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Abstract—With the growth of interest in network data across
fields, the Exponential Random Graph Model (ERGM) has
emerged as the leading approach to the statistical analysis
of network data. ERGM parameter estimation requires the
approximation of an intractable normalizing constant. Simulation
methods represent the state-of-the-art approach to approximating
the normalizing constant, leading to estimation by Monte Carlo
maximum likelihood (MCMLE). MCMLE is accurate when a
large sample of networks is used to approximate the normalizing
constant. However, MCMLE is computationally expensive, and
may be prohibitively so if the size of the network is on the order
of 1,000 nodes (i.e., one million potential ties) or greater. When
the network is large, one option is maximum pseudolikelihood
estimation (MPLE). The standard MPLE is simple and fast,
but generally underestimates standard errors. We show that a
resampling method—the parametric bootstrap—results in accu-
rate coverage probabilities for confidence intervals. We find that
bootstrapped MPLE can be run in 1/5th the time of MCMLE.
We study the relative performance of MCMLE and MPLE with
simulation studies, and illustrate the two different approaches
by applying them to a network of bills introduced in the United
State Senate.

Index Terms—network, ERGM, parametric bootstrap, maxi-
mum pseudolikelihood

I. INTRODUCTION

The field of network science faces a double-edge sword
when it comes to computationally intensive research. First, the
availability of digital source data has led the growth in network
science to be synonymous with the growth in research on big
data. Faraj et al. (2008, pp. 19–20) [11] notes that,

“In recent years the proliferation of advanced Infor-
mation Technology has not only facilitated the col-
lection of large-scale network data but also increased
the availability of large-scale network data analysis
tools and techniques. This has led to an explosion of
interest in large network research in fields spanning
biology, physics, mathematics, and social sciences.”

Second, analytical methods are growing more sophisticated,
increasingly involving iterative and/or simulation-based op-
timization, rather than simple descriptive calculations [36].
Closing the gap in terms of the size of the networks to which it

is feasible to apply the most sophisticated methods of network
modeling requires research into scalable methods of inference.
We propose a method of statistical inference for one of the
most popular models for networks—the exponential random
graph model (ERGM), in which both parameter estimates and
confidence intervals are derived, that can require less than half
the compute time of currently used methods.

II. THE EXPONENTIAL RANDOM GRAPH MODEL

The ERGM is a probabilistic model for networks [4], [28],
[40]. They can be used for link prediction [26], simulating
network adjacency matrices [15], and testing theories regard-
ing the processes underlying tie formation [14]. The ERGM
was first introduced by Holland and Leinhardt (1981) [16].
However, due to the intractable normalizing constant in the
likelihood function of the ERGM, it did not see widespread
and complete use until the 2000s, following the development
of algorithms and software for efficient simulation-based meth-
ods for working with ERGM [35]. Training ERGM using
simulation-based methods is computationally expensive, and
can still be prohibitively burdensome with data on big net-
works. Approximate methods of estimation, which are much
more feasible with large networks, have existed for some
time, but these methods perform poorly when it comes to
characterizing the uncertainty in parameter estimates, which
is necessary when assessing risk in predictions or simulation,
or in hypothesis testing.

The ERGM takes the adjacency matrix of an observed
network Gobs, which is a matrix-valued random variable. This
means that a network of N nodes can be defined as a adjacency
matrix G = (gij) ∈ {0, 1}(N×N), where gij ∈ {0, 1} for all
i, j ∈ {1, . . . , N}. gij = 1 means that there is an edge between
actors i and j, while gij = 0 indicates that these actors are not
directly connected. Since the model does not consider loops,
one has gii = 0 for all i ∈ {1, . . . , N}. Furthermore, define

G(N) :=
{
G ∈ {0, 1}(N×N) : gij ∈ {0, 1}, gii = 0

}
as the set of all possible networks on N nodes without
loops. Note that the cardinality of set G(N) is increasing
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exponentially for every newly included actor, which results in
2N(N−1)/2 total elements. For even a small number of nodes,
the cardinality of G(N) turns out to be an astronomically large
number. For this reason calculating the likelihood function of
the ERGM, which requires evaluating a normalizing constant
on G(N) is either extremely time-consuming or with today’s
technology not achievable. As a consequence, many approx-
imation methods have been provided by the literature, with
the most popular method making use of Markov Chain Monte
Carlo (MCMC) methods [21], as we will introduce in the next
section.
The probability function for the ERGM is defined as

Pθ(G) =
exp(θT · Γ(G))∑

G∗∈G(N) exp(θT · Γ(G∗))
(1)

where θ ∈ Rq is a q−dimensional vector of parameters,
Γ : G(N) → Rq , G 7→ (Γ1(G), . . . ,Γq(G))T is a
q-dimensional function of different network statistics and
c(θ) :=

∑
G∗∈G(N) exp(θT · Γ(G∗)) is a normalization con-

stant which ensures that (1) defines a probability function
on G. As already mentioned, a specific network G can be
considered as a manifestation of a matrix-like random variable,
whose probability of occurrence can be modeled with equation
(1). The generative processes captured by a model (e.g.,
density, reciprocity, popularity, clustering) are informed by
the decision regarding which network statistics (i.e., Γ(·)) are
incorporated (see Snijders et al. [34] for a detailed discussion).
The flexibility of the ERGM in capturing virtually any network
generative process has led to it being applied broadly across
several fields, including (but not limited to) sociology [33],
[37], economics [25], political science [6], [23], ecology [3],
[9], and neuroscience [31], [32].

III. ESTIMATION

As mentioned above calculating c(θ) is not achievable for
most cases with today’s technology. Straightforward applica-
tion of either maximum likelihood estimation and Bayesian
inference are, therefore, not possible. The first method pro-
posed in the literature for estimating ERGM parameters was
maximum pseudolikelihood estimation [38]. Under maximum
pseudolikelihood estimation (MPLE), the joint distribution is
replaced by the product over conditional distributions [2].

Pθ(G) ≈
∏
ij

Pθ (gij |G−ij) ,

where G−ij is the adjacency matrix, excluding element ij.
The conditional probability of a tie in ERGM reduces, conve-
niently, to a logistic regression form given by

Pθ (gij = 1|G−ij) = logit−1
(
θT · δ(Γ(G))

)
,

where δ(Γ(G)) is the “change statistic” given by the difference
in the network statistics when the ij element is toggled from
0 to 1 (i.e., Γ(G|gij = 1))−Γ(G|gij = 0)), and logit−1(x) =
1/(1 + exp(−x)) [14]. For the ERGM, the pseudolikelihood
function can be maximized using logistic regression software,
in which the dependent variable is given by the elements of the

adjacency matrix, and the covariates are given by the values
of the change statistics corresponding to each element of the
adjacency matrix.

Despite the computational efficiency underlying the imple-
mentation of MPLE, existing methods for assessing uncer-
tainty with respect to the MPLE perform poorly (see van
Duijn et al. [39]). Estimating the uncertainty in parameter
estimates (e.g., standard errors, confidence intervals), is a
critical step in using the results from a statistical model.
Estimates of uncertainty are used to test hypotheses about
parameters, estimate variance (i.e., risk) in model predictions,
and estimate effect sizes. Another limitation of MPLE re-
gards the assessment of model fit. With ERGM, model fit is
conventionally evaluated by comparing the structure of the
observed network to networks simulated from the estimated
model [18]. This comparison can include diagnosing the model
for a particular form of poor fit that arises with ERGM—model
degeneracy [29]. Degeneracy is a condition in which the model
places nearly all of the probability mass on the completely
empty or completely full network. Since MPLE does not
require simulating networks, researchers can derive and report
results without checking the fit of the model or checking for
degeneracy. Of course, the researcher can choose to simulate
networks and check model fit with MPLE , but unlike the
simulation-based methods of estimation, it is possible to run
MPLE without simulating networks.

The contemporary conventional approach to estimating θ,
introduced by Snijders [35], is based on a Markov Chain
Monte Carlo (MCMC) approximation of the MLE.
This Monte Carlo maximum likelihood method (MCMLE)
is based on a more direct attempt to approximate the log-
likelihood function derived from (1). The log-likelihood func-
tion is not evaluated directly, rather, the log ratio of the
likelihood under a proposed value of the parameters θ, and
an initial value of the parameters θ0, is approximated using L
networks simulated from the ERGM with parameter values θ0.
The approximation, detailed in Snijders (2002) [35] is given
by

loglik(θ)− loglik(θ0)

= − log(c(θ)) + log(c(θ0))

= − log

(
c(θ)

c(θ0)

)
= − log

(
Eθ0

[
exp

(
(θ − θ0)T · Γ(Y )

)])
≈ − log

(
1

L
·
L∑
i=1

exp
(
(θ − θ0)T · Γ(Gi)

))
.

By differentiating this equation on both sides with respect to
θ one gets an approximate score function:

s(θ) ≈ − ∂

∂θ
log

(
1

L
·
L∑
i=1

exp
(
(θ − θ0)T · Γ(Gi)

))
(2)

This approximate score function now can be used as usual, i.e.,
it can be iteratively approximately optimized with the Newton-
Raphson algorithm or by Fisher scoring.



MCMC methods are used to simulate the L networks. As
we demonstrate below, the MCMLE grows more accurate
as L increases. Indeed, MCMLE approaches the MLE as
the number of networks simulated goes to infinity. Snijders
(2002) [35] provides a Metropolis Hastings algorithm to
simulate networks: Choose a matrix G(0) ∈ G(N) to start
with (e.g., the observed network). For k ∈ {0, ..., L − 1}
recursively proceed as follows:

1) Randomly choose an edge (i, j) where i 6= j from G(k)

2) Compute the value

π :=
Pθ(Yij 6= g

(k)
ij |Y cij = Gcij)

Pθ(Yij = g
(k)
ij |Y cij = Gcij)

3) Fix δ := min{1, π} and draw a random number Z from
Bin(1, δ). If
• Z = 0, let G(k+1) := G(k)

• Z = 1, define G(k+1) via

g(k+1)
pq =

{
1− g(k)pq if (p, q) = (i, j)

g
(k)
pq if (p, q) 6= (i, j)

4) Start at step 1 with G(k+1).

The depicted algorithm provides a sequence of random net-
works G(0), . . . , G(L) via a Metropolis-Hastings sampler [5].
Since the original matrix was chosen randomly and the first
simulated networks are very dependent on the chosen matrix
(only one edge is changed per iteration), usually the first B
networks, where N << B << L, are discarded as the so
called Burn-In.

IV. EFFICIENCY OF MPLE AND MCMLE

As mentioned in the previous section the MPLE approaches
the MLE as the size of the networks increase and as a conse-
quence, is a consistent estimator (see Lindsay [24], Strauss and
Ikeda [38], Hyvarinen [22], Desmarais and Cranmer [7], [8]).
This implies that for an increasing number of nodes, the MPLE
converges in probability to the MLE, meaning that for large
enough networks the MPLE performs as well as or better than
MCMLE, and requires less compute time. At this point we
want to mention that we are familiar with the work of Shalizi
and Rinaldo [30], arguing that consistency is not given in the
ERGM framework. They prove that one cannot run an ERGM
on a sub-network in order to make inferences about the full
network. The way we use the term consistency in this paper
is different and aligns with the way consistency is defined
by Lindsay [24], i.e. instead of considering sub-networks that
converge to the full size network, we argue that both, the MLE
as well as the MPLE, approach the true coefficient values as
the size of networks generally increases.

To illustrate the relative efficiency of MPLE and MCMLE
we run a simulation study. Desmarais and Cranmer [7] show
the MPLE outperforms the MCMLE if the number of simu-
lated networks used to approximate the likelihood in MCMLE
is not large enough. It is even more remarkable that the number

of simulated networks needed for the MCMLE, in order to
surpass the MPLE increases as the size of the network (i.e.,
the number of nodes in the network) increases. This means
that, for very large networks, it becomes difficult to determine
the number of simulated networks required for the MCMLE to
outperform the MPLE. In other words, the larger the network,
the more computationally intensive it becomes to use MCMLE
in a way that out-performs MPLE.

To demonstrate this disadvantage of the MCMLE we con-
duct a simulation study using Goodreau’s [20] Faux Mesa
High School data, which represents a simulation of an in-
school friendship network among 203 students as well as the
Faux Magnolia High School data, representing an in-school
friendship network among 1451 students. The data for both
networks originates from Resnick et al. [27].

For both networks, we first calculate the MCMLE and
treat the estimated coefficients as the network’s true values
θ. Then, we take the same parametrization, using the number
of edges, the nodal attribute for gender, and the geometrically
weighted edgewise shared partners (gwesp) distribution (see
Hunter [19]) where we fix the decay parameter λ at 0.25. The
number of edges is defined as

Γedges : G(N)→ R , G→
N∑
i<j

gij

In order to include nodal covariates into the ERGM, the vector
of nodal attribute is expanded into a matrix C, which has the
same dimensions as G. The first row of matrix C consists of
the first actor’s attribute, repeated N times. The second row
of matrix C, consists of the second actor’s attribute, repeated
N times, and so on. Then, the statistic for a nodal covariate
is defined as

Γnodal : G(N)→ R , G 7→
N∑
i<j

gijcij

The GWESP statistic is given as

Γgwesp(G,λ) := λ

N−1∑
j=1

(
1−
(

1−
1

λ

)j)
Γesp(k)(G)

where

Γesp : G(N)→ R , G 7→
N∑
i<j

1k

( N∑
k=1

gijgimgjm

)
.

Γesp(G, k) counts the number of nodal pairs (i, j), which
share exactly k neighbors. This statistic is used to model the
tendency towards triangles and clustering in a network.

We simulate m = 500 new networks using the ’true’
coefficients and estimate the MPLE as well as the MCMLE of
these simulated networks. For every single simulated network
the MCMLE calculation is being repeated several times for
25 to 10, 000 simulated networks used in the likelihood
approximation. Based on these results, we compute the root
mean square error, which is a measure of the accuracy of an
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Fig. 1. The log of the ratio of the RMSE for the MCMLE to the MPLE for
different sample sizes and two different networks, Faux Mesa High and Faux
Magnolia High

estimator, combining both the bias and the variance. Math-
ematically written, the RMSE for an estimator θ̂ is defined
as

RMSE =

√√√√ m∑
i=1

(θ − θ̂i)2

implying that the smaller the RMSE, the more accurate is
the estimator. Since the MCMLE has higher efficiency and
converges to the MLE, the RMSE decreases as the number
of simulated networks used for the likelihood approximation
increases. On the other hand, the RMSE of the MPLE is a
constant value since no network simulations are required. In
order to compare the RMSE of the two estimation techniques,
we take the log of the ratio of the MCMLE to the MPLE.
As a result, a negative value indicates a better MCMLE
performance, while a positive value indicates a better MPLE
performance.

Figure 1 visualizes the results of the simulation study. The
solid line illustrates the results of the log relative RMSE of
the Faux Mesa High network, while the dashed line illustrates
the corresponding results of the Faux Magnolia High network.
The plots support the fact that larger networks require a
larger sample size of simulated networks for the MCMLE
to outperform the MPLE. While the fairly small Faux Mesa
High network only requires a sample size of about 50 − 100
networks, the larger Faux Magnolia High network requires a
sample size of at least 1,500 networks for the MCMLE to
surpass the MPLE. For especially large networks (e.g., social
media data) the sample size has to be set in order to justify
the approximately exact, but computationally expensive and
potentially prohibitive MCMLE method.

V. BOOTSTRAPPED MPLE

As discussed in the previous section, the MPLE converges
to the MLE as the size of the network increases. Moreover,

the MPLE is able to outperform the MCMLE if the sample
size used in MCMLE is not large enough. The main reason
why the MCMLE is still widely preferred is that, in contrast
to the MPLE, it does not underestimate the standard errors
(van Duijn et al. [39]). By the definition of the ERGM it is
obvious that this model is an exponential family distribution
where θ is the natural parameter and Γ(G) is the sufficient
statistic. For exponential family distributions, it is known that
the sampling distribution of the MLE is multivariate normal
with mean vector equal to the MLE and a covariance matrix
equal to the inverse of the negative Hessian matrix [−H]−1

of the likelihood function at the MLE. The problem with the
MPLE is that calculating [−H]−1 by the pseudolikelihood
function will underestimate the variance of the MPLE [39],
resulting in an underestimate of the width of the confidence
intervals. van Duijn et al. show that constructing 95% MPLE
confidence intervals can result in intervals that comprise the
true value in less than 75% instead of the nominal 95%. In this
paper, we are going to refer to the MPLE confidence intervals
as logistic regression confidence intervals simply because the
MPLE is calculated using logistic regression methods that also
use the inverse of the negative Hessian matrix as an estimate
for the covariance matrix.

Since the MPLE has the advantage of being approximately
exact and computationally inexpensive, but has the disadvan-
tage of underestimating corresponding confidence intervals,
we apply a technique referred to as bootstrap resampling
[10]. Bootstrap resampling refers to constructing a sampling
distribution for the parameter estimate by resampling the
data with replacement, and re-estimating the model on the
resampled data. Under non-parametric bootstrap resampling,
the data are resampled directly from the dataset. Under the
parametric boostrap, the data is resampled from the estimated
model. The idea of using boostrap resampling with MPLE for
ERGM was first introduced by Desmarais and Cranmer [7] and
provides a consistent estimate of MPLE confidence intervals.
Desmarais and Cranmer argue that the MPLE is a multivariate
M-estimator (see Huber [17]), a special class of robust estima-
tors, meaning that bootstrap resampling consistently estimates
the confidence intervals of the MPLE.

However, the methods introduced by Desmarais and Cran-
mer [7] only applied to cases in which the researcher had a
large sample of networks (e.g., a time series of networks),
since the method they proposed was a non-parametric boot-
strap. The non-parametric bootstrap cannot be applied when
there is just a single network under study.

For the case in which there is just a single network to
be studied, which is indeed the most common case in the
literature, we propose the use of a parametric bootstrap. Under
the parametric bootstrap, the sampling distribution of the
MPLE is derived by re-estimating the MPLE on a sample of
networks simulated from the MPLE estimated on the observed
network. We verify the consistency of the bootstrapped MPLE
by conducting a simulation study on the same two networks
with the same parametrization as in the previous chapter: The
Faux Mesa High friendship network and the Faux Magnolia
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High friendship network.
For the simulation study, we determine the MPLE for

the model and treat these estimates as the networks’ ’true’
parameter values. We then use these parameter values to
simulate a sample of 1000 networks from the distribution of G.
For each of the 1000 networks, we calculate 95% confidence
intervals based on the MCMLE and the logistic regression
and examine whether the ’true’ parameter values lie in these
intervals. In addition, we determine the bootstrapped MPLE
confidence intervals by sampling 500 networks for each of
the originally sampled 1000 networks, by using the respective
MPLE as parameter values. For every newly sampled network,
we again determine the MPLE and then take the 2.5th and
97.5th percentile of the 500 MPLE estimates to obtain 95%
bootstrap confidence intervals. Similar as for the MCMLE and
the logistic regression, we verify whether the ’true’ parameter
value can be found in the bootstrapped confidence interval.

Figure 2 visualizes the coverage percentages for each of
the three methods for both networks. The dashed line is set
at 0.95 and represents the optimal value. It is evident that the
bootstrapped MPLE performed equally well as the MCMLE,
achieving results that obtain the true parameter values in
approximately 95% of the cases. Additionally, a difference
in the results between the smaller Faux Mesa High network
and larger Faux Magnolia High network is not identifiable.
Similar to the results of van Duijn et al. [39] our results for

the logistic regression differ distinctively from the anticipated
95%, confirming that the MPLE underestimates the variance
of its estimates. Figure 3 illustrates the bias between the
’true’ network coefficients θ and the MPLE estimates. We
can abstract from this figure that the median MPLE estimates
concur with the networks ’true’ coefficients. It is especially
worthwhile to mention that the bias of the larger Faux Mag-
nolia High network is smaller than the bias of the Faux Mesa
High network, supporting the fact that the MPLE converges
to the MLE as the network size increases.

This simulation study shows that bootstrapped MPLE is
able to overcome the main disadvantage of the MPLE by
retaining the validity of confidence intervals. In this simulation
study we demonstrate that the parametric bootstrap can be
used in combination with MPLE to provide a method of
estimation that is both computationally efficient and provides
valid estimates of model uncertainty.

VI. COSPONSORSHIP NETWORK DATA

To illustrate the performance of MCMLE relative to that of
the bootstrapped MPLE we apply both approaches to the data
on cosponsorship of bills in the U.S. House of Representatives
for the 108th Congress (2003–2004), developed by Fowler
(2006) [12] [13]. The cosponsorship network consists of 2,635
nodes, which we define as pieces of legislation (i.e., bills),
considered by the Senate during the 108th Congress. Note
that this formulation of the cosponsorship network differs from
past research, which has defined the nodes as the individual
legislators. Because there are more bills than legislators,
studying bills as nodes provides a more disaggregated look
at the network than is offered through studying the network
of legislators. In this undirected network bills are tied together
based on the similarity of the sets of legislators who cosponsor
them. Specifically, we include an edge between bills i and
j if the correlation coefficient between the indicator vectors
indicating whether i and j were sponsored each legislator
is greater than a random uniform draw. This results in an
undirected network with 28060 edges.

We build an ERGM specification that extends the work of
Zhang et al [41] in exploring the structure of cosponsorship
ties. They find that congressional cosponsorship is primarily
characterized by intra-party ties—among Republicans and
among Democrats, but few cross-party ties. We test for this
party-based clustering (i.e., homophily) in our ERGM. This is
done through a term that accounts for the party of the senators
who sponsored the two bills in the pair. The party homophily
term is defined as

Γ(G,X) =
∑
i<j

gijxij ,

where X is an indicator matrix that assumes the value 0 if i
and j were sponsored by legislators from different political
parties and 1 if they were sponsored by legislators from the
same party. Γ(G,X) measures the number of intra-party ties
in the network. A positive parameter value for this statistic



MCMLE Logistic Regression bootstrapped MPLE
Estimate St. Error Estimate St. Error Lower Bound Upper Bound

Edges -5.884 0.065 -5.869 0.015 -6.007 -5.751

Sponsor Party 1.440 0.015 1.440 0.015 1.411 1.467

Alternating k-star 0.124 0.064 0.108 0.006 -0.011 0.2379

TABLE I
ESTIMATION RESULTS FOR THE COSPONSORSHIP NETWORK USING MCMLE, LOGISTIC REGRESSION AND BOOTSTRAPPED MPLE

indicates that ties tend to be formed between bills sponsored
by the same political party.

We extend the homophily-based model to account for a
network dynamic that is commonly found in the study of
networks—that of popularity or preferential attachment [1].
Preferential attachment is the tendency for new ties to be
formed with nodes who already have many ties (i.e., popular
nodes). The alternating k-star statistic was introduced by
Snijders et al. [34] and modified by Hunter and Handcock [19].
A positive parameter estimate associated with the alternating
k-star statistic indicates that tie formation follows a form of
preferential attachment [34]. This could arise in a network of
bill-to-bill ties if the majority party in power was particularly
disciplined at rallying its partisans to pile on to the bills that its
members proposes, thus producing a large set of very similar
bills. The alternating k-star statistic adds one network statistic
to the model equal to a weighted alternating sequence of k-
star statistics with weight parameter λ and is a way to include
a networks entire degree distribution as a network statistic. In
this model we fix the weight paramter λ = 0.4975. Snijders
et al. [34] introduced an approach involving k-star statistics
S1(G), . . . , SN−1(G), where Sk(G) denotes the number of
k-stars in the network, k ∈ {1, . . . , N −1}. For simplicity, let
us define

Sk(G) := Γstar(k)(G)

where

Γstar(k) : G(N)→ R , G→
N∑
i,j,k

gijgik

Note that in every network S1(G) = Γedges(G), i.e., S1(G)
is equal to the number of edges in the network. On this basis,
Snijders introduces the alternating k-star statistics

S(G,λ) :=

N−1∑
k=2

(−
1

λ
)k−2Sk(G)

= S2(G)−
S3(G)

λ
+ · · ·+ (−1)N−3

SN−1(G)

λN−3

Models with this statistic and a fixed decay parameter turn
out to be standard ERGMs and Hunter and Handcock [19]
succeeded in proving that one can also rewrite alternating k-
stars as a function of a network’s degree distribution

S(G,λ) = λ

(
λ

N−1∑
j=1

(
1−
(

1−
1

λ

)j)
Dj(G)+2S1(G)

)
(3)

where Dj(G) := Γdeg(j)(G) is the number of nodes with
a degree of j. In the next step, we define the geometrically
weighted degree (gwd) statistic as the first summand of (3)

Γgwd(G,λ) := λ

N−1∑
j=1

(
1−
(

1−
1

λ

)j)
Dj(G) (4)

At this point it also becomes obvious where the geometri-
cally comes from. It simply refers to the geometric sequence
(1− 1

λ )j which appears in these statistics.
We estimate the ERGM using MCMLE and the boot-

strapped MPLE. The MCMLE requires a sample size of at
least 1000 networks to converge. The bootstrapped MPLE was
estimated by using 500 simulated networks. As we described
in the section Estimation, only one edge at a time is changed
when simulating networks. For better comparison, we chose
the same Burn-In (300, 000 MH-steps) and the same number
of iterations (30, 000 MH-steps) for sampling networks. The
results can be found in table VI.

It is interesting to see that the standard error calculated
by the logistic regression approach is much smaller than
the standard error of the MCMLE for the alternating k-
star statistic, which leads to inaccurate confidence intervals
as shown in figure 2. The MPLE estimate is equivalent to
the logistic regression estimate, but the bootstrap confidence
intervals, especially for the alternating k-star statistic, are much
wider than would be calculated using the logistic regression
standard errors. An estimate is generally considered statisti-
cally different from zero (i.e., statistically significant) if the
confidence interval does not contain zero, or if the ratio of
the estimate to the standard error exceeds 1.96 in magnitude.
This cosponsorship network example perfectly illustrates the
inferential problems that can arise with the conventional
logistic regression standard errors when using MPLE. All of
the parameter estimates are statistically significant according
to the logistic regression estimates. However, the alternating k-
star statistic is not significant according to either the MCMLE
or the bootstrapped MPLE.

VII. PARALLEL COMPUTING WITH MPLE

The bootstrapped MPLE is not only simple and fast, it is
highly parallel. Once the networks on which to estimate the
bootstrap replicates are simulated, each re-estimate can be run
in parallel. By using multiple cores, the computing time for
estimating bootstrapped MPLE confidence intervals can be re-
duced substantially. Figure 4 illustrates the relative computing
time of the bootstrapped MPLE using 500 simulated networks
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Fig. 4. The y-axis gives the ratio of the bootstrapped MPLE time to that
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and the MCMLE for the three networks Faux Mesa High (205
nodes), Faux Magnolia High (1461 nodes) and Cosponsorship
(2635 nodes) for an increasing number of computing cores.
For the small network we simulate 2000 networks using a
MCMC interval of 2000 steps, for the medium network we
simulate 8000 networks using a MCMC interval of 5000 steps
and for the large network we simulate 10000 networks using
30, 000 MCMC steps in order to approximate the likelihood
appropriately. The chosen sample sizes and MCMC steps are
necessary to guarantee a good model fit. The small network
took 14 seconds, the medium network took 123 seconds and
the large network took 986 seconds to run. We define the
simulation time of the bootstrapped MPLE as a function of
the number of available computing cores x:

boostrapped MPLE time =

network simulation time +
500 ·MPLE estimation time

x

Based on this, we define the relative computing time as

relative computing time =
bootstrapped MPLE time

MCMLE time
This means that a relative computing time greater than 1
indicates that the MCMLE computing time is shorter, while
a relative computing time smaller than 1 indicates that the
bootstrapped MPLE provides faster results.
Figure 4 demonstrates that all three networks only require

three cores for the bootstrapped MPLE to outperform the
computing time of the MCMLE and that the computing time
can further be reduced if more computing cores are available.
If exactly 500 computing cores are being used the ratio of the
bootstrapped MPLE time to the MCMLE time levels off at
0.20 for the small and large network and 0.17 for the medium
network, meaning that the computing time can be quintupled
using the bootstrapped MPLE. This figure also depicts that
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larger network in general require a longer computation time
and will benefit more if the bootstrapped MPLE is used.
Of course the actual computing time for a network always
depends on the statistics that are included in the network,
but in general larger networks require longer computation
times, since a larger MCMC sample size is required and more
MC steps are necessary to simulate a new network that does
not overly depend on the previous sample. This makes the
bootstrapped MPLE a beneficial alternative, especially for very
large networks.

One of the major disadvantages of MPLE over MCMLE
is that degeneracy is not assessed while the model is being
estimated. The bootstrapped MPLE, however, allows assessing
degenerate models as well since the method requires simulat-
ing from the estimated parameters. In order to verify whether
a model is degenerate or not, one can take a look at density
and trace plots as visualized in figure 5. The trace plots
on the left side depict the the attained values via MCMC
simulated networks for every single statistic included into the
model, centered on the statistic values of the observed network.
The plots on the right side visualize the empirical density
function of the respective statistic, based on the simulated
networks (Hunter and Handcock [19]). For a non-degenerated
model the empirical density function should be approximately
symmetrical around zero for every included centered statistic,
since this corresponds with the expected value of a centered
statistic. Otherwise, the values of the simulated networks
systematically differ from the corresponding statistics in the
observed network, making it unreasonable to assume that the
simulated networks originate from the same distribution as the
observed network. Furthermore, the trajectories in the trace
plot should not indicate a dependence structure. This would
be a signal that the constructed stochastic process violates the
Markov properties.



VIII. CONCLUSION

In the past years the ERGM grew in popularity in many
different fields as a flexible and powerful means of building
probabilistic models for networks. With this popularity the
size of the considered networks has grown. As the size of
the network increases, it becomes unclear how many simu-
lated networks are necessary for the conventional MCMLE
method to perform better than the MPLE. Furthermore, as an
increasing number of simulated networks is necessary for the
MCMLE, the computing time rapidly grows. For this reason
it is essential to develop different methods that provide faster
estimation than the MCMLE, but still lead to reliable results.
In this paper we introduced the bootstrapped MPLE as an
alternative method of statistical inference for ERGMs and
compared the performance to the commonly applied MCMLE.
Based on a simulation study we demonstrated that the larger
the size of a network is the larger the MCMC sample size
has to be in order for the MCMLE to outperform the fast and
simple MPLE. However, the big disadvantage of the MPLE
is that, even though it is an approximately exact estimator, it
underestimates the standard error. For this reason, we propose
a parametric bootstrap method of evaluating model uncertainty.
On the basis of another simulation study on two different
networks, we demonstrate that the bootstrapped MPLE covers
the true coefficients just as well as the MCMLE, while the
simple MPLE performs clearly poorer. This means that the
bootstrapped MPLE combines the advantages of both meth-
ods, the MPLE and the MCMLE, because it is still simple
and fast, and provides approximately exact results, but also
accurately estimates model uncertainty. We conclude that the
bootstrapped MPLE should be regarded as an alternative to
the MCMLE. It also has the advantage of being parallel,
which leads to a rapid speed-up of the calculation if multiple
computing cores are used.
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