with new features, software versions, security patches, as well
as new hardware. In this section, an overview is presented of
the changes observed while working with HDI and EMR, to
give an insight into the life-cycle and improvements over time
of Hadoop-based PaaS services. During the last 2 years spent

data scale for both the A3 and D3v1 (on HDP 2.3). This was
due to capacity problems of the SUTs to process more data; the
D3v2 however was able to process up to 1TB.

In relation to software updates, the HDI service has also
been improving over time in SW versions; when upgraded from
HDP version 2.3 to 2.4, the 4 data nodes D3vl obtained a
35% execution time improvement at 100GB scale. It was also
interesting to note that with the HDP 2.4 upgrade, the D3vl
was able to process up to 1TB of data scale. On the EMR side,
after our main experiments period presented in Section IV, the
EMR service had a major release upgrade to their software stack
in August 2016. The change was from EMR 4.7 to 5.0. EMR
5.0 provides both the new major releases of Hive and Spark
to v2, as well as other services such as having Tez by default,
and this has proved to be a major differentiator of HDI, as
shown in Section V-C. In the EMR case, the execution time was
reduced by more than a factor of 2 when upgrading from version
4.7 t0 5.0 on a 4 data nodes cluster of the m4.xlarge SUT. In
both providers, previous versions are still available to users for
a time—in HDI the last 3 updates are still available, largely
to maintain compatibility with other software that users might
depend on. To benefit from both the hardware and the software
upgrades in the cloud in general, it is necessary to re-deploy
one’s clusters, as the upgrade is not automatic. When storage
is decoupled from compute, redeployment does not require data
migration, simplifying the process.



E. Analysis on Service Time Variability

To illustrate the current variability in the cloud, Figure 6
presents the box plot of the HDI A3 and D4vl (newer gen,
higher specs) SUTs, comparing it to the on-premises cluster
(here labeled M100). The plot has two entries for each SUT at
4 and 8 data nodes cluster sizes and there are at least 3 runs
for the full TPC-H at 100GB data scale. One can quickly see
that there is a great variation in time (whisker distance) on the
A3s SUTSs on both clusters sizes. However, on the D4v1l SUTs,
this variation is minimal, even lower in this case than on the
on-premises cluster. While further analysis would be required
to quantify the predictability, as many factors including multi-
tenancy and time of the day might influence service times in
the cloud, there is still a clear trend that the newer generation
of VMs with faster processors, network, and especially with
local SSDs, can provide a reliability closer to fully dedicated,
on-premises hardware.
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Fig. 6. Comparison of executions of full TPC-H on 100GB on HDI-A3 vs.
HDI-D3v2 vs. on-premises deployments using the default configuration

VI. DISCUSSION AND CONCLUSIONS

This article presented a snapshot of the out-of-the-box
performance and prices as of March-July 2016 of popular PaaS
solutions, as well as providing an insight into the scalability and
product upgrade life-cycle. It was shown that cloud providers
share many similarities in hardware offerings. For example, most
providers on their multi-tenant VMs are defaulting to 4-core
nodes and about 16GB of RAM. This leaves Hadoop containers
with roughly 4GB of RAM per CPU-core, which is enough
to process databases up to 1TB in size from 8 data nodes
clusters with Hive vl. However, this configuration might not
be sufficient to run other in-memory frameworks efficiently in
the future i.e., Spark or Giraph, or even Hive 2 with in-memory
cache. While entry-level clusters standardize at 4-cores, there
is a significant difference in CPU generations, which impacts
performance greatly. The hardware generation a user gets is
related to how often providers upgrade their offerings. In some
cases, upgrades can be frequent e.g., for HDI, more than once
per year, but customers need to redeploy their clusters after
each upgrade in order to benefit from the improvements. All
providers are also defaulting to VM instances with local SSD
disks and faster networks (currently at 10Gbp/s), which can
now rival the speed of on-premises commodity clusters, while
also reducing the variability between repeat runs of the same
workload. Relating to the older generation VM instances that
were tested, it can be concluded from the performance and

variability in service time that commodity VMs (cheap, but
older generation) in the cloud are not the same as the classical
commodity hardware found in Hadoop literature, and should be
avoided when possible.

The providers tested support elastic storage by default, each
adopting a different approach, while managing and optimizing
transparently for their users. Implementations vary between
local disk and over-the-network storage. However, there is
a divergence in the way that storage and compute are cou-
pled. In HDI—and Azure in general—permanent storage is
fully disaggregated from compute, allowing the two to scale
asymmetrically, while also permitting the sharing of resources.
Constrastingly, in EMR and CDP the storage size per node
is user-defined, but specified at cluster creation time, so more
compute nodes must be added in order to increase storage. EMR
still supports a mixed mode with local storage on older gen VMs
i.e., the m3.xlarge, but EBS-only on newer instances, which also
showed better performance. CDP also allows adding local SSDs
as tiered-storage for Hadoop, and this improved the speed of the
DFSIO benchmark, but not the Hive TPC-H benchmark, due to
the configuration not being fine-tuned. CBD, on the other hand,
still favors local processing; while Openstack-based and AWS
S3-compatible object stores are supported, they were not tested.

Performance results show that networked storage can pro-
vide adequate query run times, while simplifying decision
making in how to dimension storage on the cluster from the very
start. Instances with network storage in HDI, CDP, and EMR ob-
tained comparable results to both the CBD OnMetal and our on-
premises SUTs. While the OnMetal and the CDP nl.standard.4
with 1 SSD obtained better micro-benchmark results i.e., DFSIO
and disk tests, application-level Hive configuration has a high
impact on the final performance, as was the case with the tuned
HDI instances. From the results for our on-premises cluster,
it has been verified that a fine-tuned Hive configuration can
improve the performance by 2 to 3 times, especially when the
Tez execution engine was enabled as in the second configuration
of our cluster. In this sense, there is room for improvement on all
the providers for fine-tuning the default configuration, at the cost
of domain expert support and time. This is particularly the case
for the CBD OnMetal cluster, where system utilization was low,
but run times were not always the best. This indicates that more
tests are needed and different instance and cluster sizes must be
evaluated for this platform, implying, of course, more test costs
and time to be dedicated in future work. In addition, it has been
observed how updates of the software stack to newer versions
improved performance for both the HDI and EMR cases, and
would likely benefit the rest.

While there is similarity in the instance’s hardware offerings,
pricing and billing can be quite different. Per-hour prices of
tested SUTs varied from around 2 to 12 USD dollars for the
whole cluster. For network-based storage, the used capacity is
billed separately from the compute cluster so it also incurs extra
costs, but these costs were found to be minimal in comparison—
especially for AWS. The main cost was the compute, which
elastically scales to the number of nodes to satisfy the current
processing speed and budget limitations e.g., leaving a minimal
cluster or even turning it off and keeping the data in the external
storage.

CDP’s billing by the minute can be very attractive, combined
with very short deployment times, making them ideal for short-
lived clusters. It is expected that other providers will follow their



lead, billing in shorter increments and improving deployment
times in the near future [1]. Relating to price-performance,
results show that the price-to-performance ratio for the best
SUTs is within a 30% cost difference for the 1TB scale. It
is also shown that the best price-performing SUT varied on
the data scale used at the moment; while CDP was more cost-
effective from 1 to 100 GB, HDI excelled at scales exceeding
100GB using provider default instances.

Cloud providers have come a long way during the last couple
of years to provide fully-elastic on-demand SQL-on-Hadoop
based solutions. These improvements facilitate planning-free
infrastructures by separating compute from storage, as well as
providing newer generation hardware improving on previous
service times and reliability. At the same time, providers offer
managed software and hardware updates for new deployments,
fine-tuned for general purpose use with comparable performance
results to commodity clusters for the tested medium-size clus-
ters. The market is fast-paced, with cloud vendors upgrading
their services as frequently as daily in some cases, resulting
in them overtaking one another in performance frequently. The
choice of provider depends as usual, on the use case, and
performance requirements, as well as the final budget. The
results of this study are published with logs and performance,
and are publicly available on the ALOJA website [4].

The expansion of this survey of the marketplace remains the
subject of future work, a process which will require the usage
of more resources and time for experiments. Particular subjects
of interest are the new versions of Hive and Spark, which will
be tested once they are production-ready and have comparable
setups across the different providers. Finally, it is planned
to continue modelling the results-bed, and to characterize the
different providers and configurations using the ALOJA-ML
Predictive Analytics features [2].
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