arXiv:1710.11547v1 [stat.ML] 31 Oct 2017

Compact Multi-Class Boosted Trees

Natalia Ponomareva, Thomas Colthurst, Gilbert Hendry, Salem Haykal, Soroush Radpour
Google, Inc.
tfbt-public@google.com

Abstract—Gradient boosted decision trees are a popular ma-
chine learning technique, in part because of their ability to give
good accuracy with small models. We describe two extensions
to the standard tree boosting algorithm designed to increase
this advantage. The first improvement extends the boosting
formalism from scalar-valued trees to vector-valued trees. This
allows individual trees to be used as multiclass classifiers,
rather than requiring one tree per class, and drastically reduces
the model size required for multiclass problems. We also
show that some other popular vector-valued gradient boosted
trees modifications fit into this formulation and can be easily
obtained in our implementation. The second extension, layer-
by-layer boosting, takes smaller steps in function space, which
is empirically shown to lead to a faster convergence and to a
more compact ensemble. We have added both improvements
to the open-source TensorFlow Boosted trees (TFBT) package,
and we demonstrate their efficacy on a variety of multiclass
datasets. We expect these extensions will be of particular
interest to boosted tree applications that require small models,
such as embedded devices, applications requiring fast inference,
or applications desiring more interpretable models.

Keywords-Multiclass gradient boosting, TensorFlow, large-scale
machine learning, tree-based methods, ensemble methods

I. INTRODUCTION

There are many reasons to use and study gradient boosted
decision trees (or boosted trees for short). They have out-
standing accuracy, as demonstrated by their winning per-
formance in numerous surveys of machine learning models
(such as [1]]) and Kaggle competitions [2]. They are easy to
use, as input features do not need to be whitened or oth-
erwise normalized. They are flexible: by supporting custom
loss functions, they can attack arbitrary classification and
regression problems, including ranking or regression tasks.
They are backed by solid theory, which allows them to be
viewed as doing gradient descent in the space of functions by
taking steps in the form of decision trees [3l]. And last but
not least, they often produce compact models, with fewer
parameters for the same accuracy when compared to say
random forests. Those compact models in turn lead to faster
inference speeds, less memory consumption (important for
embedded devices and cellphones), and better interpretabil-
ity.

This paper describes two extensions we’ve made to
TensorFlow Boosted Trees (TFBT) [4] that are de-
signed to increase the model compactness. As its
name suggests, TFBT is built on top of Tensor-
Flow; it is open-source and available on github under

tensorflow/contrib/boosted_trees. The first
extension, described in section |III} extends the usual boost-
ing theory to apply to vector-valued outputs. Using the
derived update equations, we can attack multi-class clas-
sification or multidimensional regression problems directly
with trees storing vectors in the leaves, rather than the 1-
vs-rest or 1-vs-1 approaches that are commonly used [5].
Significantly fewer trees are required for good performance
with this approach, yielding corresponding reductions in
model complexity.

The second extension, layer-by-layer boosting, described in
section [V] can be thought of as taking smaller steps in
function space when doing the gradient descent; steps that
correspond to tree layers (i.e., all the nodes of equal depth)
rather than entire trees. These smaller steps let us converge
faster with fewer trees, especially with custom loss functions
for which a second-order Taylor expansion is inexact.
Finally, in section we evaluate these two extensions. On
ensemble sizes up to 100 trees, we demonstrate that vector-
valued trees lead to much faster convergence and smaller
ensembles on multiclass datasets, and that the combination
of layer-by-layer boosting and vector-valued trees often
produces significant performance improvements.

II. RELATED WORK

Many popular algorithms are inherently binary, for example,
the extremely popular AdaBoost [6]. Historically if a multi-
class dataset was used, this was addressed by decomposing
the multiclass problem into a set of binary subproblems,
namely either as 1-vs-rest (sometimes refered to as 1-vs-
all, as well as tree-per-class) or 1-vs-1 (also referred to as
“all-pairs” in some sources).

Even though binary reformulations achieve good perfor-
mance on some datasets and are easy to implement, these
approaches have a number of drawbacks. Firstly, the number
of classifiers required is at least C' (the number of classes).
Secondly, as Friedman et al. point out, even if decision
boundaries between classes are simple, the decision bound-
aries to be learnt when the problem is reformulated into
binary problems can become hard, thus making these bound-
aries difficult to approximate [7]. Additionally, common 1-
vs-rest can make the subproblems unbalanced, complicating
the learning further [8]], since some losses like log-loss are
susceptible to class imbalances. Furthermore, when applied
to boosting, theoretical guarantees state that to achieve good

(© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

performance, each of the weak learners must achieve an
accuracy of at least 0.5 [9]]. This is comparable to random
guess in case of binary classification with balanced classes,
but for a multiclass problem with balanced classes, random
guess would result only in 1/C accuracy [9].

Several attempts to tackle multiclass problems directly, by
optimizing a loss that tries to classify all of the classes
correctly at the same time, were made. One of the first imple-
mentation was LogitBoost [I|] - a generalization of AdaBoost.
Friedman et al. showed that it produces results superior to
those achieved by 1-vs-rest models on a simulated example
with complicated intra-classes boundaries. LogitBoost takes
the multinomial logistic regression (cross-entropy loss) and
decomposes it in a standard way of running C' independent
binary logistic regressions, in which one label m is chosen
as “pivot” or base class, and the other C' — 1 labels are
separately regressed against this pivot label. So for each class
7, given a base class m, one can calculate a quasi-Newton
update to improve the loss of class j vs class m. Now
Friedman et. al note that the choice of pivot m is arbitrary,
so they build a tree for j by approximating an average of
steps over all choices of base classes. LogitBoost still works
however by fitting C' trees during each boosting iteration,
where each tree is derived to minimize the overall loss with
regard to the j-th class - so essentially an ensemble of trees
is built to predict scores for each class. An alternative view
would be that Friedman et al. approximates the full Hessian
matrix of the expanded (up to a second derivative) loss via
diagonal approximation [[10]. Also note that at each boosting
step, the predictions are fixed - a new tree built during an
iteration ¢ does not affect the other trees built during the
same boosting iteration.

MART [[11] is another popular variant of boosting with trees,
which differs from LogitBoost in that it uses only the first
order gradient for finding the splits. Both MART and Log-
itBoost use second-order information to derive the weights
on terminal nodes [12]. For multiclass, MART adopts the
same approach as LogitBoost, building C trees during each
boosting iteration. An in-depth comparison between MART
and LogitBoost is available in [12].

An extension to LogitBoost approach of multiclass han-
dling is proposed in [13]], [14]. Ping Li names it ABC-
Boost (with two implementations ABC-MART and ABC-
LogitBoost, depending on whether the second order gradient
was used for finding tree splits or not). He notes that
for multiclass classification, for each point, the sum of
scores for all classes can be required to equal a constant
(due to the fact that adding a constant to the scores of
all classes does not change the overall winning class and
class probabilities when common softmax is applied to the
scores). This requirement on the sum of the scores does not
necessarily hold true for the LogitBoost algorithm. If the
constraint is enforced, the scores for only C' — 1 classes
need to be calculated and the derivatives can be redefined.

Additionally, instead of averaging over a choice of all
“pivot” classes during each iteration, ABC-boost adaptively
chooses the best base class (by first considering all base
classes and then choosing the one that maximally reduces
the training loss). Experiments show improvements over the
baseline algorithms, however a large number of boosting
iterations (for example, around 4,000 on the covertype
dataset) is still required to achieve good performance [14].
Additionally experiments demonstrate that in some cases,
ABC-MART requires even more training iterations than the
original MART algorithm [14]. Nevertheless, it was shown
that ABC-MART and ABC-LogitBoost improve over their
respective original algorithms [14]], as well as that ABC-
LogitBoost outperforms ABC-MART on most datasets. An
alternative view of ABC-LogitBoost is presented in [10]:
Peng et al. show that the difference between LogitBoost and
ABC-LogitBoost is essentially in the Hessian matrix approx-
imation. In ABC-LogitBoost, the Hessian is approximated by
first choosing a dimension (“base” or “pivot” class) and then
again approximating the remaining (C'—1) x (C'—1) matrix
using diagonal approximation, where in LogitBoost the full
C x C Hessian is approximated via diagonal. The results
suggest that the better approximation in ABC-LogitBoost
results in improved performance [10]]. Note that ABC-Boost
and its modifications still build C'—1 trees at every iteration.
AOSO-LogitBoost is an adaptation of LogitBoost to mul-
ticlass problems where only one vector-leaf tree is built
during an iteration. It essentially approximates the Hessian
in a block-diagonal fashion, at each iteration selecting only
scores for 2 classes to be updated, leading to a one-vs-
one classifier [10]. AOSO-LogitBoost is similar to ABC-
LogitBoost in that it also works only ona (C'—1) x (C—1)
matrix, where the final dimension, the “pivot”, is fixed.
The pair of classes is chosen based on the magnitude of
the derivatives (i.e. choose the class you do the worst on).
Experiments show that AOSO-LogitBoost outperforms ABC-
LogitBoost and, not surprisingly, requires a smaller number
of trees to reach convergence.

SAMME |9] is another attempt at tackling multiclass with
boosting: it is a modification of AdaBoost exponential loss
(as opposed to multinomial logistic loss in LogitBoost).
SAMME works on vector encoded labels, building only one
tree per iteration. The class encoding scheme for the labels
is as follows: instead of one-hot vector encoding, the authors
use an encoding where 1 is put in position of the real class,
and -1/(C-1) is set for all other classes positions. With this
label encoding scheme, a new multi-class exponential loss is
introduced. Optimizing this loss with a constraint that scores
should sum to 0, SAMME derives a closed-form solution
by using a Lagrange multiplier and using only first-order
derivatives (vs Newton update in LogitBoost) with respect to
the prediction so far and a Lagrange multiplier. SAMME also
shows that in this framework, weak classifiers are required
to do better than C'-random guessing.

GD-MCBoost is another attempt at extending AdaBoost to a
multiclass version [15], that also uses gradient descent step
but a different encoding scheme for the labels. GD-MCBoost
has solid theory behind its encoding scheme and was shown
to produce larger-margin models than SAMME.
GAMBLE [16] also extends AdaBoost to multiclass classi-
fication. Authors use the same multiclass exponential loss
and label encoding scheme as in SAMME and also produces
one vector-leaf tree per boosting iteration. The difference
between GAMBLE and SAMME lies in derivations for
loss optimization - GAMBLE uses quasi-Newton step (with
second order derivative). The original paper [16] provides
evidence that GAMBLE performs better on a number of
datasets than both 1-vs-rest and SAMME, which might be
due to the fact that second order derivatives are used.
Many more variants of multiclass vector-form boosting
exists. However, most successful variations differ only in
the following choices:
o Choice of loss (cross-entropy/multinomial logistic, mul-
ticlass exponential etc.)
o Choice of loss optimization (to use or not to use second
order information,
« If second order gradient is used, the choice of approx-
imation of the Hessian.
o The choice of enforcing the constraint on scores (via
a penalty term added to the Loss, or not enforced, or
enforced via softmax over the scores etc.)
« And finally, choice of label encoding scheme (one hot,
1 vs -1/(C-1), etc.)
Many papers show that models that handle a multiclass loss
directly and build trees with vector-leaves result in better
convergence rates and better performing models. However,
the adoption of these methods is unfortunately lacking.
Many popular libraries like XGBoost [2]], Scikit-learn [17]],
R GBM [18], LightGBM [19] support multiclass only as 1-
vs-rest, whereas Spark MLLib [20] (at the time of writing
this paper) does not support multiclass at all. This might be
due to the fact that each modification that tackles multiclass
problems uses different losses, weight update scheme and
re-derives gradients and Hessians (if used), complicating
implementations.

III. MULTICLASS HANDLING

In the conventional formulation that is used by many li-
braries like XGBoost [2], gradient boosted trees store only
scalar values in their leaves. In order to handle vector
regression or multiclass classification problems, multiple
scalar-leaved trees must be used. In this section, we show
how the usual derivation of the update formula for gradient
boosted trees effortlessly generalizes to handling vector
values which can handle vector regression and multiclass
problems directly. For clarity, we follow the derivation given
in [2].

Assuming m is the number of features, n is the number of
instances and C' is the number of classes, our model maps
the input z; € R™,i € 1..n to the output 4; € R using
the sum of K trees:

K
g = (@) =D fulwi)

k=1
Assuming 7' is the number of leaves in a tree f(x), we
represent each tree f(x) as the combination of a structure
function ¢(z) : R™ — 1..T, mapping an instance to the
tree leaf where it ends up, and a set of leaf weights {w; €
RE|j € 1.T} so that f(z) = wy(y). We seek to minimize
the regularized objective function

n K
L(y) = Zl(yivyi) + ZQ(fk)
=1 k=1

which is the sum of the non-regularized loss [and the
ensemble regularizer 2. In what follows, we will specifically
consider an € regularizer of the form

T
() = aT + g2 [y

j=1
that penalizes both the number of the tree leaves and the L2
norms of its leaf weight vectors.
The minimization is done iteratively, and the training hap-
pens in an additive manner: at the start of each boosting
iteration K we have K — 1 fixed trees built so far and we
are looking add in the new tree fx as to minimize

190 =370 (i, 5 Y + () + Q) (1)
=1

For a given function 1(x), the vector form Taylor expansion
(up to second order derivative) can be written as:

Iz + Az) = I(z) + (Az)TVg(x) + %(AmT)H(x)Ax %)

where Vg(z) - is the vector of gradients, Hy(x) is the
matrix of second order derivatives. If x is C-dimensional,
then Vg(x) will be of size C and H (z) will be of size C x
C.

By taking fx as a formal vector-valued symbol and applying
formula 2] to formula [T} we get

n

L9 2 S (Ui, 565 0) + frc ()it
i=1 3)

%fK(xi)THifK(xi)) +92(fx)

where g; is a C' size vector of gradients (with respect to the
predicted score for the first class, second class etc.), H; -
Hessian matrix (with respect to pairs of predicted scores, of
size C'x C.

Now fix a structure ¢(z;) on fx, and consider a particular
weight vector w; of leaf j. We can rewrite the objective so
the summation happens on leaf index j. Dropping the loss
on predictions so far, which is constant, we get

T
_ 1 =
LI = Z(w}gj + i(w;H]wJ + Awjw;)) +~T
j=1

Leaf_set; = {i|q(z;) = j}

gi= Y, g @

i€Leaf_set;

Hj= Z H;

i€Leaf_set;

where g; is the vector representing the sum of gradients
of instances that fall into the leaf j, I;T,; is the matrix
representing the sum of Hessians of instances that fall into
that leaf j. This objective is a sum of independent objectives

per leaf. For each given leaf, we have
_ 1 N
LU (w;) = wigi + §ij (H; + M)w; (%)

where I is the identity matrix.
This approximation is a quadratic function of the vector w;
and has a global minimum at

w; = —(A1+ﬁj)_lg~j (6)

if the matrix AI + H ; is symmetric positive definite. This
is easy to guarantee: by Schwarz’s theorem, the individual
Hessian matrices H; will be symmetric if the second-order
derivatives are continuous, and a convex loss function will
make the H;’s and their sum ﬁj positive semi-definite.
Finally, if A > 0, adding AI to the sum will make the final
matrix positive definite.

Under those conditions, adding the leaf j will decrease the
loss by

. 1. S
Gain,; = igjt()\IJrHj) 1gj @)

To evaluate the quality of the split, the contributions of both
the new left and right leaves L and R must be compared
against the contribution of the removed parent P, along with
any penalty the regularizer might impose on the increased
tree complexity:

Gainp_, 1, r = Gainz, + Gaing — Gainp — v ®)

Similarly to XGBoost, we build our trees greedily based on
this gain, and always pick the split with the highest gain. We
also offer the usual option of only picking a split if its gain is
greater than zero (“pre-pruning”), or allowing the gain to be
negative (which can happen because of the regularization)
and then post-pruning afterwards. From an implementation
point of view, it is worth noting that gp = g1 + gr and
Hp =H; + Hp.

A. Matrix inversion

Both accumulation of Hessian matrices and matrix inver-
sion in Formulas (7] and [6) are potentially expensive. We
implement two strategies in TFBT:

1) Full Hessian: Note that if we want to calculate x =
A1y, or alternatively Az = v, where A is some matrix,
instead of explicitly calculating A~! and multiplying by
v, we can treat it as linear least squares system [21]. In
general, the usual methods to solve such a system are
SVD decomposition, the QR decomposition and normal
equations. SVD decomposition is accurate but slow, normal
equations tend to be the least accurate but the fastest, and
the QR decomposition is in between [22]. We go with QR
decomposition with column pivoting of A using the Eigen
library.

2) Diagonal Hessian: One potential simplification would
be to assume that matrix H ; is diagonal, which makes both
Hessian accumulation for each split and matrix inverse O(C)
(vs. O(C3) for full Hessian inverse and O(C?) for Hessians
accumulation). In our experiments we show that such simpli-
fication actually does not result in decreased performance.
On the contrary, it serves as additional regularization and
results in faster convergence and better results.

IV. CHOICE OF LOSSES AND EXTENSIONS

For classification problems with C' > 2 classes, our default
model stores length C' vectors in the leaves, turns those
vectors into a vector of C' probabilities using the softmax
function, and then evaluates those probabilities using the
cross-entropy error function. This model does have the
drawback of using C' parameters to describe the C' — 1
dimensional space of C probabilities summing to 1, but it
has two out-weighing benefits: it maintains the symmetry
between the class weights, and it allows the regularization
function {2 to maintain its usual form. In particular, the zero
vector of weights, which minimizes the L2 penalty, maps to
the maximally uninformative vector of equal probabilities,
which is desirable.

This default model and loss is the one used for the exper-
iments in section However, as previously mentioned,
our formulation and implementation is easily extensible and
can be used to obtain many of the multiclass approaches
discussed in Section [lI} in the following ways:

o A compact (because we build 1 tree per iteration for
all of the classes) version of LogitBoost-like model can
be obtained when multinomial logistic/cross entropy
loss is chosen, and labels are encoded as 1-hot, with
a diagonal Hessian mode.

o SAMME-like model can be approximated by not using
the Hessian at all, and modifying the loss to add
Lagrange to enforce the constraints of scores summing
to 0.

o GAMBLE-like model can be obtained by using mul-
ticlass exponential loss, vector-form label encoding

scheme of 1 in position of the real class, and -1/(C-
1), and no regularization. The label encoding can be
done in a TensorFlow input function.

e AOSO LogitBoost can be simulated by using cross-
entropy loss and adding new block-coordinate strategy
for Hessian approximation.

e GD-MCBoost can be obtained by using the label en-
coding scheme from [15]], no second order gradient in
loss optimization and exponential multiclass loss.

One thing to keep in mind is that for a large number
of classes, the full Hessian approximation might become
prohibitively slow. Since our experiments show no sig-
nificant difference between full and diagonal Hessian, we
recommend that diagonal Hessian is used as default for a
larger number of classes.

Additionally, we would like to point out that our formulation
should work with multi-label problems as well, as long as an
appropriate multi-label loss is provided. However for multi-
label problems it might be beneficial to explore other than
diagonal approximations of the Hessian, that can account for
the connections between the labels and the sparsity of the
Hessian, for example block diagonal Hessians. It is however
not suitable for extreme-multilabel problems, where only
few labels out of millions apply to an instance. This is due
to the fact that a full dense vector of scores will be stored
in leaves.

Finally, we would like to highlight that since TensorFlow
does automatic differentiation, switching between losses
and creating new customizable losses for multiclass setting
should be very easy in our proposed framework. Any twice-
differentiable loss should be easily pluggable into TFBT.

V. LAYER-BY-LAYER BOOSTING

One of the novel features of TFBT’s tree building procedure
is layer-by-layer boosting. In TFBT’s layer-by-layer boost-
ing, we allow internal nodes to contribute weight updates
while the current tree is getting built. A leaf node’s final
contribution is therefore the aggregate contributions from its
ancestors all the way up to the root node. This is illustrated
in the following diagram: We rewrite the objective defined
in Formula [1l to be a function of both K which still tracks
the index of the current tree we are building and Z which
tracks the layer of the tree we are currently building, we
now have:

1K) _ Zz<y 95D + 2 (@) + fﬁ(m))m(fz%)

where fZ(z;) is the prediction from the last Z layer of tree
K that is currently being built. Notice that one boosting
iteration now results in building one layer instead of a whole
tree. Intuitively, the leaves grown in fZ(x;) are learning a
residual adjustment over the previous layer. This is useful
as deeper trees define more fine grained partitions of the

Figure 1.

Layered Prediction.

[+0.9, [+0.3, [+0.8,
0.8, 0.3, 0.5,
+0.3] +0.8] +0.5]

example space and we end up with leaves having few exam-
ples where it’s desirable to learn smaller adjustments which
leverage parent nodes as priors to minimize overfitting.
Furthermore, recalculating gradients at every layer results
in better approximating the functional space gradient which
in turn typically enables TFBT to build fewer trees due to
faster convergence. This is especially true for more complex
loss functions, which can be user-defined in TFBT, where
the second order Taylor expansion still results in relatively
sizable approximation errors.

Additionally, we would like to mention that our imple-
mentation allows to choose how many instances to use to
recalculate gradients per each layer. On deeper trees, each
node would get fewer and fewer examples in a conventional
scheme, and splits quality will deteriorate. TFBT allows
users to specify the number of instances required for each
layer, so the deeper layers can be built on more instances
than shallower ones.

VI. TFBT SYSTEM DESIGN

Below we briefly describe our computation model and
changes we had to make to support multi-class learning.
For more in-depth review of TFBT please refer to [4].

Our design is similar to XGBoost [2] and TencentBoost
[23]] in that we build distributed quantile sketches of feature
values and use them to build histograms, to be used later to
find the best split. In TencentBoost [23]] and PSMART [24]]
the full training data is partitioned and loaded in workers’
memory, which can be a problem for larger datasets. To
address this we instead work on mini-batches, updating
quantiles in an online fashion without loading all the data
into the memory. As far as we know, this approach is not
implemented anywhere else.

Each worker loads a mini-batch of data, builds a local
quantile sketch, pushes it to a Parameter Server (PS) and

Figure 2.

Chief Worker 0
==ul ==

Feature stats +
radients

Feature stats
+Gradients

PS 0

[Tree][Feature i]
ensemble stats

Examples II

Feature stats
+Gradients

TFBT architecture

—— Read ensemble to
compute gradients

—— Push new layer

Push quantile updates
Read quantile buckets
Push gradients for
buckets

Examples II

Read accumulated
statistics

Feature stats are quantile
boundaries and gradients
in each bucket

Algorithm 1 Chief and Workers” work

1: procedure CALCULATESTATISTICS(PS, MODEL, STAMP, BATCH_DATA, LOSS_FN)
2: predictions < model.predict(BATCH_DATA)

3 quantile_stats < calculate_quantile_stats(BATCH_DATA)

4: push_stats(PS,quantile_stats, stamp)

5: current_boundaries < fetch_latest_boundaries(PS, stamp)

6 gradients, Hessians < calculate_derivatives(predictions, LOSS_FN)

7 gradients, Hessians < aggregate(current_boundaries,gradients, Hessians)
8: push_stats(PS,gradients, Hessians, size(BATCH_DATA), stamp)

9: procedure DOWORK(PS, LOSS_FN, IS_CHIEF)

10 while true do

11 BATCH_DATA < read_data_batch()

12 model < fetch_latest_model(PS)

13: stamp <— model.stamp_token

14: CalculateStatistics(PS,model, stamp, BATCH_DATA,LOSS_FN)

15

16

17

18

if is_chief & get_num_examples(PS, stamp) > N_PER_LAY ER then

next_stamp < stamp + 1
stats <— flush(PS, stamp, next_stamp)
build_layer(PS, model, next_stamp, stats)

> PS updates quantiles

> Runs on workers and 1 chief

> Update stamp, returns stats
> PS updates the ensemble: best splits for the nodes in the layer
are chosen according to Formula@ spliting is performed

fetches the bucket boundaries that were built at the previous
iteration. Workers then compute per bucket gradients and
Hessians and push them back to the PS. One of the workers,
designated as Chief, checks at each iteration if the PS have
accumulated enough statistics for the current layer and if so,
starts building the new layer by finding best splits for each
of the nodes in the layer. Code that finds the best splits for
each feature is executed on the PS that have accumulated
the gradient statistics for the feature. The Chief receives the
best split for every leaf from the PS and grows a new layer
on the tree.

Once the Chief adds a new layer, the workers copy of the
tree ensemble become stale. To avoid stale updates, we
introduce an abstraction called StampedResource - a Tensor-
Flow resource with an int64 stamp. The tree ensemble, as
well as gradients and quantile accumulators are all stamped
resources with such a token. When the worker fetches the
model, it gets the stamp token which is then used for all
the reads and writes to stamped resources until the end
of the iteration. This guarantees that all the updates are

consistent and ensures that the Chief doesn’t need to wait
for Workers for synchronization, which is important when
using preemptible VMs (Figure [4). The Chief checkpoints
resources to disk and workers don’t hold any state, so if they
are restarted, they can load a new mini-batch and resume.
In order to support multi-class with Diagonal Hessian and
Full Hessian strategies, our statistics accumulators support
accumulating tensors as well as scalars for each bucket.
During TensorFlow graph construction we pick either a
tensor accumulator for multiclass or a scalar accumulator
for binary classification.

VII. EXPERIMENTS

In this paper, we make the following claims that we are
trying to confirm with experiments.

o Our general vector-form multiclass handling is a better
way than the conventional 1-vs-rest strategy imple-
mented in most libraries: with a vector-form multiclass,
a considerably smaller number of trees is required to
reach the best performance.

o Layer-by-layer boosting when used with vector form
multiclass allows for faster convergences and results in
smaller ensembles.

Although not the focus of this paper, we also check (Table
that our implementations are on par with two multi-
class vector methods, LogitBoost and ABC-LogitBoost. We
use larger ensembles to be able to fairly compare against
publicly available results in [13].

A. Datasets

We perform the experiments on medium and large size
multiclass datasets, ranging from thousands to a million in-
stances. The details about the datasets and the preprocessing
we have done can be found in Table [l

B. Experiments setup

We build trees of depth 4 and explore ensembles of
10, 25, 50 and 100 trees. As a baseline we use XG-
Boost [2] conventional 1-vs-rest multiclass handling. For
a default XGBoost model we use the following values
of hyperparameters: max_depth:4, learning_rate:0.3, objec-
tive:multi:softprob, lambda:1, scale_pos_weight:False. For
tuned XGBoost, we tune min_child_weight, learning_rate
and lambda using scikitlearn RandomizedSearchCV [17]]
with 20 iterations with 5-fold CV over the training data using
a predefined grid of values. For the poker dataset, 3-fold CV
was used due to the fact that there were only 3 instances of
class 9. If during hyper parameter tuning, values from the
edges of the grid are chosen, the grid is expanded and search
is repeated, depth and objective remaining fixed. The grids
are as follows:
min_child_weight *:
[0,0.05,0.1,0.5,1,2,4,8,10,12,14,16,18,20,22],
"learning_rate ’

[0.01,0.03,0.05,0.075,0.1,0.3,0.5,1,2,3],
‘reg_lambda ’:[0.01, 0.5, 0.1, 1,2,4]

Note that XGBoost’s num_round parameter (n_estimators in
Scikit-learn) denotes the number of boosting iterations, not
the number of trees. During each boosting iteration XGBoost
will build C' trees. To perform the comparison over the
predefined number of trees, we adjust the number of rounds
according to following formula:

num_round = int(math.ceil (1.0xnum_trees/C))

In some cases it results in a slightly larger number of
XGBoost trees than reported. For example, for Letter-26 104
trees are built (for 100 trees column). For the same reasons,
it is impossible to build 10 trees for Letter-26 dataset. We
don’t adjust the number of trees for TFBT implementation
(so 10, 25, 50 and 100 trees are built).

For TFBT we use the same objective as XGBoost (namely
Max-Ent/Cross entropy/Multinominal Logistic Loss). For
TFBT experiments, we use the same hyperparameter values
as in default XGBoost: all parameters apart from lambda (L2
regularization) translate directly into TFBT settings. We set

TFBT’s L2 to, since L2 in TFBT is on per instance basis.
We use full batch size (equal to the training data size), and
accumulate train batch size number of instances for layer-
by-layer boosting.

We compare several variations of vector multiclass handling,
namely full Hessian, diagonal Hessian and diagonal Hessian
with layer-by-layer boosting. We also include the results
for conventional tree-per-class (1-vs-rest) implementation,
which is also available in TFBT. Note that we don’t tune
the hyper parameters of our TFBT methods at all, since
our goal is to show that vector form multiclass results in
smaller ensembles no matter of how much tuning is done.
It should be noted that except in tree-per-class mode, TFBT
will use more parameters per tree than XGBoost, since it
stores length C' vectors rather than scalars in the leaves. But
we feel that for fixed depth trees, the number of trees is the
more relevant comparison for purposes of inference speed
and understandability.

Finally, to compare with LogitBoost and ABC-LogitBoost,
we replicate Mnist10k (an Mnist dataset with train and test
sets reversed) experiment from [[13]] for depth 2, 3 and 4 and
learning rates 0.04, 0.06, 0.08, 0.1. For reasons of space and
time, we did not compare against all other true multiclass
approaches mentioned in section [[I} but as previously noted,
many of them are variations of our formulation.

C. Metrics

We report the accuracy and the cross entropy loss on each
test set. To check for significance between the TFBT and
XGBoost results, we use an unpaired t-test with a p-value
threshold of 0.05. (We use an unpaired t-test because it was
easier to collect the data for, but since it is less powerful
than the paired t-test, if it shows significance, the paired
t-test would have as well.)

D. Experiments results

Table [[Il summarizes our results. Several observations are
apparent:

« When results are significant, none of the tree-per-class
(1-vs-rest) implementations of multiclass handling are
able to beat vector multiclass TFBT variants neither
in terms of Accuracy nor in terms of Cross-Entropy
loss. Sensit dataset is the only dataset where results
are non-significant and where tuned XGBoost is able
to achieve accuracy and loss that is not significantly
different based on the test size and collected standard
deviations. One thing to note is that for Sensit, tuned
XGBoost ends up using a high learning rate (1 for 10,
25 and 50 trees, and 0.5 for 100 trees), resulting in
“faster” learning which might lead to overfitting. All
TFBT methods still use a learning rate of 0.3.

o Diagonal Hessian strategy seems to be often signifi-
cantly better than full Hessian strategy. Since Diagonal
version is much faster to run, we recommend to use

Table T
MULTICLASS DATASETS DESCRIPTIONS

Dataset # train # test # features # classes Comments

Mnist [25] 60,000 10,000 784 10

Hand-written digits recognition task. Conventional
train/test split. All features are dense numeric.

Sensit [26] 78,823 19,705 100 3 SensIT Vehicle (combined) dataset, preprocessed
data obtained from LibSVM [27]
Covertype [28] 464,810 116,202 54 7 Obtained from [29]. Predicting forest cover type. We
split all available data into 80% train and 20% test.
Letter-26 [30] 16,000 4,000 16 26 Obtained from [29]. Conventional test/train split.
Predicting a English letter from image features.
Poker [31] 1,000,000 25,010 10 10 Predicting type of “poker hand” based on informa-
tion about 5 cards. Preprocessed data obtained from
LibSVM [27]
CIFAR-10 [32] 50,000 10,000 3072 10 Classify RGB 32x32 images into a number of

it by default, instead of the full Hessian method. We
also hypothesize that approximating the Hessian matrix
via a diagonal matrix serves as a sort of additional
regularizer, resulting in better performance in most of
the cases.

Layer-by-layer boosting (LBL) results in best perfor-
mance for ensembles of all fixed sizes apart from a
single case for Sensit 100 trees. For this particular case,
it seems that 100 trees is already enough to achieve best
performance even with tree-per-class method, and it
suggests that since LBL speeds up convergence, it also
may result in overfitting on problems that are easier.
If extremely small ensembles are required (10-50 trees),
for example due to inference time or memory size
of the device requirements, Diagonal+LBL boosting
should be the first choice. Even if larger ensembles can
be tolerated, vector form multiclass strategies should
be used instead of 1-vs-rest. Figures [3] and [] present
the accuracy convergence on larger number of trees,
which shows that even for larger ensembles, vector
form multiclass methods dominate. However the line
between different vector-form strategies blurs as more
trees are added.

The improvements of vector form over tree-per-class,
not surprisingly, are more pronounced on datasets with
larger number of classes (like Letter-26, Poker, CIFAR-
10 and MNIST). It is assumed that approximately C
times more trees will be required for tree-per-class to
achieve the same performance, and the experiments
seem to confirm this folk wisdom.

An interesting observation is that TFBT tree-per-class
implementation produces different results from XG-
Boost’s version. The difference between implemen-
tations lies in the fact that XGBoost computes the
predictions for all the instances first and then uses
them to construct all C' trees in the same boosting
iteration, whereas our implementation recalculates the

classes. Conventional test/train split. No convolu-
tional features were used.

predictions and uses them to calculate the loss and gra-
dients after each subsequent tree. This seems to result
in better loss but sometimes leads to worse accuracy
(for example, Mnist 10, 25 and 50 trees). Since an
improvement in cross-entropy loss does not necessarily
translates into a direct improvement in accuracy, we
don’t find these experiment results alarming. It also
demonstrates that recalculating the predictions after
each new trees is beneficial to a faster loss convergence,
as expected.

Figure 3. Accuracy on MNIST

0.9846-
0.9346- [/
T' ¥
| //
1 // Method
5088467 |/f TFBT diagonal
o Vi TFBT diagonal + LBL
3 Il -~ TFBT full hessian
] [~ TFBT tree per class
<0.8346- | XGBoost default
\ XGBoost tuned
[
|
0.7846- |
|
|
|
0.7346- ¢
0 250 500 750 1000
of trees

VIII. CONCLUSION

We show that the conventional boosting formalism used by
most popular open-sourced gradient boosting libraries can
be easily extended from scalar-valued trees to vector-valued
trees. We demonstrate, not surprisingly, that vector-valued
trees lead to much faster convergence and smaller ensem-
bles. We also show that other recent vector-valued gradient

Table II
MULTICLASS DATASETS RESULTS

Data Method 10 trees 25 tres 50 trees 100 trees
Accuracy Cross-Ent Accuracy Cross-Ent Accuracy Cross-Ent Accuracy Cross-Ent

XGBoost default 0.7711 1.5444 0.8589 1.0151 0.8837 0.7497 0.9115 0.4452

XGBoost tuned 0.7751 0.8479 0.8700 0.4515 0.9021 0.3218 0.9356 0.2084

Mnist Tree-per-class 0.7346 1.2998 0.8298 0.7830 0.8783 0.4957 0.9217 0.2827

) Full Hessian 0.8474 0.5465 0.9216 0.2613 0.9533 0.1555 0.9704 0.0972

Diagonal Hessian 0.8612 0.4741 0.9358 0.2201 0.9570 0.1398 0.9726 0.0917

Diagonal + LBL ~ 0.8943 0.3513 0.9459 0.1775 0.9630 0.1226 0.9712 0.0899

XGBoost default 0.7904 0.6582 0.8091 0.5292 0.8222 0.4691 0.8364 0.4309

XGBoost tuned 0.8088 0.4921 0.8261 0.4456 0.8359 0.4230 0.8430 0.4145

Sensit Tree-per-class 0.7836 0.5977 0.8144 0.4869 0.8331 0.4399 0.8409 0.4158

) Full Hessian 0.7998 0.5376 0.8245 0.4571 0.8386 0.4225 0.8454 0.4060

Diagonal Hessian 0.8041 0.4995 0.8307 0.4407 0.8327 0.4431 0.8343 0.4409

Diagonal + LBL 0.8110 0.4833 0.8285 0.4442 0.8391 0.4235 0.8407 0.4197

XGBoost default 0.5991 1.3425 0.6173 1.1343 0.6164 0.9669 0.6205 0.8884

XGBoost tuned 0.6097 1.0181 0.6158 0.9916 0.6072 0.9182 0.6092 0.8982

Covertype Tree-per-class 0.7071 1.1480 0.7264 0.8013 0.7362 0.6482 0.7577 0.5668

Full Hessian 0.7113 0.6812 0.7536 0.5647 0.7776 0.5085 0.8085 0.4549

Diagonal Hessian 0.7354 0.6364 0.7705 0.5466 0.7810 0.5361 0.7632 0.5624

Diagonal + LBL ~ 0.7399 0.6081 0.7696 0.5337 0.8047 0.4573 0.8348 0.3927

XGBoost default N/A N/A 0.6850 1.7549 0.7282 1.4718 0.7708 1.1522

XGBoost tuned N/A N/A 0.6855 1.4266 0.6967 1.1718 0.7813 0.8844

Letter-26 Tree-per-class 0.2843 2.5872 0.6015 1.5482 0.6988 1.1599 0.7593 0.8561

Full Hessian 0.7623 0.9297 0.8665 0.5191 0.9190 0.3118 0.9465 0.1879

Diagonal Hessian 0.7595 0.9263 0.8705 0.4913 0.9223 0.2926 0.9510 0.1800

Diagonal + LBL 0.8060 0.7339 0.8973 0.3758 0.9375 0.2165 0.9560 0.1409

XGBoost default 0.5376 1.7858 0.5471 1.5421 0.5524 1.2046 0.5913 1.0002

XGBoost tuned 0.5376 1.1414 0.5568 0.9871 0.5634 0.9492 0.5880 0.9083

Poker Tree-per-class 0.5086 1.7671 0.5212 1.2253 0.5713 1.0170 0.5966 0.9170

Full Hessian 0.5633 0.9492 0.6201 0.8567 0.6497 0.8089 0.6872 0.7426

Diagonal Hessian 0.5625 0.9424 0.6301 0.8368 0.6606 0.7871 0.7185 0.7012

Diagonal + LBL ~ 0.5830 0.9299 0.6351 0.8249 0.6750 0.7634 0.7329 0.6651

XGBoost default 0.3012 2.1725 0.3528 2.0195 0.3769 1.9221 0.4050 1.7724

XGBoost tuned 0.3003 2.0021 0.3546 1.9215 0.3829 1.7361 0.4194 1.6361

CIFAR-10 Tree-per-class 0.2885 2.1113 0.3285 1.9709 0.3622 1.8335 0.4053 1.6967

Full Hessian 0.3450 1.8574 0.4085 1.6830 0.4507 1.5573 0.4856 1.4601

Diagonal Hessian 0.3568 1.8418 0.4068 1.6746 0.4497 1.5674 0.4798 1.4778

Diagonal + LBL 0.3631 1.7933 0.4148 1.6458 0.4548 1.5434 0.4769 1.4903

For each dataset and column, in bold are the best values of the metrics for cross entropy-loss and accuracy for this number of trees. In
italics, we highlight the best value of cross-entropy and accuracy when Diagonal+LBL is not considered. If there is no significant difference
between several best values, we highlight all the values the difference between which is insignificant.

Table III
COMPARISON OF ACCURACY ON MNIST10K
LR D LogitBoost ABC-Logit Diagonal Diag+LBL
2 0.9511 0.9562 0.9562 0.9585
0.04 3 0.9567 0.9640 0.9643 0.9617
4 0.9596 0.9648 0.9661 0.9646
2 0.9505 0.9567 0.9768 0.9556
0.06 3 0.9564 0.9644 0.9640 0.9614
4 0.9594 0.9648 0.9657 0.9637
2 0.9503 0.9578 0.9582 0.9561
0.08 3 0.9569 0.9647 0.9642 0.9615
4 0.9601 0.9651 0.9660 0.9617
2 0.9497 0.9580 0.9588 0.9561
0.1 3 0.9567 0.9643 0.9640 0.9614
4 0.9601 0.9653 0.9660 0.9635

D stands for depth, LR for learning rate, ABC-Logit is ABC-
LogitBoost, Diagonal and Diag+LBL are TFBT implementations.
Results for LogitBoost and ABC-LogitBoost are from [[13] Table 2.

boosted trees formulations fit into our general framework
and can be easily implemented in TFBT by changing the
loss, Hessian handling strategy and label encoding scheme.

We would like to encourage researchers who work on
multiclass boosting to reuse our TensorFlow based TFBT
library, which is open-sourced and convenient to use due
to automatic differentiation capabilities. Finally, we argue
that vector-valued leaves should be the default strategy for
handling multiclass problems.

ACKNOWLEDGMENT

The authors would like to thank Boris Dadachev, Afshin
Rostamizadeh, Corinna Cortes, Tal Shaked, D. Sculley,
Alexander Grushetsky and Petr Mitrichev for their invaluable
comments on this paper.

REFERENCES

[1] R. Caruana and A. Niculescu-Mizil, “An empirical com-
parison of supervised learning algorithms using different
performance metrics,” in In Proc. 23 rd Intl. Conf. Machine
learning (ICMLO06), 2005, pp. 161-168.

[2] T. Chen et al., “XGBoost: A scalable tree boosting system,”
CoRR, 2016.

Figure 4. Accuracy on Letter-26

0.95- = 1
0.90- // e —
/*7.)
0-85 Method
oy TFBT diagonal
080" TFET diagonal + LBL
3 -~ TEBT full'hessian
3 0.75- - ~TEBT tree per class
< _/ §8Eoos} ¢ efaglt
070- /s 0ost tune:
0.65-
0.60- +
0.55-
0 250 500 750 1000
of trees

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

L. Mason, J. Baxter, P. L. Bartlett, and M. R. Frean, “Boost-
ing algorithms as gradient descent,” in Advances in neural
information processing systems, 2000, pp. 512-518.

N. Ponomareva, S. Radpour, G. Hendry, S. Haykal,
T. Colthurst, P. Mitrichev, and A. Grushetsky, “Tf boosted
trees: A scalable tensorflow based framework for gradient
boosting,” in ECML PKDD, 2017.

E. L. Allwein, R. E. Schapire, and Y. Singer, “Reducing mul-
ticlass to binary: A unifying approach for margin classifiers,”
J. Mach. Learn. Res., 2001.

Y. Freund and R. E. Schapire, “Experiments with a new
boosting algorithm,” 1996.

J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic
regression: a statistical view of boosting,” Annals of Statistics,
vol. 28, p. 2000, 1998.

A. Saffari, M. Godec, T. Pock, C. Leistner, and H. Bischof,
“Online multi-class Ipboost.”

J. Zhu, H. Zou, S. Rosset, and T. Hastie, “Multi-class ad-
aboost,” 2009.

P. Sun and other, “Aoso-logitboost: Adaptive one-vs-one
logitboost for multi-class problem,” in ICML-12. ACM,
2012.

J. H. Friedman, “Greedy function approximation: A gradient
boosting machine,” Annals of Statistics, vol. 29, pp. 1189—
1232, 2000.

P. Sun, T. Zhang, and J. Zhou, “A convergence rate analysis
for logitboost, mart and their variant,” in Proceedings of the
31st International Conference on International Conference on
Machine Learning, ser. ICML’14, 2014.

P. Li, “Robust logitboost and adaptive base class (ABC)
logitboost,” CoRR, vol. abs/1203.3491, 2012. [Online].
Available: http://arxiv.org/abs/1203.3491

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

[30]

(31]

(32]

——, “Adaptive base class boost for multi-class
classification,” CoRR, vol. abs/0811.1250, 2008. [Online].

Available: http://arxiv.org/abs/0811.1250

M. J. Saberian and N. Vasconcelos, “Multiclass boosting:
Theory and algorithms,” in Advances in Neural Information
Processing Systems 24, 2011.

J. Huang, S. Ertekin, Y. Song, H. Zha, and C. L.
Giles, Efficient Multiclass Boosting Classification with
Active Learning, pp. 297-308. [Online]. Available: http:
/lepubs.siam.org/doi/abs/10.1137/1.9781611972771.27

F. Pedregosa et al., “Scikit-learn: Machine learning in
Python,” JMLR, vol. 12, 2011.

G. Ridgeway, “Generalized boosted models: A guide to the
gbm package,” 2005.

Microsoft, “Microsoft/dmtk,”

dmtk, 2013.

https://github.com/microsoft/

X. Meng, J. Bradley et al., “MLIlib: Machine learning in
Apache Spark,” 2016.

G. H. Golub and C. F. Van Loan, Matrix Computations (3rd
Ed.). Baltimore, MD, USA: Johns Hopkins University Press,
1996.

D. Q. Lee, “Numerically efficient methods for solving least
squares problems.”

J. Jiang et al., “Tencentboost: A gradient boosting tree system
with parameter server.”

J. Zhou et al., “PSMART: Parameter server based multiple
additive regression trees system,” ser. WWW *17 Companion.

Y. LeCun and C. Cortes, “MNIST handwritten digit database,”
2010. [Online]. Available: http://yann.lecun.com/exdb/mnist/

M. F. Duarte and Y. H. Hu, “Vehicle classification in dis-
tributed sensor networks,” J. Parallel Distrib. Comput., 2004.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for
support vector machines,” ACM Transactions on In-
telligent Systems and Technology, 2011, datasets at
https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multi-
class.html.

J. A. Blackard and D. J. Dean, “Comparative accuracies
of artificial neural networks and discriminant analysis in
predicting forest cover types from cartographic variables,”
Computers and Electronics in Agriculture, 1999.

M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

P. W. Frey and D. J. Slate, “Letter recognition using holland-
style adaptive classifiers,” Machine Learning, 1991.

R. Cattral, F. Oppacher, and D. Deugo, “Evolutionary data
mining with automatic rule generalization,” in Recent Ad-
vances in Computers, Computing and Communications, 2002.

A. Krizhevsky, “Learning multiple layers of features from
tiny images,” Tech. Rep., 2009.

http://arxiv.org/abs/1203.3491
http://arxiv.org/abs/0811.1250
http://epubs.siam.org/doi/abs/10.1137/1.9781611972771.27
http://epubs.siam.org/doi/abs/10.1137/1.9781611972771.27
https://github.com/microsoft/dmtk
https://github.com/microsoft/dmtk
http://yann.lecun.com/exdb/mnist/
http://archive.ics.uci.edu/ml

	I Introduction
	II Related work
	III Multiclass handling
	III-A Matrix inversion
	III-A1 Full Hessian
	III-A2 Diagonal Hessian

	IV Choice of losses and extensions
	V Layer-by-layer boosting
	VI TFBT system design
	VII Experiments
	VII-A Datasets
	VII-B Experiments setup
	VII-C Metrics
	VII-D Experiments results

	VIII Conclusion
	References

