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Abstract—Collaborative Filtering (CF) is widely used in
large-scale recommendation engines because of its efficiency,
accuracy and scalability. However, in practice, the fact that
recommendation engines based on CF require interactions be-
tween users and items before making recommendations, make
it inappropriate for new items which haven’t been exposed to
the end users to interact with. This is known as the cold-start
problem. In this paper we introduce a novel approach which
employs deep learning to tackle this problem in any CF based
recommendation engine. One of the most important features
of the proposed technique is the fact that it can be applied on
top of any existing CF based recommendation engine without
changing the CF core. We successfully applied this technique
to overcome the item cold-start problem in Careerbuilder’s
CF based recommendation engine. Our experiments show that
the proposed technique is very efficient to resolve the cold-
start problem while maintaining high accuracy of the CF
recommendations.

Keywords-Deep Learning; Cold-Start; Recommendation Sys-
tem; Document Similarity; Job Search

I. INTRODUCTION

Recommendation Systems (RSs) utilize knowledge dis-
covery and data mining techniques in order to predict items
of interest to individual users and subsequently suggest
these items to them as recommendations [1], [2]. Over the
years, techniques and applications of RSs have evolved in
both academia and industry due to the exponential increase
in the number of both on-line information and on-line
users. Such volumes of big data generated at very high
velocities pose many challenges when it comes to developing
and deploying scalable accurate RSs. Applications domains
of RSs include: “e-government, e-business, e-commerce/e-
shopping, e-library, e-learning, e-tourism, e-resource ser-
vices and e-group activities” [2]. On the other hand, new RSs
deployment platforms emerged over years to include, besides
the classical Web-based platform, other modern platforms
like mobile, TV, and radio [2]. Depending on the application
domain and the deployment platform, dozens of techniques
and methods have been proposed to address cross-domain

and cross-platform scalability and quality challenges [1], [3],
[4].

Approaches for building RSs can be broadly clustered into
three main categories: Content-Based (CB), Collaborative
Filtering (CF), and hybrid techniques. CB techniques work
by measuring or predicting the similarity between profiles
of the items (attributes/descriptions) and profiles of the
users’ (attributes/descriptions of past preferred items) [5],
[6]. Typically, the similarity is either measured using a
suitable function (e.g., cosine similarity), or predicted using
statistical or machine learning models (e.g., regression).
CB systems are therefore suitable in domains where items’
descriptions or their metadata can be easily obtained (e.g.,
books, news articles, jobs, TV shows, etc.). They are also
suitable when the lifetime of items is short and/or the change
in the item recommendation pool is frequent due to many
new items entering the pool over short periods. These con-
straints limit the number of ratings those items can receive
over their lifetime. Many challenges arise when it comes to
CB systems. For example, items’ metadata might be very
limited or does not really contribute to generating user’s
interest. Item description, on the other hand, is typically
textual which makes the similarity scoring more challenging
due to language ambiguity raising the need for semantic-
aware CB systems [7].

CF is perhaps the most prominent and successful tech-
niques of modern recommendation systems. Unlike CB
methods which recommend items that are similar to what tar-
get user liked in the past, CF methods leverage preferences
of other similar users in order to make recommendations
to the target user [4], [5]. In other words, CF tries to
predict good recommendations by analyzing the correlations
between all user behaviors rather than analyzing correlations
between items content. CF is therefore suitable in domains
where obtaining meta-features or descriptions of items is
infeasible. Another motivation for CF is to introduce more
diversity and serendipity to user’s experience by leveraging
the wisdom of the crowd, i.e., recommending items that
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the target user might not have thought about or consumed
before but rather liked by other similar users. One of the
major challenges of CF based recommendation systems is
the cold-start problem which occurs when there is a lack of
information linking new users or items. In such cases, the RS
is unable to determine how those users or items are related
and is therefore unable to provide useful recommendations.
Hybrid RSs try to achieve better performance by combining
two or more techniques. The main theme of hybrid RSs is to
leverage the advantages of both CB and CF, and to alleviate
their shortcomings at the same time through hybridization.

In this work, we propose a deep learning based solution to
the cold-start problem. Our solution utilizes a state-of-the-art
deep learning document embedding algorithms (also known
as doc2vec) [8]. Our main contributions are as follows:
• We propose a deep learning based matching algorithm

to solve cold-start and sparsity problems in CF based
recommendation systems without major changes in the
existing system as shown in figure 1.

• We improve the performance of the deep learning
matcher by incorporating contextual meta-data which
boost the accuracy significantly.

• The proposed algorithm is capable of being extended
to solve similar cold-start problems in different real
application scenarios such as relevancy and ranking in
search engines.

The remainder of the paper is organized as follows: in
Section II we will introduce the related work in recommen-
dation systems and the document embedding; Section III
concludes CF related techniques; we discuss the problem
description and proposed algorithm in Section IV; Section
V will explain the experiments, case study, and discussion.
Finally we conclude in Section VI.

II. RELATED WORK

The main objective for the Recommendation Systems
(RSs) is providing a user with content he/she would like
by estimating the relevancy or the rating of these contents
based on the information about users and the items [1], [9].
The cold-start problem is one of the major challenges in
RSs design and deployment. Cold-start occurs when either
new users or new items are introduced into the system. In
this situation there would be no behavioral data (ratings,
purchases, clicks, etc.) for CF to work properly. Addressing
cold-start is inevitable in modern RSs for two reasons [10]:
1) the item and user pools change on daily basis, and 2)
CF is considered state-of-the-art recommendation technique
but it requires significant behavioral data in order to work
properly. Therefore, it is important to promote new items as
quickly as possible in order to establish links between them
and users to improve CF performance subsequently.

Another related problem to CF is the data sparsity which
appears due to insufficient ratings per user and/or item in
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Figure 1: System architecture of CF based recommendation
engine with the proposed pairing layer to solve the cold-start
problem. An application from the application’s layer sends
a recommendation request to the CF core which analyzes
the interactions between users and items to generate rec-
ommendations. Once those recommendations are generated
they are sent to the pairing layer. The pairing layer will
check the list of recommended items and if any item among
the recommendation list has been paired with a new item,
then the new item will be added to the recommendation list
which is passed to the application layer.

the rating matrix challenging the ability of CF to predict
accurate user preferences and item similarities.

Several methods have been introduced to address the cold-
start and the data sparsity problems [10]–[14]. In this work,
we focus on the problem of cold-start in item-based CF.
Most of the proposed methods to address item cold-start
adopt content-based approach; they utilize the content of
new items in order to identify similar user profiles and
subsequently recommend these new items to them. Saveski
and Mantrach [10] proposed Local Collective Embeddings
(LCE) as a solution for item cold-start. LCE utilizes de-
scriptions of the new items (i.e., the term-document matrix)
and project it collectively with the user-item rating matrix
into a common low-dimensional space using non-negative
matrix factorization. Soboroff and Nicholas [14] utilized
Latent Semantic Indexing (LSI) [15] in order to create
topical representations of user profiles in the latent space.
New items are then projected into the same latent space
and compared to user profiles then recommended to the
most similar profiles. Similar to [14], Schein et al. [11]
proposed an approach that creates a joint distribution of
items and users through an aspect model in the latent space
by combining items’ content and users’ preferences. Our
approach to solve cold-start problem relies on pairing the
new items with existing items that have been exposed to
the users and gained enough ratings to be considered by



CF. Thus, our approach differs from prior ones which try to
utilize content-based techniques to pair the new items with
users by matching the content of these items with the content
of users’ profile.

III. BACKGROUND

Collaborative Filtering is one of the most successful
techniques to building RSs due to their independence from
the content of items being recommended, which make them
easy to create and use across many application domains [4].

Typically, CF methods utilize the user-item rating matrix
R ∈ R|U |×|I| which contains past ratings of items made by
users. Rows in R represent users U = {u1, u2, ..., u|U |},
while columns represent items I = {i1, i2, ..., i|I|}. Each
entry rui in R represents the rating user u gave to item i.
The role of the CF algorithm is to perform matrix completion
filling empty entries in R by analyzing existing entries.

The early generation of CF algorithms are the memory-
based (a.k.a neighborhood-based) techniques [16], [17].
These techniques work by measuring the similarities or
correlations between either users (rows) or items (columns)
in the user-item rating matrix R. After finding these similar
neighbors, recommendations are generated by choosing the
top-K items similar to a given item in case of item-
based recommendations, or by aggregating the correlation
scores of items liked by similar users in case of user-based
recommendations [18]–[20].

The choice of the similarity or correlation metric has a
major contribution to the quality of recommendations [18].
Pearson-r correlation is a very popular metric used in CF
systems, and is used to estimate how well two variables are
linearly related. Pearson-r correlation corri,j between two
items or two users i, j is computed as:

corri,j =

∑
w∈W (rwi − r̄i)(rwj − r̄j)√∑

w∈W (rwi − r̄i)2
√∑

w∈W (rwj − r̄j)2

(1)
where, in case of user-based recommendation, w ∈ W

denotes items rated by both users i, j. rwi & rwj are ratings
of item w by users i, j respectively. r̄i, r̄j are average
ratings of users i, j respectively. In case of item-based
recommendation, w ∈W denotes users who rated items i, j.
rwi & rwj are ratings of user w for items i, j respectively.
r̄i, r̄j are average ratings of items i, j respectively. Another
commonly used similarity metric is the cosine similarity
which is computed as:

cosi,j =
~Ri . ~Rj

|| ~Ri|| || ~Rj ||
(2)

where ~Ri & ~Rj are the rating vectors of items/users
i, j in the rating matrix R in case of item-based/user-based
recommendation respectively.

Another category of CF techniques are the model-based
approaches which are more scalable than memory-based

techniques as they offline build a model of item-item or
user-user similarities and then use it at real-time to generate
recommendations. Several algorithms were proposed to gen-
erate such models including Bayesian networks [21]–[23],
clustering [24], [25], latent semantic analysis [26], Singular
Value Decomposition (SVD) [27], Alternating Least Squares
(ALS) [28], [29] regression models [30], Markov Decision
Processes (MDPs) [31], and others [32].

Another important aspect to understand this work is how
to represent documents in the vector space to measure
similarity [33]. Lexical features are commonly used for
extracting vectors from documents including Bag-of-Words
(BoW), n-grams (typically bigram and trigram), and term
frequency-inverse document frequency (tf-idf ). Topic models
such as Latent Dirichlet Allocation (LDA) are also used
as features in document classification problems such as
sentiment analysis and have shown promising results [34],
[35]. Moreover, the application of deep learning to natural
language processing field has shown a great success.

Term Frequency-Inverse Document Frequency: Com-
mon lexical features for document embedding include Bag-
of-Words, n-gram and tf-dif. Both Bag-of-Words and n-gram
model draw much attention on frequent words, which may
not be the best way to measure the importance of a word
in a document. On the other hand, tf-idf can be considered
as a weighted form of BoW for evaluating the importance
of a word to the document. Let tf(w; d) be the number of
times word w appears in document d from a collection D,
idf(w;D) indicates inverse document frequency of word w
in set D, then tf-idf is defined in Equation 3 and 4.

tf − idf = tf(w, d)× idf(w,D) (3)

idf(w,D) = log
N

1 + |{d ∈ D : w ∈ d}|
(4)

Latent Dirichlet Allocation: LDA is a probabilistic model
which learns P (z|w), distribution of a latent topic variable z
given a word w [34]. Compared with lexical features (BoW
and tf-idf ) mentioned above, representations learned by LDA
focus more on the semantic meanings of each word, and
have a feature space that is in low dimensions. Topic vectors
learned represent the weights of words for each topic, and
after normalizing each word vector from a sentence or a
document, we obtain the vector of the sentence or document
for all topics and thus embed the target document into a
vector representation based on LDA model.

IV. METHODOLOGY

A. Problem Description

In dynamic domains like job boards, new items appear
frequently which makes CF not feasible due to the cold-
start problem. However, due to many shortcomings of the
CB recommendations, most domains still prefer CF over CB
due to the accuracy and diversity of results CF can provide



Figure 2: (a) Framework of CF Based Recommendation System: The only items to be considered are those which gained
some behavioral data like ratings from users while all the new items are not considered until they gain such behavioral
data. (b) Framework of Proposed Pairing Algorithm to Solve the Cold Start Problem: Each new item without behavioral
data is paired with existing item(s) that has behavioral data. Once the recommendations are retrieved by CF, each item with
behavioral data will pull its pair new item into the recommendation list.

which CB can not. That said, the cold-start problem continue
to impact substantial number of new items. Recommendation
engine is considered one of the major channels of engaging
users with items and continuing to re-engage them when they
leave a website via recommendation emails. Therefore, items
which have no chance to be recommended due to the cold-
start problem, will lose that major channel of exposure to
end users. Thus, we propose a novel technique that helps CF
to be considered in dynamic domains with frequent presence
of new items by leveraging a deep learning matcher (DLM).
The DLM is used to pair each new item with an existing
item that has behavioral data (like ratings). This pairing will
allow the new items to be considered in CF even before any
users interact with these new items.

B. Proposed Framework

In conventional CF based recommendation engines (Fig-
ure 2-a) the only items to be considered for recommenda-
tions are those with behavioral data (i.e. users interact with
those items by rating, purchasing, clicking...etc), however,
all new items without such behavioral data can not be part of
the recommendations generated by CF. Our proposed system
which is depicted in Figure 2-b adds a new module which
can be thought of as a plug-in that will match each new
item ix with an item that has behavioral data iy , we call this
process pairing. Once this pairing is done, each pair (ix, iy)
will be considered as one item, so when item iy is selected
for recommendation by CF, item ix (the new item with no
behavioral data) will appear with that recommendation as
well. Therefore, the accuracy of the pairing is very important
since pairing irrelevant items will introduce noise to the
recommendations.

Figure 3: Learning Word Vector and Document Vector.

C. Document Embedding and Matching

Given the importance of accurate pairs (similar ones) for
the overall quality of the recommendations to be generated
by CF afterwards, we tried the standard document sim-
ilarity techniques like Term Frequency-Inverse Document
Frequency (tf-idf ) and Latent Dirichlet Allocation (LDA)
but the results were not promising. Therefore we built a
Deep Learning Matcher (DLM) which outperforms all the
other techniques significantly. Our DLM was built utilizing
doc2vec which is considered the current state-of-the-art deep
learning algorithm for document embedding and matching.
Contrary to lexical features, the information extracted from
each word is distributed all along a word window in dis-
tributed representations (as known as word2vec and doc2vec
feature) as shown in Figure 3 [8]. For a word vector learning,
given a sequence of T words {w1, w2, ..., wT } and a window



size c, the objective function is as follows:

1

T

T−c∑
i=c

log p(wi|wi−c, ..., wi+c) (5)

In order to maximize the objective function in Equation
5, the probability of wi is calculated based on the softmax
function shown in Equation 6 where the word vectors are
concatenated or averaged for predicting the next word in
the content. Similarly to learning the word vectors, the
processing of learning the paragraph vector (i.e. the doc2vec
model) is maximizing the averaged log probability with the
softmax function by combining the word vectors with the
paragraph vector pi in a concatenated or averaged fashion
as shown in Figure 3. For new documents input in the model,
the paragraph vector is learned by holding the softmax
parameters and gradient descending on the new vector entry.

p(wi|wi−c, ..., wi+c) =
eywi∑

j∈(1,...,T ) e
ywj

(6)

D. Contextual Features Enrichment

Simply using documents that are in a large scale into
the models is hardly good enough for learning a good
representation of the documents [36]. doc2vec model can
learn very good representations of the documents seman-
tically. However, in some domains like job boards, many
documents can share major overlapping content such as
company or benefit descriptors, while the important context
including the distinguished information such as requirements
or qualifications are overshadowed. For example, in job
boards domain 90% of a job description may be dedicated
to describe the company and its values and culture, while
only 10% describes the job requirements. In such scenario,
doc2vec will generate almost same representation for two
jobs posted by the same company, however they are totally
different by the job requirements. To overcome this problem,
we enrich each document with contextual features including
the document classification, and location. Additionally, in
our domain since not all the parts of a document (job post-
ing) is equally important to measure similarity, we utilized
our in-house NLP document parser to extract the important
content such as job requirements and skills. These extracted
information is injected into the original document N times
(we choose N to be 3 empirically) to guide doc2vec to a
better representation by improving the content distribution.

V. EXPERIMENT AND RESULTS

To validate and evaluate the proposed technique, we
applied our approach on top of Careerbuilder’s CF-based
recommendation engine. CareerBuilder operates one of the
largest job boards in the world and has an extensive and
growing global presence, with millions of job postings, more
than 60 million actively-searchable resumes, over one billion
searchable documents, and more than a million searches per

hour. In their recommendation engine, Careerbuilder strives
to recommend the right job to the right person at the right
time. However, the cold-start problem is very serious at
Careerbuilder given that every day thousands of new jobs
are posted and it is important for the employers who have
posted those jobs to start receiving applications from job
seekers within a short period of time. Recommendation is a
major channel of job exposure, therefore new jobs will lose
a chance to be exposed through this important channel due
to the cold-start problem. In this section we will discuss the
different experiments we run to evaluate solving the cold-
start problem using our technique. All experiments are done
in a machine with Intel(R) Xeon (R) E5-2667 series CPUs
(32 cores in total) and 264GB memory. The runtime of each
model is also evaluated since our application scenario has
a requirement of running the whole workflow on a large
dataset (more than one million documents) on a daily basis.

Figure 4: Distribution of 24 General Job Classifications: x-
axis denotes the job category code and y-axis denotes the
proportion of jobs under each category.

A. Job-to-Job (J2J) Matcher

All experiments used a sample of 1,147,725 classified jobs
from our dataset [37]. The distribution of job classification
is shown in Figure 4. For experiments we use Gensim
[38] to generate tf-idf model and train LDA and doc2vec
models. For the doc2vec model, we train our model with
one iteration only due to speed limitation in order to run the
whole process on a daily basis, and chose 100 dimensions
for the embedded vectors. The reason is that, according to
our experiments adding more dimensions for the vectors
barely improved the performance if any, but increased the
runtime notably. We choose the number of job categories
which have at least 100 jobs included in our testing dataset
to be the number of topics used for generating LDA model,
so that one topic is expected to indicate one job category
(java developer, registered nurse, etc). Eventually we have
805 topics in total. We use the fine-grained categories instead
of the general ones since the number is small and can hardly
learn a very good representation of the documents. We
chose cosine similarity as the similarity metric to evaluate



Table I: Recall for Top 10-50 Most Similar Jobs.

Model Top 10 Top 20 Top 30 Top 50

tf-idf 30.4% 37.3% 39.9% 44.8%

LDA 18.2% 21.4% 26.8% 30.2%

doc2vec 88.9% 95.0% 96.3% 97.7%

tf-idf with contextual features 32.1% 41.2% 46.4% 49.5%

LDA with contextual features 19.9% 25.3% 30.1% 33.3%

similarity between documents with threshold 0.5 to indicate
if two documents are similar or not.

In this section we test the embedding algorithms for
learning document level similarity, among which the tf-idf
and LDA models are set as baselines. We evaluated the
performance of each model both with and without contextual
features enrichment. Since the contextual feature enrichment
is proposed to improve the performance for certain specific
circumstances, we don’t add it in this experiments section.
Our objective is to evaluate the job-to-job matching perfor-
mance for our model rather than to evaluate the results for
the whole recommendations, i.e., to evaluate the similarity
we learned from different models.

Table II: Precision for Top 10 Most Similar Jobs.

Model Precision

tf-idf 29.2%

LDA 17.1%

doc2vec 82.9%

tf-idf with contextual features 30.3%

LDA with contextual features 18.4%

doc2vec with contextual features 91.8%

We started our evaluation by selecting 100 randomly
selected jobs as test samples and generated the top 10 most
similar jobs for each test sample based on the doc2vec model
with contextual features to achieve the best performance
and evaluated the result manually as good/bad matches.
The good matches are then considered as ground truth for
evaluating other models. The overall precision for this set-up
is 91.8%. To evaluate the other models, we use the similar
jobs which have been labeled as good matches as ground
truth and calculate the recall value (namely, among all the
correct matches, how many of them have been returned as
matches by the other models) from top 10 to 50 most similar
jobs generated by the other models, as well as the precision
based on the top 10 most similar jobs returned from each
model (namely, among the top 10 most similar jobs returned
from the other models, how many of them are labeled as
correct match in our evaluation). The results are shown in
Table I and Table II.

According to the results shown in Table II, our proposed
doc2vec model with contextual features yields the best
performance for job-to-job matching task. On the other hand,

Table III: Running Time for Different Model.

Model Running Time (Minutes)

tf-idf 22

LDA 992

doc2vec 75

tf-idf with contextual features 30

LDA with contextual features 1069

doc2vec with contextual features 89

the LDA model obtains the lowest. The LDA model learns a
good representation of the documents for classifying them
under different topics, however for job recommendation and
job-to-job pairing tasks it does not perform good enough.
Previous works have shown that tf-idf model itself is capable
of learning a good document embedding for documents
which are long enough, and according to our results the tf-
idf model outperforms the LDA model by about 10%. Since
the documents in our dataset are mainly job descriptions
with contextual features including job requirements, job title,
job classifications, etc., which are not expected to be long
enough for tf-idf to learn a very good representation. The
doc2vec outperforms the tf-idf and LDA models significantly
and achieves the highest precision of 91.8%. By including
the contextual features we achieve a 9% gain in the precision
of the top-10 most similar jobs generated by the doc2vec
model. For LDA and tf-idf the improvements are not com-
parable because the two baseline models are not capable of
learning a good embedding for the documents and adding
more information does not help. However, on the other hand
the doc2vec model can learn a decent document embedding
semantically and by adding the extra information we are
able to obtain that significant improvement on performance.
Table I shows the recall value of different models from top
10 to 50 most similar jobs. Since the manually labeled results
based on doc2vec with contextual features are established
as ground truth, we did not calculate the recall value for it.
Based on our results the doc2vec model without contextual
features still performs better than the other models, followed
by the tf-idf model and then the LDA model. The doc2vec
model without contextual features is able to return about
90% of the correct job matches for top 10 most similar jobs
and almost all of the correct matches with the top 50, while
the tf-idf model reaches at about 40% and the LDA model



Table IV: Case Study: Source Job (left), Poor Pairing (middle) and Good Pairing (right).

Document Title: HVAC Technician
XX Resort & Club

Banquet Houseperson - PM HVAC Mechanic

Same Company
Values Context

Since being founded in 1919, Company XX has been a leader in the hospitality industry. Today, Company XX remains a
beacon of innovation, quality, and success. This continued leadership is the result of our Team Members staying true to
our Vision, Mission, and Values. Specifically, we look for demonstration of these Values: H Hospitality - We’re passionate
about delivering exceptional guest experiences... In addition, we look for the demonstration of the following key attributes
in our Team Members: Living the Values Quality Productivity Dependability Customer Focus Teamwork Adaptability.

Same Company
Overview Context

What will it be like to work for this Company XX Brand? What began with the world’s most iconic hotel is now the
world’s most iconic portfolio of hotels. In exceptional destinations around the globe, XX Hotels & Resorts reflect the
culture and history of their extraordinary locations, as well as the rich legacy of Company XX... If you understand the
value of providing guests with an exceptional environment and personalized attention, you may be just the person we
are looking for to work as a Team Member with XX Hotels & Resorts.

Similar Benefits
Context

What benefits will I receive? Your benefits will include a competitive starting salary and, depending upon eligibility, a
vacation or Paid Time Off (PTO) benefit. You will instantly have access to our unique benefits such as the Team Member
and Family Travel Program, which provides reduced hotel room rates at many of our hotels for you and your family,
plus discounts on products and services offered by Company XX Worldwide and its partners. After 90 days you may
enroll in Company XX Worldwide Health & Welfare benefit plans, depending on eligibility. Company XX Worldwide
also offers eligible team members a 401K Savings Plan, as well as Employee Assistance and Educational Assistance
Programs. We look forward to reviewing with you the specific benefits you would receive as a Company XX Worldwide
Team Member...

Differences:

The XX Resort & Club is seek-
ing an HVAC Technician who will
be responsible for maintaining the
physical functionality and safety of
the hotels heating, ventilation and
air conditioning (HVAC) equipment
and machinery continuing effort to
deliver outstanding guest service
and financial profitability.
What will I be doing?
As an HVAC Mechanic, you would
be responsible for maintaining the
physical functionality and safety of
the hotels heating, ventilation and
air conditioning (HVAC) equipment
and machinery in the hotels con-
tinuing effort to deliver outstand-
ing guest service and financial prof-
itability. Specifically...

As a Banquet Set-Up Attendant,
you would be responsible set-
ting and cleaning banquet facil-
ities for functions in the hotel’s
continuing effort to deliver out-
standing guest service and finan-
cial profitability. Specifically, you
would be responsible for perform-
ing the following tasks to the
highest standards: Set tables and
chairs to meet function specifi-
cations. Clean meeting space in-
cluding, but not limited to, vac-
uuming, sweeping, mopping, pol-
ishing, wiping areas and washing
walls before and after events...

An HVAC Mechanic with Company
XX Hotels and Resorts is respon-
sible for maintaining the physical
functionality and safety of the hotels
heating, ventilation and air condi-
tioning (HVAC) equipment and ma-
chinery continuing effort to deliver
outstanding guest service and finan-
cial profitability.
As an HVAC Mechanic, you would
be responsible for maintaining the
physical functionality and safety of
the hotels heating, ventilation and
air conditioning (HVAC) equipment
and machinery in the hotels con-
tinuing effort to deliver outstand-
ing guest service and financial prof-
itability. Specifically...

reaches at about 30%. By adding the context we still obtain
an improvement on the recall values which is consistent with
the results on precision.

As introduced in Section IV, we have thousands of new
jobs added to the system on a daily basis and about the same
number of jobs expiring. Therefore it is best to train our
model and generate similar jobs for those jobs which suffer
from the cold-start problem on a daily basis. This would
require the runtime for the whole process including training
and inferring to be in an hourly-scale. The runtime for each
model is shown in Table III. We can conclude that by using
multi-process computing (all models are using 24 cores for
multi-process computing) we can run all the models on a
daily basis except the LDA model. contextual features adds
more text contents and more computation in the process,
but with multi-process computing the extra runtime is rea-
sonable compared with the significant improvement on the
performance. The runtime for tf-idf model is the shortest,

while doc2vec model with and without contextual features
is still comparable which can be completed within two hours.
For a daily based workflow it is acceptable and we choose
to run it at midnight every day for our job recommendation
systems.

B. Case Study
The job-to-job matcher did admirably matching docu-

ments which are similar to one another, however, we en-
countered challenges with documents comprised of approx-
imately 70% or higher of exact same content due to company
descriptors like background, benefits and values. As the
example shown in Table IV, compared with the source job on
the left column, HVAC Technician was matched to Banquet
Houseperson in the middle with completely different skill
sets and requirements. This is due to the document being
so similar as stated previously. In this example 25% of
the document is actually different which still allows poor
recommendations which are highly similar to prevail and



Table V: Selected Parts of a User-to-Job Matching Example.

Resume Job

Education
Master of Business Administration Degree
in Accounting. Title Senior Accountant - General Ledger(GL)

Certificate
Candidate for CPA (passed BEC and Regu-
lations). Requirements

• Must be a degreed accountant.
• CPA and/or Master of Science in Accounting.
• Minimum of 2-3 years general accounting experience

in a corporate division or Big Four environment is
required.

• Must demonstrate proficiency in general ledger ac-
counting including preparing, reading, interpreting,
and analyzing financial statements.

• ...

Skills

• Expert in handling full accounting cycle
operations with hands on experience in
receivables, payable, bank reconcilia-
tion, tax planning and filing, etc.

• Successful project manager with exper-
tise to effectively budget and forecast
resource needs, plan and schedule time
and resources for meeting expectations.

• ...

Work Experience

• Senior Accountant 12/2015-Present
• Senior Accountant Consultant 11/2015-

2/2016
• Accounting Consultant 7/2015-11/2015
• Accounting Manager 5/2014-3/2015
• Senior Accountant 7/2013-5/2014
• ...

Responsibilities

• Maintain project commitments ensuring proper ac-
counting treatment for all projects.

• Compile and analyze financial information to inter-
pret and communicate current and projected company
financial results to management.

• Prepare and examine financial statements and foot-
notes as assigned for completeness, accuracy and
conformance with relevant accounting standards and
management reporting requirements.

• ...

be recommended. To counter, we enrich contextual features
which helped alleviate and push down similarity scores for
these edge cased documents. Referring to the right column,
HVAC Mechanic was returned instead when we emphasized
on promoting the differences within the document. In our
domain, the contextual features proved successful in filtering
out highly similar scoring documents with different roles and
functions.

VI. CONCLUSIONS AND FUTURE WORK

Collaborative Filtering is widely used in recommendation
systems for real world applications, however, it suffers
from the cold-start problem where new entities cannot be
recommended or receive recommendations including the
users and items. To tackle the cold-start problem we build an
item-to-item deep learning matcher based on the document
similarities learned from the state-of-the-art document em-
bedding model doc2vec. The performance of document level
similarities learned by the doc2vec model with contextual
features outperforms the baseline models significantly and
can run on a daily basis which fits the requirement of our
practical application. Our approach can be integrated with
any existing CF-based recommendation engine with no need
to modify the CF core. To proof the efficiency, scalability,
and accuracy of the proposed technique we apply it on top
of Careerbuilder’s CF-based recommendation engine which
is used to recommend jobs to job seekers. After testing
this model on more than 1 million documents we prove its
efficiency in resolving the cold-start problem in large scale
while maintaining high level of accuracy. We are working

on a multimodal document embedding model for learning
user-to-user and user-to-job similarity whose initial results
are very promising to solve the cold-start problem for user-
based CF as shown in Table V.
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