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Abstract_The use of functional brain imaging for research and 
diagnosis has benefitted greatly from the recent 
advancements in neuroimaging technologies, as well as the 
explosive growth in size and availability of fMRI data. While 
it has been shown in literature that using multiple and large 
scale fMRI datasets can improve reproducibility and lead to 
new discoveries, the computational and informatics systems 
supporting the analysis and visualization of such fMRI big 
data are extremely limited and largely under-discussed. We 
propose to address these shortcomings in this work, based on 
previous success in using dictionary learning method for 
functional network decomposition studies on fMRI data. We 
presented a distributed dictionary learning framework based 
on rank-1 matrix decomposition with sparseness constraint 
(D-r1DL framework). The framework was implemented 
using the Spark distributed computing engine and deployed 
on three different processing units: an in-house server, in-
house high performance clusters, and the Amazon Elastic 
Compute Cloud (EC2) service. The whole analysis pipeline 
was integrated with our neuroinformatics system for data 
management, user input/output, and real-time visualization. 
Performance and accuracy of D-r1DL on both individual and 
group-wise fMRI Human Connectome Project (HCP) dataset 
shows that the proposed framework is highly scalable. The 
resulting group-wise functional network decompositions are 
highly accurate, and the fast processing time confirm this 
claim. In addition, D-r1DL can provide real-time user 
feedback and results visualization which are vital for large-
scale data analysis. 

Keywords: fMRI, big data, dictionary learning, functional 
network, real-time visualization 

I.  INTRODUCTION

In the current field of functional neuroimaging 
research, one of the most effective approaches for fMRI 
data analysis is the functional network decomposition 
based on Dictionary Learning methods [1, 2]. Dictionary 
learning derives a set of vectors that sparsely code the input 
fMRI data. The resulting dictionaries and sparseness-
constraint loading coefficients respectively characterize 
the underlying temporal and spatial distribution patterns of 
the atomic functional networks over the whole brain. Both 

individual [3] and group-wise dictionary learning studies 
[1] on fMRI data have been conducted on task and resting-
state fMRI data. It has been shown in various studies that
specific functional network alterations could help identify
brain disorders (e.g. Schizophrenia as in [4], Alzheimer’s
disease as in [5]), effectively serving as “functional
biomarkers” for early diagnosis and potential intervention.
Moving forward, functional brain network analysis
techniques face major challenges in big data [6]. Firstly,
the huge number of available subjects in recent public
datasets [7] calls for rapid feedback and interpretation of
the analysis results; real-time visualization of the
individual functional network would be very important for
fast screening and quality control [8]. Secondly, fast and
scalable tools for analyzing the large-scale data at group or
population level are much in needed. It has been shown that
population-level studies on terabytes of data size [7] could
offer novel perspectives toward understanding the holistic
functional space of human brain and greatly enhance the
knowledge discovery from fMRI analysis. Such
computational challenges from large-scale data will
eventually demand the coordinated resources of distributed
clusters [9].

Furthermore, big data analytics tools will not fill the big 
gap of a comprehensive analytics alone where visualization 
plays a significant role. An ideal online visualization tool 
is also necessary for both visually representing the data 
before, during and after processing as well as 
understanding the actual method(s)’ performance. 

Following the previous success in using dictionary 
learning for functional network decomposition [1, 2], in 
this work we developed a novel distributed rank-1 
dictionary learning (D-r1DL) framework [19], using the 
Apache Spark platform. All code presented in this work 
can be found in the Github repository 
https://github.com/quinngroup/dr1dl-pyspark 
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Dictionary learning has been in the center of attention 
of researchers in variety of disciplines, but less effort has 
been made to create new algorithms using it. In one method 
[14], the authors designed a large-scale sparse coding 
framework on Hadoop using the MapReduce distributed 
programming paradigm. The core operations of dictionary 
learning were split in two main phases: the sparse coding 
phase, in which the loading weights were learned in 
parallel and on different machines (the map phase); and the 
dictionary learning phase, in which the dictionary atoms 
were updated (the reduce phase). By taking advantage of 
hard sparsity constraints, the authors avoided materializing 
the entire data matrix in memory at once, instead operating 
on blocks of the matrix in parallel and constructing the 
loading matrix row by row. Another recent method was 
proposed in [18], in which the authors converted dictionary 
learning into a streaming algorithm. In this way, partial 
solutions were constructed given only a few rows of input 
at a time. Their implementation could also handle large 
dimensions by subsampling the input. However, while this 
approach was scalable out-of-core on a single machine, it 
nevertheless precluded datasets which spanned multiple 
physical machines and for which subsampling was not 
preferred. Furthermore, it was only as scalable as the single 
machine on which it was run. 

In our proposed method, we have used a similar 
dataflow technique as [14], but have implemented the core 
algorithm on the Spark platform instead of Hadoop 
MapReduce. We assumed the sparse coding and dictionary 
atoms fit in the memory, which result in overall fast and 
efficient computation. Where Hadoop MapReduce excels 
in batch processing, Spark is far more flexible, optimized 
for iterative computation and capable of parallel 
computation that requires small communication overhead: 
intermediate results are cached in-memory on the workers 
and re-used in subsequent iterations, avoiding the re-
serialization and deserialization steps that are unavoidable 
between Hadoop map and reduce steps. Furthermore, 
updates in Spark are efficiently broadcasted to the workers. 
Most importantly, the low-level Spark distributed data 
abstraction, the Resilient Distributed Dataset (RDD), 
pipelines the requested transformation operations and 
lazily executes them after an action is issued, using a 
constructed DAG of transformations to determine the 
optimal computational pathway. We leverage these 
advantages to provide a substantial performance gain in our 
D-r1DL dictionary learning implementation. 

The performance of the proposed framework on both 
individual and group-wise data from Human Connectome 
Project (HCP) Q1 release [10] shown that it is a suitable 
solution for fMRI big data analytics. Although the data size 

itself might not directly address the big-data challenge but 
using the generated data matrix, we have shown that the 
total processing time of the same dataset can be reduced by 
half in comparison to the stochastic coding dictionary 
learning algorithm without the parallelization. This by 
itself shows that we have achieved a method to meet the 
challenge posed by fMRI big data for more efficient and 
scalable data analytics method. 

The goal is to show how our new algorithm will affect 
the total processing time and memory usage. The two 
important constrains that the neuroimaging community has 
faced with in the past few years. While the data-sets size is 
growing exponentially, the computational architecture is 
not capable of handling such a big growth.  

The main features of our proposed D-r1DL are as follow: 

1) Accuracy: D-r1DL can discover the same set of 
results by the General Linear Model (GLM), as well 
as other functional networks reported in literature such 
as the well-known resting-state networks (RSNs) also 
from task-based (tfMRI) data. 

2) Speed: D-r1DL distributes computational loads to 
many nodes, thus achieving greater speed increases 
with larger clusters. On individual data, the 
decomposition results are visualized and fed to the 
user in real-time. 

3) Scalability: D-r1DL has near-constant memory cost 
regardless of the input data size as the nodes work on 
partitions of data rather than the whole dataset. Spark’s 
basic distributed data abstraction, the resilient 
distributed dataset (RDD), is designed to scale 
gracefully with the size of the data. In addition, the 
memory cost of the learning process is minimized to 
only two vectors. 

4) Deployment: D-r1DL has been integrated into our in-
house neuroinformatics system, HELPNI (HAFNI-
enabled largescale platform for neuroimaging 
informatics), as introduced in [17] publicly available 
at http://bd.hafni.cs.uga.edu. 
 

II. MATERIALS AND METHODS 

A. Algorithm of rank-1 matrix decomposition with sparse 
constraint 

The rank-1 dictionary learning (r1DL) algorithm 
decomposes the input matrix S (of dimension T×P) by 
iteratively estimating the basis vector u (T×1 vector with 
unit length) and the loading coefficient vector v (P×1 
vector). The algorithm is an extreme case of the general 
dictionary learning framework [11] as the input is 
approximated by a rank-1 matrix (spanned by two vectors). 
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With the l-0 sparseness constraint, the following energy 
function L(u, v) will be minimized: 

      (1) 

Thus the total number of non-zero elements in v should be 
smaller than or equal to the given sparsity constraint 
parameter r which is generally empirically determined 
based on the context of the application. The algorithm 
alternates updating u (randomly initialized before the first 
iteration) and v until the convergence of u: 

 
(2) 

One dictionary basis [u, v] can be estimated after the 
convergence of Eq. 2. Because the value of the energy 
function in Eq. 1 decreases at each iteration in Eq. 2, the 
objective function is guaranteed to converge. For 
estimating the next dictionary (up to the dictionary size K), 
the input matrix S will be deflated to its residual R. 

 (3) 

 

 
Figure1. Illustration of the D-r1DL framework. (a) Running example 
showing the input data S (one volume from the 4-D volumetric matrix), 
learned vector v (3-D volumetric matrix as a vector) and vector u (time 
series). (b) Algorithmic pipeline of r1DL. Red arrow shows the updating 
loop for learning each [u, v], blue arrow shows the updating loop for 

deflation of S and learning next dictionary. (c) Parallelization steps for the 
three operations from (b).  

*All codes are accible in the Github repository 
https://github.com/quinngroup/dr1dl-pyspar 

B. Distributed dictionary learning framework supported 
by Spark 

In order to utilize computational power and memory 
capacity across many machines to address the big data 
problem, we implemented the distributed r1DL algorithm 
on Spark, which we refer to as the distributed rank-1 
dictionary learning (D-r1DL) framework as illustrated in 
Fig. 1. Using Spark’s Resilient Distributed Dataset (RDD) 
abstraction from [12], D-r1DL can potentially deal with 
large-scale imaging data whose size exceeds the memory 
capacity of the working machine. Spark addresses such 
out-of-core operations by loading only specific partitions 
of the whole input matrix S into the memory of each node. 
The learning of dictionary bases [u, v] is performed in 
parallel at each node (i.e. machine), and are then 
broadcasted across all nodes during the update. 
Specifically, the matrix multiplication operations 
described in Eq. 2 and the deflation operation defined in 
Eq. 3 were implemented by their corresponding distributed 
primitives in Spark: 

I. During the vector-matrix multiplication, each node 
will use its portion of the updated u vector, then 
estimate the v vector based on the multiplication of its 
partition of S and the vector u. The resulting partial v 
vectors from all the nodes will be then reduced by the 
summation operation.  

II. During the matrix-vector multiplication, each node 
will use the updated v vector and its partition of the S 
matrix to estimate a single corresponding element of 
the u vector. The resulting u vector is assembled from 
the results of each node.  

III. During the matrix deflation operation, both u and v 
learned from Eq. 2 will be broadcasted. Each node 
estimates a portion of the outer product between 
corresponding elements of the u vector with the whole 
v vector. Each partition of the S matrix is deflated 
using the corresponding partial product of u and v. 
 

C. D-r1DL as a web service with integrated 
neuroinformatics system 

In addition to the open-source code implementing 
the D-r1DL framework, in this work we proposed an in-
house neuroinformatics platform, HELPNI, to publicly 
host the D-r1DL framework, aiming to perform functional 
network decomposition analysis as a web service available 
to collaborators and other researchers. The 
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neuroinformatics platform consists of three main 
components: the data storage core, data management and 
web application core, and the data processing core. 

1) Data storage: Both local hard drives and cloud storage 
are integrated in the system, as we are using Amazon 
Simple Storage Solution (S3) as permanent data storage 
for larger datasets. Data are accessible through this web 
application with credentials using Postgresql. Users are 
able to either manually upload the data to the system 
using the web-based Java uploader, or they can use the 
script uploading method which allows them to upload 
theoretically unlimited number of images after defining 
the appropriate data schema on the system using the 
bulk script uploading feature. This helps the 
collaborators to import their desired data-sets hosted in 

a medical facility through the PACS protocol. 
Visualizing the stored data can be done in two different 
ways.  If the stored data are in a PACS friendly format, 
such as DICOM, then it can be easily visualized through 
a Java plugin in a web browser. But if the data are in 
other formats, including Nifti, it should be either 
visualized locally or, alternatively, using the converted 
DICOM format. The stored fMRI images can carry the 
standard parameters such as scan type, repetition time, 
dimension, etc. Users can set them at feeding step or 
they can be automatically retrieved from DICOM 
headers or through meta data. 

 

 
Figure2. The generated networks as being computed will appear on a dynamically-generated result screen linked to the report webpage. 

2) Data management and web application: We used 
Apache Tomcat as the web server to handle incoming 
requests. User-uploaded data is stored in local storage 
accessible from preparation units. Defining processing 
pipelines over the selected group of subjects is one of 
the key features of our neuroinformatics platform, 
HELPNI, where all the algorithms and processing 
procedures can be easily assigned to any project using 
the XML descriptors. This includes the preprocessing 
and the r1DL algorithms also. For fMRI data, the 
preparation steps include preprocessing and the 
conversion of the 4D fMRI images to 2D data matrix. 
Model parameters are also set during the preparation: 

either automatically extracted from the data (e.g. T and 
P) or defined by user specification (e.g. sparseness 
constraint r). While the data are being processed, an 
online visualization tool will simultaneously generate 
the reports of the statistics and visualizations of the 
decomposed functional networks. Fig 2 shows an 
overview of real time visualization of discovered 
networks. Then the results will be uploaded to the 
Apache server, accessible via web browsers for viewing 
and sharing. The PDF version of all reports as well as a 
interactive webpage, will be available in every subjects’ 
profile page. This will make the future comparison and 
studies much easier. Also, all the results will remain at 
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a system directory addressed in the subjects’ profile. 
Doing so will help collaborators future studies be done 
easier and more efficient. Because they can access raw 
data as well as any prior study results instantly. For 
example, the standard fMRI preprocessing can be done 
one time and all the future analysis can easily leverage 
from the one time preprocessed data. 

3) Data processing: HELPNI platform controls the data 
flow and working schedule from the prepared data to 
the processing units. One advantage of the proposed 
neuroinformatics platform is its flexibility with respect 
to the processing control. Different computational 
nodes can be used to do the computation 
simultaneously over different subjects. In this work, the 
platform controls 3 data processing units: the first one 
is the in-house cluster (8 cores, 16 GB memory) 
deployed on the same machine as the platform; the 
second one is a remote high performance computing 
cluster (48 cores, 128 GB memory); the third one is the 
cloud-based Amazon EC2 cluster. Fig. 3 shows an 
overview of the neuroinformatics system, through 
which stored fMRI data in centralized storage will be 
sent to processing units and the results will be 
visualized through dynamically-generated webpages.  

 

 
Figure3.  Overview of the proposed neuroinformatics system with the 
three central units (Data processing, Management and Storage) and their 
relationships. 

III. EXPERIMENTAL RESULTS 

A. Model performance on a relatively large-scale dataset 
We applied the D-r1DL model on the publicly available 
dataset from Human Connectome Project [10] for 
validating its effectiveness in discovering functional 
networks from large-scale fMRI dataset. The acquisition 
parameters of the fMRI are as follows: 90×104 matrix, 
220mm FOV, 72 slices, TR=0.72s, TE=33.1ms, flip 
angle=52°, BW=2290 Hz/Px, 2.0mm isotropic voxels. 
Data preprocessing followed the protocols detailed in [13], 
including motion correction, spatial smoothing, temporal 
pre-whitening, slice time correction, and global drift 
removal. The tfMRI data was then registered to the 

standard MNI152 2mm space using FSL FLIRT to enable 
group-wise analysis. The final individual tfMRI signal 
matrix used as model input contains 223,945 number of 
voxels (defined on grey matter) and varying temporal 
length based on task design. In this work, tfMRI datasets 
from 68 subjects during Emotion Processing task were 
used, with the time length of 176 volumes which matches 
the aim of the proposed framework for population-level 
fMRI big data analysis. 
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Figure4. Spatial maps of the four pairs of group-wise functional 
networks obtained by r1DL (upper) and GLM (lower) from Emotion 
dataset. The temporal pattern of the functional networks are shown below 
the spatial patterns. 

Afterwards, we aggregated the 68 individual fMRI data 
during Emotion task into one big, group-wise matrix with 
the dimension of 176×15,228,260 (~20 GB as a text file). 
Using the parameter setting of K=100 (i.e. decomposing 
100 functional networks) and r=0.07 (i.e. 7% of the total 
number of grey matter voxels across all subjects can have 
non-zero value), we obtained the 100 group-wise 
functional networks. The analysis was performed on the 
high performance computing cluster and took around 10 
hours to finish. The temporal patterns of the group-wise 
functional networks are defined in the D matrix. The spatial 
patterns were distributed across each individual’s space 
(223,945 voxels) in the z matrix. To obtain a volumetric 
image, we averaged the loading coefficient value on each 
voxel across all individuals.  

 
For validation purposes, we compared the decomposed 

group-wise functional networks with the group-wise 
activation detection results obtained by model-driven 
General Linear Model (GLM). The basic rationale of such 
comparison is that the activation detection results 
characterize the intrinsic and basic temporal/spatial 
patterns as a response to external stimuli and should 
therefore also be revealed by data-driven matrix 
decomposition-based methods such as D-r1DL. In order to 
identify the correspondence between the 100 functional 
networks decomposed by D-r1DL and the GLM results, we 
calculated Pearson’s correlation between the temporal 
patterns (in the D matrix) of the functional networks and 
the hemodynamic response function (HRF)-convolved task 
designs of Emotion Processing task and selected the result 
with the highest correlation. The group-wise functional 
network obtained by D-r1DL and the corresponding GLM 
results are shown in Fig. 4. We also calculated the spatial 
overlapping rate SOR between the spatial patterns of the 
results from D-r1DL (P1) and group-wise GLM (P2) to 
quantitatively measure their similarity: 

             (4) 

where operator |•| counts the total number of voxels with 
non-zero values in the given spatial pattern. The rate ranges 
from 0 (no voxels overlapping) to 1 (exact the same pattern 
with GLM result). The SOR values of the four pairs of 
correspondent results between D-r1DL and GLM are 0.72, 
0.75, 0.67 and 0.65, respectively. 

B. Model application with sampling strategy 
In addition to the analysis on the whole group-wise 

tfMRI dataset, we also uniformly sampled the 

176×15,228,260 input matrix into 10%~90% of its size 
(e.g. 10% sampled data is a 176×1,522,826 matrix). The 
main rationale for the sampling study is to further 
accelerate initial investigations into the effectiveness of the 
dictionary bases learned by D-r1DL. In such 
circumstances, the sampling strategy could offer an 
approximation of the more detailed and accurate functional 
networks learned from the original data. By applying D-
r1DL on the 9 sampled datasets, the corresponding sets of 
functional networks were obtained. One example 
functional network showing the correspondence between 
the 10 sets of results is visualized in Fig. 5.  
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Figure5. Visualization of the spatial patterns of a sample functional 
networks learned from group-wise aggregated fMRI data with different 
sampling rates.  

It was observed that the spatial patterns of the 
corresponding functional networks learned from the same 
dataset with different sampling rates are largely the same 
(with overlapping rate>0.85), excepting some minor 
differences in the details. The time costs for the group-wise 
analysis on uniformly-sampled datasets are summarized in 
Fig. 6. The time cost follows a quadratic function with the 
sampling rate (R2=0.994). Thus, while analyzing the 
original 20 GB dataset took around 10 hours to finish, the 
time cost is approximately 1 hour using the 20% sampled 
data. 

 
Figure6. Time cost (measured in seconds) for decomposing 100 
functional networks from group-wise aggregated fMRI data with different 
sampling rates. The original dataset has the sampling rate of 100% 
(rightmost). 

C. Performance boost relative to other dictionary 
learning algorithms 

The advantages of the proposed D-r1DL algorithm are 
predicated on its smaller memory footprint and robust 
learning mechanism (no need to set learning rate); even 
without parallelization, the algorithm should have similar 
or faster running speed compared with other dictionary 
learning methods, as Spark intrinsically performs out-of-
core computations whether these are distributed over 
multiple machines or run in parallel on a single machine. 
We compare D-r1DL with two other dictionary learning 
algorithms: the online dictionary learning framework 
implemented in SPAMS [15] and the stochastic coordinate 
coding (SCC) algorithm introduced in [16]. We applied 
these two methods on the same HCP Q1 dataset and 
computed performance statistics compared to D-r1DL. We 
ran these algorithms using the same in-house server. The 
performance comparison is shown in Fig. 7 (averaged 
across all 68 subjects over the HCP task fMRI (tfMRI) 
dataset). From the comparison, it can be seen that D-r1DL 
outperformed the other two methods in all the 7 tfMRI 
datasets. 

Figure7. Average time cost (measured in seconds) for functional 
network decomposition from individual tfMRI data during 7 tasks across 
68 subjects, using the three dictionary learning methods. 

 
Figure8. Spatial maps and temporal variation patterns of the functional 
networks decomposed by D-r1DL (left) and GLM (right) on the tfMRI 
data during Emotion Processing task from a randomly-selected subject. 
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D. Real-time user feedback using web-based D-r1DL 
We tested the performance of D-r1DL on the 

neuroinformatics platform as introduced in section 2.3 for 
individual-level analysis. Using individual fMRI matrix 
(with dimensions 176×223,945) as input and the same 
parameter setting as for group-wise analysis (K=100, 
r=0.07), the combined time cost for decomposing one 
network, generating network visualizations, and reporting 
web pages averaged around 4 seconds on our in-house 
server. Such a time cost is short enough for real-time 
visualizations on the decomposition results, thereby 
providing a useful feedback mechanism for the users. One 
sample result from the individual-level analysis and the 
comparison with GLM activation detection results is 
shown in Fig. 8.  

IV. CONCLUSION AND DISCUSSION 
In this work we developed and implemented the D-

r1DL framework on Spark for distributed functional 
network analysis on large-scale neuroimaging data, as well 
as an online visualization tool, and tested its performance 
on both the individual and group-wise fMRI data from 
HCP Q1 release dataset. The results show that the 
framework can meet the desired scalability and 
reproducibility requirements for fMRI big data analysis 
and serve as a useful tool for the community. The 
framework and the neuroinformatics system are both 
online as web service for public usage and testing. In 
addition, we are aiming to provide a general solution for all 
types of large-scale biomedical/biological imaging data 
based on D-r1DL. Currently we are working on applying 
the same algorithm using the Apache Flink framework. 
While Spark is vastly superior to Hadoop MapReduce for 
highly iterative computations, Flink possesses a few 
domain-specific advantages over Spark that could yield 
additional performance gains for D-r1DL. These include its 
real-time data streaming engine, instead of Spark’s fixed-
window batch processing, may boost our current achieved 
processing speed. Furthermore, while Spark’s distributed 
operations are split between lazy (transformations) and 
eager (actions), all of Flink’s distributed primitives are 
lazily evaluated. This allows Flink to build and optimize 
the full dataflow graph before any computation is 
performed, theoretically minimizing communication 
overhead of intermediate results to the fullest possible 
extent. We are also aiming to apply our new algorithm on 
variety of different neuroimaging data sources including 
EEG. 
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