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Abstract—The classification of graphs is a key challenge
within scientific fields using graphs to represent data and is
an active area of research. Graph classification can be critical
in identifying and labelling unknown graphs within a dataset
and has seen application across many scientific fields. Graph
classification poses two distinct problems: the classification of
elements within a graph and the classification of the entire
graph. Whilst there is considerable work on the first problem,
the efficient and accurate classification of massive graphs into
one or more classes has, thus far, received less attention.

In this paper we propose the Deep Topology Classification
(DTC) approach for global graph classification. DTC extracts
both global and vertex level topological features from a graph
to create a highly discriminate representation in feature space.
A deep feed-forward neural network is designed and trained
to classify these graph feature vectors. This approach is shown
to be over 99% accurate at discerning graph classes over two
datasets. Additionally, it is shown more accurate than current
state of the art approaches both in binary and multi-class graph
classification tasks.
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1. INTRODUCTION

Representing data as graphs or networks has enabled
researchers to not only understand the data itself but also
any underlying relationships. This approach to data analysis
is being used by fields as disparate as archaeology to biology.
Being able to accurately match a graph, which may not
have complete descriptive information, to its domain and
application can help to identify unknown data. As such, there
has been increasing interest in the literature on how best to
develop models to classify these graph datasets [1] [2]. There
are two different types of graph classification; classifying
individual elements (vertices or edges) within a graph and
classifying the entire discrete graph itself. In this paper, we
are considering the second of these two problems; global
graph classification. Global graph classification is required
for a myriad of tasks within the field of network analysis
(e.g. protein identification, social circle identification). The
terms graph and network are often used interchangeably
within the literature, however, we shall use the term graph
without loss of generality.

The volume of graph data, both in terms of size and com-
plexity of individual graphs and the total number of available
graphs, is increasing rapidly [3]. The current Facebook social
network graph, for example, is said to contain over one
billion vertices and is still growing [4]. Traditionally, graph

classification has been performed by the use of graph kernel
methods [5], but such methods can take a prohibitively long
time to compute, even on comparatively small graphs of a
few thousand vertices. Hence making the applicability of
graph kernels questionable on modern massive graphs.Thus,
a new approach to massive graph classification is needed
which does not require the use of graph kernel methods.

In this paper we present a novel approach for both

multi-class and binary classification of massive complex
graphs entitled Deep Topology Classification (DTC). DTC,
unlike previous approaches, extracts both global and deep
topological features from each graph to transform it into a
feature space. To perform the classification itself, a deep
neural network is designed and trained. The approach is
shown to be more accurate than the current state of the
art topological feature graph classification method. The key
contributions of this paper are:

e Novelty - The DTC approach is, to the best of our
knowledge, the first in the literature to make use of
a deep neural network for global graph classification
and to enable both multi-class and binary classification
to be performed.

e Accuracy - The DTC approach is shown to be more
accurate than state of art feature extraction methods.

o Reproducibility - The code and datasets used for the
approach and results presented in this paper have been
open-sourced on a GPLv3 licence and are available
online'. In addition, we have included the pre-trained
neural network for complete reproducibility.

In Section 2 we define the classification problem, Section
3 highlights previous research, Section 4 introduces the DTC
method, Section 5 details the experimentation performed,
Section 6 presents the results and Section 7 draws conclu-
sions and presents scope for future research.

II. PROBLEM DEFINITION

We are considering the problem of classifying graphs into
their correct categories via the use of machine learning.
We define a graph G = (V, E) as a finite set of vertices
(sometimes referred to as nodes) — V' — and a finite set of
edges — E. The elements of E' are an unordered tuple {u, v}
of vertices u,v € V. In this problem, we have a dataset
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D comprising N graphs G; € D, where ¢ = 1,..., N and
G; = (V;, E;) where a label might be present on the vertices
or edges, although the work considered in this paper requires
no such labels. Each graph in D has a corresponding class
y; € C, where C is the set of k categorical class labels, given
as C = 1, ..., k. In the case of graphs, the categorical class
label could correspond with a graphs domain, for example
a social, biological or citation network, or the synthetic
generation method used.

The goal of the global graph classification task is to derive
a mathematical formulae to perform f : D — C which can
accurately predicate the class label of each graph in the
dataset. If deriving f using a machine learning approach,
the common pattern is to learn the function from a subset
of D known as the training set for which labels are present.
The function is then tested on the remaining examples from
D, often called the test set. The accuracy of the function is
assessed by comparing the predicted label §; = f(G;) with
the ground truth label for all graphs in D. Established models
for classification, such as Support Vector Machines (SVMs),
Decision Trees or Artificial Neural Networks (ANNs) do
not function with graphs as these models require an N/-
Dimensional vector as input. Therefore before any graph
can be passed to the function, its inherent discrete nature
must first be converted into a vector. Due to the size and
complexity of modern graphs, this is considered one of the
most challenging aspects of global graph classification [6].

III. PREVIOUS WORK

The field of graph classification can be divided into
two major categories; within graph classification and global
graph classification. Within graph classification encompasses
techniques designed to classify individual vertices or edges
within a single graph and has been extensively explored
by prior work [7]. Global graph classification techniques
attempt to classify the type or domain of an entire graph.
However, there is comparatively less research focusing on
the classification of the entire graph, perhaps owing to the
lack of sufficient quantity of publicly available datasets
and the complexity of discovering an appropriate vector
representation.

A. Within Graph Classification

A selection of recent work on vertex classification has
explored the use of a single hidden-layer neural network to
learn features required for classification in an unsupervised
manner. These approaches are inspired by the word2vec [8]
or SkipGram [9] methods for automated feature learning
from text documents, adapting the technique to fit graph
data. The DeepWalk approach [2] uses a random walk to
sample the structure of a vertexs neighbourhood which is
then fed into the SkipGram model, with the sequence of
vertices replacing the sequence of words within a sentence.
DeepWalk has been shown to be more accurate at classifying

vertices in a variety of datasets than traditional methods
like SpectralClustering [10] and EdgeClustering [11]. The
node2vec [7] approach expands upon this method by having
a flexible definition of a vertices neighbourhood. This is
achieved by biasing the random walk to explore the vertices
close or far from a given vertex, leading to a greater
understanding of its local or global role within a graph.

B. Global Graph Classification

Graph Kernel Methods - A large body of work has
been performed to classify graph datasets based upon graph
kernels, a series of kernel functions which compute an inner
product on graphs. Graph kernels include random walks
[12], shortest path [13] and discriminative subgraphs [14].
Readers are referred to a survey on graph kernels for a
greater discussion on their uses outside of classification [5].
Sub-graph kernels (sub-graphs which are found frequently in
a given graph) are perhaps the most explored for performing
graph classification [15] [16]. In such approaches frequent
discriminative sub-graphs are mined using a variety of kernel
techniques and used as features for classification. Work
has shown that larger subgraphs result in a more accurate
classification but at the cost of a greatly increased runtime
for feature extraction [15]. The use of sub-graph kernels for
classification has been further explored when considering
noisy and unbalanced datasets [17]. Graph kernels have been
explored for multi-label classification of graph datasets in an
approach entitled gMLC [18]. The gMLC approach uses an
SVM to train a model to assign one or more labels from a
set of possible labels to a range of medical and biological
graphs. Graph kernels have also been utilised as a way to
classify streams of massive time-series graph datasets in
a memory efficient manner [19]. The approach uses the
Weisfeiler-Lehman graph kernel [20] and an SVM in an
incremental manner. To reduce the large memory footprint
inherent in graph streams, the support vectors from the
previous time steps are used as training data for the model.

Graph kernels are known to be prohibitively to slow
extract from large graphs [7], thus are not suitable for our
approach as we are attempted to classifying massive graphs.

Topological Feature Methods - There are a few ap-
proaches to graph classification which employ the extraction
of topological features rather than the use of graph kernels.
These approaches are designed to overcome the inherent
problems of scalability and runtime efficiency required when
extracting graph kernels [6]. There are numerous features
which can be extracted from graphs and the technique has
been used successfully for many graph mining tasks includ-
ing graph similarity measuring [21], time series anomaly
detection [22] and link prediction [23].

Work has been performed to explore the application of
topological graph features to differentiate between graphs
from different domains [24]. Although the work stops short
of creating an actual classifier, it does conclude that both



local and global features can be useful in identifying a
graph’s domain [24].

Li et al. propose a novel method of classifying graphs
into domains based on the extraction of global and label
based features [1] [6]. The approach uses an SVM to classify
the resulting feature vectors. The features are scaled using
both range normalisation and z-normalisation to overcome
the different scale of chosen features. The work presents
results on the classification of three different graph datasets
including chemical compound graphs, protein graphs and
cell graphs. The approach is shown to be more accurate than
state of the art graph kernel based methods [1]. However,
the approach is not extended to datasets in which multiple
classes may be present and is missing the potentially rich
descriptive features at the vertex level.

IV. DTC APPROACH

Deep Topology Classification (DTC) is an approach to
the classification of massive complex graph datasets. DTC
extracts both global and deep topological features from a
given graph, rather than using a graph kernel method for
feature representation. We take inspiration from research
showing how the use of global topological features can be
used to beat the classification accuracy of graph kernel based
methods [6]. The DTC approach further improves upon this
by exploring the use of deep topological features, rather than
just global metrics. An additional benefit over the previous
graph kernels based approaches is that our feature extraction
procedure can be completed in approximately O(n) [21].
To classify the resulting vector representations, a deep feed-
forward neural network is created and trained. The use of a
deep neural network, rather than the traditional SVM utilised
in the global graph classification literature, was inspired by
recent advances in within-graph classification using neural
networks [7].

Below we detail the feature extraction stage and the design
of the deep neural networks used by DTC.

A. Feature Extraction

In order to perform any classification, the graphs must be
transformed into a set of features via a feature extraction
process. The DTC approach extracts a selection of deep
topological features from each graph it is classifying. The
use of topological features was required when we found
that graph kernel and embedding based approaches have, in
the best case, a third order polynomial execution time [20].
Since one of the key requirements of the DTC approach is
that it is able to classify potentially thousands of massive
graphs, graph kernel and embedding approaches are not
suitable due their computational complexity. In order to
ensure the most accurate classification features which are
extremely discriminative are required. In previous work,
we introduced a graph feature extraction approach called
Graph Fingerprinting - GFP which was shown to be highly

accurate at detecting similarities between graphs with nearly
identical topologies [21]. In this work, we explore the
suitability of the GFP feature vectors for the task of global
graph classification.

The GFP approach extracts a series of global and deep
topological features from each graph in a given dataset.
The process is explained in detail in previous work [21]
but we will briefly review it here. Each graph G; € D is
passed to the GFP approach which extracts a corresponding
feature vector E containing both global and local features.
Local features are extracted for each v € V, as detailed in
Table I. All these features are combined into a matrix of
features of size |V| * |Q|, where Q is the number of local
features. To aggregate this down, the following metrics are
extracted for each column in the feature matrix: median %,
mean Mo, standard deviation o, variance 0%, skewness
Skewlx];, kurtosis Kurt[z];, minimum value z(1), and
maximum value x(n),.

In addition the global features detailed below are ap-
pended to F;:

Graph Order - Defined as: |V|.

Number of Edges - Defined as: |F|.

Number of Triangles - The number of triangles, «, is the
number of vertices which form a triangle, with a triangle
being a set of three vertices with an edge between every
member.

Maximum Total Degree Value - The total number of edges
the most connected vertex in the graph has to other vertices.
Number of Components - The total number of components
within the graph, with a component being a subgraph in
which there is a possible path between every vertex, whilst
vertices in different components have no possible path
between them.

Global Clustering Coefficient - The total number of pos-
sible vs complete triangles within a graph: gc = 3a/f,
where (3 is the number of connected triplets of vertices (three
vertices which are all connected, but not necessarily into a
triangle) within the graph.

Many machine learning models require that the features
are standardised to the same range, often this is achieved via
the use of scaling [6]. For the DTC approach, the feature
vector ?1 is scaled to have zero mean and unit variance.

B. Model Design

Artificial Neural Networks (ANNs) and Deep Learning
are fields within machine learning inspired by the func-
tionality of the human brain [30]. ANNs model problems
via the use of connected layers of artificial neurons. Each
ANN has an input layer, at least one hidden layer and
an output layer. The activation of each neuron is given
by a pre-specified function, with each neuron taking a
weighted sum of the outputs of the neurons connected to
it. The weights of the network are ‘learned’ as training
examples are fed through the network that generate output.



Table 1

Feature Name

DEEP TOPOLOGICAL FEATURES

‘ Equation

Eigenvector Centrality Value - Used to calculate the importance of each vertex within a graph.
Eigenvector centrality can be written as an eigenvector equation, where A is the largest eigenvalue,
A is the graph in adjacency matrix form and x is the eigenvector centrality [25].

Ax = A\x.

PageRank Score - The PageRank centrality is commonly used to measure the local influence of a vertex
within a graph [26] [27]. Where I'~ (v) is the set of incoming neighbours of v, d* (u) is the out-degree

of v and d is a constant damping factor (0.85 for this work).

PR(u)
dt(u)

PR(v) = =2 4d Z

uwel = (v)

Average PageRank of Neighbourhood - The average PageRank of the neighbourhood is the mean of
each PageRank score within a vertices neighbourhood, where PR(j) is the PageRank score calculated
in the previous step and N (v) is every vertex incident on the current vertex v [21].

_ 1 .
NPR(v) = IN(w)] ZV]'EN('U) PR(j)

Total Degree - This is the sum of both the in and out degree for the vertex v [21].

tdy, =T~ (v) +dt(v)

Two-Hop Away Neighbours - The number of two-hop away neighbours from the current vertex v gives
an indication of how connected a vertex’s neighbourhood is within the graph [28].

_ 1 P
the = R Lovienw 4 0)

Local Clustering Score - Represents the probability of two neighbours of v also being neighbours of Cy =
each other, where ® is the number of pairs of v's neighbours which are themselves connected [29].

29
d+(v)(dT (v)—1)

Average Clustering of Neighbourhood - The mean of all the local clustering scores for the vertex’s

neighbourhood, where c; is the local clustering score [28].

_ 1 .
nev = TRTo 2vieN () &

Modifications are made to the weights in the network to
increase the probability of producing the desired outcome.
The weights are updated through the use of back-propagation
[31]. Deep Learning is a term generally used to refer to
ANN’s which have multiple hidden layers. Types of Deep
ANN include Deep Feed Forward (used often for logistical
classification), Convolutional Neural Networks (which can
use an image as input as thus is used for tasks such as image
classification) and Recurrent Neural Networks (which can
consider a sequence of input vectors and thus can be used for
time series analysis). Readers interested in the different types
of Deep Learning highlighted above are referred to [30].
Deep Learning has been extremely successful in solving
complicated non-linear problems in computer vision and
natural language processing. However, so far the application
of Deep Learning within the field of graph processing has
been limited [7] [2].

The ANN we have created for the DTC approach follows
the Deep Feed Forward (DFF) model, meaning that each
layer in the network is fully connected with the subse-
quent layer. The size of the input layer is equal to the
dimensionality of the extracted GFP vector and the size
of the output layer being equal to the number of unique
categorical class labels. When designing a neural network,
several key choices must be made in regards to the number
of hidden layers, the random initialisation of the neuron’s
weights and the activation function they use. In addition a
suitable loss function, a function which the ANN is trying to
minimise, must be chosen to ensure the most accurate model.
To select the correct functions and parameters for the DTC
network, we performed a grid search over a selection of well
regarded options. For the initial random weights assigned to
the neurons, we tested the following functions to generate
the initial weights: Normal, Glorot Uniform, Lecun Uniform
and He Normal [32]. For the neuron activation function we
tested: Tanh and Rectified Linear Unit (ReLU) [33]. The
grid search trained a series of networks with every possible
combination of these functions and records the combination
which resulted in the highest model accuracy. We omit

the full grid search results for the sake of brevity but the
network with the highest classification accuracy featured
ReLU activation and initialisation via Glorot Uniform.

The ReLU function activates a neuron via f(z) =
max (0, z), where z is the incoming signal to the neuron,
which thresholds the activation to stop it going below
zero and is designed to more accurately imitate biological
activations [33]. ReLU has been shown to improve accuracy
in many Deep ANN’s, whilst also improving training times.
Before the weights in an ANN are updated via back-
propagation, they must be assigned some random value.
This initial value has been shown to have a large impact
on the overall network quality [34]. The Glorot Uniform
initialisation method sets the initial value for a neuron to
be sampled randomly from a uniform distribution and has
been shown to improve accuracy [34]. For the loss function
of the network we use categorical cross-entropy, commonly
used for multi-class classification tasks [35]. We used the
RMSprop algorithm to update the model weights via back
propagation [36]. Finally, we have included small amounts
of dropout on each hidden layer, this is a regularisation
strategy for ANNs which functions by randomly dropping
neurons in an effort to prevent over-fitting [37]. An overview
of the complete network, describing the size of each layer,
the initialisation and activation functions used and the ap-
plication of any dropout, is given in Table II.

Table II
DTC NETWORK ARCHITECTURE

Layer | Size | Initialisation [ Activation | Dropout
Input |F| NA NA NA
First Hidden 256 | Glorot-Uniform ReLU 0.2
Second Hidden 128 | Glorot-Uniform ReLU 0.2
Third Hidden 32 Glorot-Uniform ReLU 0.2
Multi-Output IC| NA Softmax NA
Binary-Output 1 NA Sigmoid NA

To ensure that we can also classify binary datasets
(datasets for which only two unique labels are present) as
well as multi-class, we created a second version of the DTC
network. This binary class version employs an alternative
output layer with a single output neuron activated via a



Sigmoid function, commonly used for binary classification
tasks [38]. In addition, this network used binary cross-
entropy for the loss function [35]. The alternative output
layer can be seen in Table II.

C. Implementation

The code for the DTC approach has been written in
Python. The feature extraction code has been implemented
using Graph-Tool [39]. The ANNs have been created using
the TensorFlow and Keras [40] libraries, allowing us to
exploit Graphics Processing Unit (GPGPU) cards to decrease
training times. The SVM models have been implemented
using SciKit-Learn [41].

V. EXPERIMENTATION
A. Dataset Generation

Due to the lack of large quantities of publicly available
empirical graph datasets, we created two balanced datasets
synthetically using a combination of five mathematically un-
derstood random graph generation methods from the SNAP
graph library [42]. The two datasets are detailed below:

Dataset One (Multi-Class) - Containing 10,000 graphs
from each of the five generation methods, creating a final
dataset of 50,000 graphs, with five balanced classes. This
dataset was created to test the ability of the DTC approach
at multi-class classification.

Dataset Two (Binary Classification) - Containing 10,000
forest fire graphs and 10,000 randomly rewired forest fire
graphs. The goal of this dataset was to test the sensitiv-
ity of the DTC approach at classifying graphs which are
highly topologically similar but of two different classes. The
forest fire graphs represent a normal distribution of graphs,
whereas the rewired graphs represent anomalies where small
changes have been made to their topologies. The random
rewire process modifies a given source graph’s topology by
randomly altering the source and target of a set number
of edges according to the Erd6s-Rényi random model. The
number of edges each graph was rewired by was chosen
uniformly from a possible range of 100 to 10,000.

Many of the graph generation methods used require
parameters to control aspects of the generation process. To
avoid our models over fitting to a particular set of generation
parameters, these we uniformly randomised by the amounts
detailed below. Each graph was generated with 100,000
vertices and a varying number of edges controlled via the
generation method. The methods used were:

Forest Fire (FF) [43] - The forward and backward burn
probabilities were chosen uniformly between 0 and 0.5.
Barabdsi-Albert (BA) [44] - The number of connections
made by each new vertex joining the graph was chosen
uniformly between 2 and 6.

Erdds-Rényi [45] - No parameters were randomised for this
method as edges are made at random.

Small World (SW) [29] - The rewire probability for the small
world model was chosen uniformly between 0 and 0.5.
R-MAT (RM) [46] - The R-MAT graph generator requires
the probability that a certain edge will fit into one of three
partitions within a 2 x 2 matrix. These probabilities are
uniformly chosen to sum to less than one.

B. Testing Methodology and Environment

All the accuracy scores presented in the results section are
the mean accuracy after k-fold cross validation, considered
the gold standard for model testing [47]. For k-fold cross
validation, the original dataset is partitioned into k equally
sized partitions. k£ — 1 partitions are used to train the model,
with the remaining partition used for testing. The process is
repeated k times using a unique partition for testing and a
mean taken to produce the final result.

Experimentation was performed on a compute system
with 2 Nvidia Tesla K40c’s, 20C 2.3GHz Intel Xeon ES5-
2650 v3, 64GB RAM and the following software stack: Cen-
tOS 7.2, GCC 4.8.5, CUDA 7.5, CuDNN v4, TensorFlow
0.10.0, Keras 1.0.8, scikit-learn 0.17.1, Boost 1.56, Python
2.7.5 and Graph-Tool 2.8.

VI. RESULTS

The applicability of DTC was tested with the two datasets
described in Section V-A. Previous work has shown global
graph features classified via an SVM to be more accurate
than state of the art graph kernel methods [1] [6]. As the
source code of the SVM approach is not publicly available,
we compare DTC with an SVM trained upon the global
features detailed in Section IV-A. Additionally we compare
with an SVM trained on the full feature vector to directly
assess the suitability of ANNs for graph classification.

For both the multi-class and binary classification results,
six different methods are compared: DTC-Scaled (trained
on scaled features), DTC-Unscaled (trained on unscaled
features), SVM-Scaled (Trained on scaled features), SVM-
Unscaled (Trained on unscaled features), SVM-Global-
Scaled (Trained on scaled global features) and SVM-Global-
Unscaled (Trained on unscaled global features).

A. Multi-Class Classification

To assess the accuracy of the DTC approach at per-
forming multi-class classification, Dataset One was used.
The reported results, displayed in Table III, are the mean
accuracy as a percentage of the k-fold cross validation along
with the 95% confidence interval. The table shows that the
DTC approach has a very high accuracy across the k-fold
cross validation run and is over 10% more accurate than
the best SVM approach. It can also be seen that using the
full feature vector with the SVM is much more accurate
than global features alone. The table also highlights how
beneficial feature scaling is to the overall accuracy of both



Table III

MULTI-CLASS CLASSIFICATION RESULTS

Method

[ Accuracy (%) |

Recall

[

Precision

[

F1 Score

DTC (Scaled)
DTC (Unscaled)

99.958 +0.074
70.443 £ 7.819

0.99998 + 0.00004

0.70497 + 0.07782

0.99998 + 0.00004

0.71247 + 0.07862

0.99998 + 0.00004
0.70870 + 0.012931

SVM (Full-Scaled)
SVM (Full-Unscaled)
SVM (Global-Scaled)

SVM (Global-Unscaled)

88.432 £+ 1.100
26.113 £ 0.501
54.483 £+ 1.252
50.673 £+ 1.092

0.88396 £ 0.00867
0.26079 £ 0.00948
0.54451 +0.01378
0.50631 4 0.01301

0.88426 £+ 0.00867
0.25925 £ 0.00501
0.54483 + 0.01252
0.50673 + 0.01092

0.884261 £ 0.01097
0.25897 4+ 0.00721
0.54487 + 0.01401
0.50681 + 0.01418

Table IV

BINARY CLASSIFICATION RESULTS

Method

[ Accuracy (%) |

Recall

[

Precision

[

F1 Score

DTC (Scaled)
DTC (Unscaled)

99.980 + 0.049
51.435 £+ 8.793

0.99995 + 0.00015

0.48850 + 0.00983

0.99995 + 0.00015

0.52710 £ 0.00983

0.99995 + 0.00015
0.507066 + 0.33614

SVM (Full-Scaled)
SVM (Full-Unscaled)
SVM (Global-Scaled)

SVM (Global-Unscaled)

68.034 £+ 8.821
49.045 £ 1.141
56.482 £ 13.435
42.546 +2.914

0.70012 £+ 0.31304
0.48910 £ 0.01566
0.56780 4 0.13913
0.42916 £ 0.02959

0.68034 + 0.28739
0.49045 £ 0.01141
0.57834 + 0.14034
0.43813 + 0.03152

0.71509 + 0.33614
0.49145 + 0.00929
0.57302 £+ 0.13024
0.43359 + 0.03102

models. figures 1 and 2 show the error matrices for the SVM-
Scaled and the DTC-Scaled methods respectively. These
figures show the predicated against the true labels. The SVM-
Scaled approach has difficulty correctly classifying the ER,
FF and SW classes, with the ER class more frequently being
classified as BA than it’s true class. Whereas, Figure 2 shows
that DTC-Scaled is consistently accurate across all classes.
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B. Binary Classification

To assess the accuracy of the DTC approach at performing
binary classification, Dataset Two was used. Here we assess
the sensitivity of DTC when classifying graphs which are
highly topologically similar. Table IV shows the results
for the binary classification. DTC achieves a very high
accuracy when detecting binary classes, with the DTC-
Scaled approach beating the best SVM approach by over
30%. The accuracy of the DTC in this dataset is extremely
encouraging, as the topological distribution of the two
classes represented in this dataset are very close.

C. Model Accuracy and Score Over Epochs

When training ANNSs, the complete set of training data
is passed through the network multiple times to further
improve the accuracy, with one epoch being a complete pass
through the training data. Figure 3 shows how the accuracy
and loss function score of the binary and multi-class versions
of the DTC approach respond as the number of epochs in the
train and validation data are increased. Plotting the scores
for the training and validation datasets is a useful indication
of whether the model is over-fitting to the training data.
The figure shows that both ANNs can achieve excellent
accuracy with only 30 epochs. It is interesting to note that
the binary network takes over 10 epochs longer to reach
its maximum accuracy, demonstrating that this classification
task was more complicated for the ANN to learn correctly
due to the closeness of the classes. The figure also highlights
that neither of the models are over-fitting to the training
data, as both test and validation sets exhibit highly similar
variations in accuracy and loss score.

VII. CONCLUSION

This paper has presented a novel approach for global
graph classification entitled Deep Topology Classification.
The presented results show that the combination of ex-
tracting deep topological and global features from a graph
and classifying these via a deep neural network is an



Accuracy
CeoLoo

Y, N NN Ne ciNoN )
V\V\\]
| —

L —— Train Data ||
- ---Val Data |
| T
0 10 20 30
Epoch
) (a) Multi-Class Accuracy
s 09 T
3 8§ - —— Train Data ||
g 06 ---Val Data |
2 0 !
5 03 i
= 02 s
l -
— -0 10 20 30
Epoch

(c) Multi-Class Loss
Figure 3.

extremely effective approach to the problem of global
graph classification. The approach is shown to have over
99% classification accuracy after k-fold cross validation
across a multi-class and binary dataset. This compares very
favourably with the current state of the art approach which
has an accuracy of 88.4% for the multi-class and 68% for the
binary datasets. We believe that the classification accuracy
offered by the DTC approach will have many applications
within the field of graph mining.

In future research we hope to further explore class-
ification accuracy of the DTC approach upon empirical
graph datasets. To achieve this we will explore the use of
data augmentation techniques to allow for model training
upon limited amounts of input data. We plan to create an
unsupervised version of DTC to classify graphs with no
class labels presented. Lastly, we aim to investigate graph
embedding approaches to see if the features required for
classification can be learned from graphs automatically.
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