
Low-latency Multi-threaded Ensemble Learning for Dynamic Big Data Streams

Diego Marrón∗†, Eduard Ayguadé∗†, José R. Herrero†, Jesse Read‡, Albert Bifet§
∗Computer Sciences Department, Barcelona Supercomputing Center

Barcelona, Spain
Email: diego.marron,eduard.ayguade@bsc.es

† Computer Architecture Department, Universitat Politécnica de Catalunya,
Barcelona, Spain

Email: dmarron,eduard,josepr@ac.upc.edu
‡ LIX, École Polytechnique

Palaiseau, France
Email: jesse.read@polytechnique.edu

§ LTCI, Télécom ParisTech, Université Paris-Saclay,
75013 Paris, France

Email: albert.bifet@telecom-paristech.fr

Abstract—Real–time mining of evolving data streams in-
volves new challenges when targeting today’s application do-
mains such as the Internet of the Things: increasing volume,
velocity and volatility requires data to be processed on–the–
fly with fast reaction and adaptation to changes. This paper
presents a high performance scalable design for decision trees
and ensemble combinations that makes use of the vector SIMD
and multicore capabilities available in modern processors to
provide the required throughput and accuracy. The proposed
design offers very low latency and good scalability with the
number of cores on commodity hardware when compared to
other state–of–the art implementations. On an Intel i7-based
system, processing a single decision tree is 6x faster than
MOA (Java), and 7x faster than StreamDM (C++), two well-
known reference implementations. On the same system, the
use of the 6 cores (and 12 hardware threads) available allow
to process an ensemble of 100 learners 85x faster that MOA
while providing the same accuracy. Furthermore, our solution
is highly scalable: on an Intel Xeon socket with large core
counts, the proposed ensemble design achieves up to 16x speed-
up when employing 24 cores with respect to a single threaded
execution.

Keywords-Data Streams, Random Forests, Hoeffding Tree,
Low-latency, High performance

I. INTRODUCTION

Modern daily life generates an unprecedented amount of
dynamic big data streams (Volume), at high ratio (Velocity),
in different forms of data such as text, images or structured
data (Variety), with new data rapidly superseding old data
(Volatility). This increase in volume, velocity and volatility
requires data to be processed on–the–fly in real–time, with
fast reaction and adaptation to changes, sometimes in the
order of few milliseconds. Some scenarios and applications
where real-time data streams classification is required are
TCP/IP packet monitoring [1]; sensor network security [2];
or credit card fraud detection [3], just to name a few.

Real–time classification imposes the following con-
straints: the classifier must be ready to predict at any
time, has to be able to deal with potentially infinite data
streams, and has to use each sample in the data stream only
once (with limited amount of CPU cycles and memory).
In addition, in order to meet the throughput and accuracy
requirements imposed by current and future applications,
real–time classification algorithms have to be implemented
making an efficient use of modern CPUs capabilities.

Incremental decision trees have been proposed for learn-
ing in data streams, making a single pass on data and using
a fixed amount of memory. The Hoeffding Tree (HT [4]) and
its variations are the most effective and widely used incre-
mental decision trees. They work out-of-the-box (no hyper-
parameters to tune), and are able to build very complex
trees with acceptable computational cost. To improve single
HT predictive performance, multiple HTs are combined with
ensemble methods. Random Forests (RF [5]) and Leveraging
Bagging (LB [6]) are two examples of ensemble methods,
making use of randomization in different ways. Changes on
the stream, which can can cause less accurate predictions as
time passes, are detected by using Drifting Detectors [7].

This paper presents the design of a high–performance
low–latency incremental HT and multi-threaded RF ensem-
ble. Modularity, scalability and adaptivity to a variety of
hardware platforms, from edge to server devices, are the
main requirements that have driven the proposed design.
The paper shows the opportunities the proposed design
offers in terms of optimised cache memory layout, use of
vector SIMD capabilities available in functional units and
use of multiple cores inside the processor. Although the
parallelisation of decision trees and ensembles for batch
classification has been considered in the last years, the
solutions proposed do not meet the requirements of real-
time streaming.

The paper also contributes an extensive evaluation of the
proposed designs, in terms of accuracy and performance,
and comparison against two state–of–the–art reference im-
plementations: MOA (Massive Online Analysis [8]) and
StreamDM [9]. For the evaluation, the paper considers two
widely used real datasets and a number of synthetic datasets
generated using some of the available stream generators in
MOA. The proposed designs are evaluated on a variety of
hardware platforms, including Intel i7 and Xeon processors
and ARM–based SoC from Nvidia and Applied Micro. The
paper also shows how the proposed single decision tree
behaves in low–end devices such as the Raspberry RPi3.

The rest of the paper is organised as follows: the necessary
background on HT and RF are described in Section II. The
proposed designs are then presented in Sections III and IV
for a single HT and the RF ensemble, respectively. The
main results coming out of the experimental evaluation, in
terms of accuracy, throughput and scalability, are reported in
Section V. Related work and research efforts are identified in
Section VI. Finally, some implementation notes are outlined
in Section VII, finishing the paper with some conclusions
and future work in Section VIII.

II. BACKGROUND

A. Hoeffding Tree

The Hoeffding Tree (HT) is an incrementally induced
decision-tree data structure in which each internal node
tests a single attribute and the leaves contain classification
predictors; internal nodes are used to route a sample to the
appropriate leaf where the sample is labelled. The HT grows
incrementally, splitting a node as soon as there is sufficient
statistical evidence. The induction of the HT mainly differs
from batch decision trees in that it processes each instance
once at time of arrival (instead of iterating over the entire
data). The HT makes use of the Hoeffding Bound [10] to
decide when and where to grow the tree with theoretical
guarantees on producing a nearly-identical tree to that which
would be built by a conventional batch inducer.

Algorithm 1 shows the HT induction algorithm. The
starting point is an HT with a single node (the root). Then,
for each arriving instance X the induction algorithm is
invoked, which routes through HT the instance X to leaf
l (line 1). For each attribute Xi in X with value j and label
k, the algorithm updates the statistics in leaf l (line 2) and
the number of instances nl seen at leaf l (line 3).

Splitting a leaf is considered every certain number of
instances (grace parameter in line 4, since it is unlikely that
an split is needed for every new instance) and only if the
instances observed at that leaf belong to different labels (line
5). In order to make the decision on which attribute to split,
the algorithm evaluates the split criterion function G for
each attribute (line 6). Usually this function is based on the

computation of the Information Gain, which is defined as:

G(Xi) =

L∑
j

Vi∑
k

aijk
Tij

log(
aijk
Tij

) ∀ i ∈ N (1)

being N is the number of attributes, L the number of labels
and Vi the number of different values that attribute i can
take. In this expression Tij is the total number of values
observed for attribute i with label j, and aijk is the number
of observed values for which attribute i with label j has
value k. The Information Gain is based on the computation
of the entropy which is the sum of the probabilities of each
label times the logarithmic probability of that same label. All
the information required to compute the Information Gain
is obtained from the counters at the HT leaves.

The algorithm computes G for each attribute Xi in leaf
l independently and chooses the two best attributes Xa and
Xb (lines 7–8). An split on attribute Xa occurs only if Xa

and Xb are not equal, and Xa − Xb > ε, where ε is the
Hoeffding Bound which is computed (line 9) as:

ε =

√
R2ln(1δ)

2nl
(2)

being R = log(L) and δ the confidence that Xa is the
best attribute to split with probability 1− δ. If the two best
attributes are very similar (i.e. Xa−Xb tends to 0) then the
algorithm uses a tie threshold (τ) to decide splitting (lines
10–11).

Once splitting is decided, the leaf is converted to an
internal node testing on Xa and a new leaf is created for
each possible value Xa can take; each leaf is initialised using
the class distribution observed at attribute Xa counters (lines
12–15).

Although it is not part of the induction algorithm shown
in Algorithm 1, predictions are made at the leaves using
leaf classifiers applied to the statistics collected in them.
Different options are possible, being Naive Bayes (NB) one
of the most commonly used, a relatively simple classifier that
applies Bayes’ theorem under the naive assumption that all
attributes are independent.

B. Random Forest

Random Forest (RF) is an ensemble method that combines
the predictions of several individual learners, each with its
own HT, in order to improve accuracy. Randomisation is
applied during the induction process that forms the HT
ensemble: on one side adding randomisation to the input
training set that each HT observes (sampling with replace-
ment); and on the other side randomising the particular set
of attributes that are used when a new leaf is created (i.e.
when splitting is applied).

The streaming RF design proposed in this paper makes use
of Leveraging Bagging [6]: to randomise the input training
set and simulate sampling with replacement, each input in

Algorithm 1 Hoeffding Tree Induction
Require:

X: labeled training instance
HT: current decision tree
G(.): splitting criterion function
τ : tie threshold
grace : splitting-check frequency (defaults to 200)

1: Sort X to a leaf l using HT
2: Update attribute counters in l based on X
3: Update number of instances nl seen at l
4: if (nl mod grace=0)
5: and (instances seen at l belong to different classes) then
6: For each attribute Xi in l compute G(Xi)
7: Let Xa be the attribute with highest G in l
8: Let Xb be the attribute with second highest G in l
9: Compute Hoeffding Bound ε

10: if Xa 6= Xb and Gl(Xa)−Gl(Xb) > ε
11: or ε < τ then
12: Replace l with an internal node testing on Xa

13: for each possible value of Xa do
14: Add new leaf with derived statistics from Xa

15: end for
16: end if
17: end if

the training set receives a random weight w that indicates
how many times this input would be repeated; this weight
is generated using a Poisson distribution P (λ) with λ =
6. When the input is routed to the appropriate leaf node
during the induction process, the statistics (lines 2 and 3 in
Algorithm 1) are updated based on the value of w.

In order to add randomisation when splitting a node, for
each different leaf to be created , RF randomly selects b

√
Nc

attributes (N is the total number of attributes) out of those
that are not in the path from the root of the tree to the node
being split. This variation of the HT induction algorithm
affects lines 13-15 in Algorithm 1 and it is called randomHT.

As soon as drifting [7] is detected in any of the learners,
one complete randomHT is pruned (substituted with a new
one that only contains the root with b

√
Nc attributes).

Several drift detectors have been proposed in the literature,
being ADWIN [11] one of the most commonly used.

Finally, the output of each learner is combined to form
the final ensemble prediction. In this paper we combine the
classifier outputs by adding them, and selecting the label
with the highest value.

III. LMHT DESIGN OVERVIEW

This section presents the design of LMHT, a binary Low-
latency Multi-threaded Hoeffding Tree aiming at providing
portability to current processor architectures, from mobile
SoC to high–end multicore processors. In addition, LMHT
has been designed to be fully modular so that it can be

reused as a standalone tree or as a building block for
other algorithms, including other types of decision trees and
ensembles.

A. Tree Structure

The core of the LMHT binary tree data structure is
completely agnostic with regard to the implementation of
leaves and counters. It has been designed to be cache
friendly, compacting in a single L1 CPU cache line an
elementary binary sub-tree with a certain depth. When the
processor requests a node, it fetches a cache line into L1 that
contains an entire sub-tree; further accesses to the sub-tree
nodes result in cache hits, minimising the accesses to main
memory. For example, Figure 1 shows how a binary tree is
split into 2 sub-trees, each one stored in a different cache
line. In this example, each sub-tree has a maximum height
of 3, thus, a maximum of 8 leaves and 7 internal nodes;
leaves can point to root nodes of other sub-trees.

cache line

cache line

Figure 1. Splitting a binary tree into smaller binary trees that fit in cache
lines

In the scope of this paper we assume 64-bit architectures
and cache line lengths of 64 bytes (the usual in Intel x86 64
and ARMv8 architectures today). Although 64 bits are
available only 48 bits are used to address memory, leaving
16 bits for arbitrary data. Based on that we propose the cache
line layout shown in Figure 2: 8 consecutive rows, each 64
bits wide storing a leaf flag (1 bit), an attribute index (15
bits) and a leaf pointer address (48 bits).

Figure 2. Sub-tree L1 cache line layout

With this layout a cache line can host a sub-tree with a
maximum height of 3 (8 leaves and 7 internal nodes, as the

example shown in Figure 2). The 1-bit leaf flag informs if
the 48-bit leaf pointer points to the actual leaf node data
structure (where all the information related with the leaf is
stored) or points to the root node of the next sub-tree. The
15-bit attribute index field indexes the attribute that is used
in each one of the 7 possible internal nodes. This imposes a
maximum of 215 (32,768) combinations (i.e. attributes per
instance), one of them reserved to indicate that a sub-tree
internal node is the last node in the tree traversal. For current
problem sizes we do not expect this number of attributes to
be a limiting factor. Having an invalid attribute index allows
sub-trees to be allocated entirely and internally grow in an
incremental way as needed.

The specific mapping (encoding) of the sub-tree into this
64-byte cache line layout is shown in Figure 3. Regarding
attributes, the root node attribute index is stored in row 4,
level 1 attributes are stored in rows 2 and 6, and level 2
attributes are stored in rows 1, 3, 5 and 7; the attribute index
in row 0 is left unused. Regarding leaf pointers, they are
mapped (and accessed) using a 3-bit lookup value in which
each bit represents the path taken at each sub-tree level: the
most significant bit is root node, next bit is the attribute in
level 1, and the least significant bit represents the attribute
at level 2. The bit is true if at that level the traverse took the
left child, and false otherwise. The resulting value is used as
the row index (offset) to access to the leaf pointer column.

B. Leaves and Counters

Each leaf node in the HT points to an instance of the
data structure that encapsulates all the information that is
required to compute its own split criterion function (G in
Algorithm 1) and apply a leaf classifier; the design for these
two functionalities is based on templates and polymorphism
in order to provide the required portability and modularity.
The key component in the proposed design are the leaf
counters, which have been arranged to take benefit of the
SIMD capabilities of nowadays core architectures.

For each label j (0 ≤ j < L) one needs to count how
many times each attribute i in the leaf (0 ≤ i < N) occurred

Figure 3. L1 cache line tree encoding

with each one of its possible values k (0 ≤ k < Vi). This
requires L ×

∑N−1
i=0 Vi counters in total. For simplicity, in

this paper we use binary attribute counters (though there
is no reason why other attribute counters could not be im-
plemented) and no missing attributes in the input instances.
Therefore, for each label j one only needs to count how
many times attribute i had value 1 and the total number of
attributes seen for that label (in order to determine how many
times each attribute i had value 0). With these simplifications
L× (N + 1) counters are needed in total.

Attribute counters are stored consecutively in memory for
each label, each one occupying a certain number of bits
(32 bits in the implementation in this paper). This layout in
memory allows the use of SIMD registers and instructions
available in current processors. For example Intel AVX2
[12] can accommodate 8 32-bit counters in each SIMD
register and operate (sum for example) them in parallel. The
proposed layout allows the use of both vertical (between two
SIMD registers, e.g. the same attribute for different labels)
and horizontal (inside one SIMD register, e.g. different
attributes or values for the same attribute for the same
label) SIMD instructions. These are the operations needed
to perform the additions, multiplications and divisions in
expression 1 (the logarithm that is needed to compute the
entropy is not available in current SIMD instruction sets).
The computation of the related Naive Bayes classifier is
also very similar in terms of operations required, so it also
benefits from SIMD in the same way. We need to investigate
how new extensions recently proposed in ARM SVE [13]
and Intel AVX512 [14], which include predicate registers to
define lane masks for memory and arithmetic instructions,
could also be used in data structures such as the LMHT.

IV. MULTITHREADED ENSEMBLE LEARNING

This section presents the design of a multithreaded en-
semble based on Random Forest for data streams. The
ensemble is composed of L learners, each one making use
of the randomHT described in the previous section. The
overall design aims to low-latency response time and good
scalability on current multi-core processors, also used in
commodity low-end hardware.

Figure 4. Multithreaded ensemble design

The proposed multithreaded implementation makes use of
N threads, as shown in Figure 4: thread 1, the Data Parser
thread, is in charge of parsing the attributes for each input

sample and enqueuing into the Instance Buffer; threads 2
to N, the so-called Worker threads, execute the learners in
parallel to process each of the instances in the Instance
Buffer. The number of threads N is either the number of
cores available in the processor, or the number of hardware
threads the processor supports in case hyper-threading is
available and enabled.

A. Instance Buffer

The key component in the design of the multithreaded
ensamble is the Instance Buffer. Its design has been based
on a simplified version of the LMAX disruptor [15], a
highly scalable low-latency ring buffer designed to share
data among threads.

In LMAX each thread has a sequence number that it uses
to access the ring buffer. LMAX is based on the single
writer principle to avoid writing contention: each thread
only writes to its own sequence number, which can be
read by other threads. Sequence numbers are accessed using
atomic operations to ensure atomicity in the access to them,
enabling the at least one makes progress semantics typically
present on lock-less data structures.

Figure 5 shows the implementation of the Instance Buffer
as an LMAX Ring Buffer. The Head points to the last
element inserted in the ring and it is only written by the
data parser thread, adding a new element in the ring if
and only if Head − Tail < #slots. Each worker thread
i owns its LastProcessedi sequence number, indicating
the last instance processed by worker i. The parser thread
determines the overall buffer Tail using the circular lowest
LastProcessedi for all workers i.

Figure 5. Instance buffer design

Atomic operations have an overhead: require fences to
publish a value written (order non-atomic memory accesses).
In order to minimise the overhead introduced, our proposed
design allows workers to obtain instances from the Ring
Buffer in batches. The batch size is variable, depending on
the values of each worker LastProcessedi and Head.

B. Random Forest Workers and Learners

Random Forest learners are in charge of sampling the
instances in the Instance Buffer with repetition, doing the
randomHT inference and, if required, reseting a learner
when drift is detected. Each worker thread has a number

of learners (|L||N−1| approximately) assigned in a static way
(all learners l such that l%(N − 1) = i, being i the worker
thread identifier). This static task distribution may introduce
certain load unbalance but avoids the synchronisation that
would be required by a dynamic assignment of learners to
threads. In practice, we do no expect this unbalance to be
a big problem due to the randomisation present in both the
sampling and in the construction of the randomHT.

Each entry in the Ring Buffer stores the input instance
and a buffer where each worker stores the output of the
classifiers. To minimise the accesses to this buffer, each
worker locally combines the output of its assigned learners
for each instance; once all learners assigned to the worker
are finished, the worker writes the combined result into
the aforementioned buffer. Finally the data parser thread
is responsible of combining the outputs produced by the
workers and generating the final output.

V. EXPERIMENTAL EVALUATION

This section evaluates the proposed design and implemen-
tation (based on templates and C++14) for both LMHT and
the multithreaded RF ensemble.

Performance and accuracy are compared against two
state–of–the–art reference implementations: MOA (Massive
Online Analysis [8]) and StreamDM [9]. StreamDM does
not provide a RF implementation, but we considered it in
the single HT evaluation since it is also written in C++.

Two widely used datasets that have been used in several
papers on data stream classification are used to conduct
the evaluation in this section: Forest Covertype [16] and
Electricity [17]. In addition, larger datasets have also been
generated using some of the available synthetic stream gen-
erators in MOA. Table I summarises the resulting datasets
used in this section after binarising them.

Table I
DATASETS USED IN THE EXPERIMENTAL EVALUATION, INCLUDING

BOTH REAL WORLD AND SYNTHETIC DATASETS

Dataset Samples Attributes Labels Generator
CoverType 581,012 134 7 Real world
Electricity 45,312 103 2 Real world
r1-6 1,000,000 91 5 RandomRBF Drift
h1-2 1,000,000 91 5 Hyperplane
l1 1,000,000 25 10 LED Drift
s1-2 1,000,000 25 2 SEA

The hardware platforms that have been used to conduct
the accuracy and performance analysis in this section are
summarised in Table II. A desktop-class Intel I7 platform is
used to compare accuracy and to evaluate the performance of
the two reference platforms, StreamDM and MOA (running
on Oracle JAVA JDK 1.8.0 73). In order to perform a
more complete evaluation of the throughput and scalability
achieved by LMHT, additional platforms have been used, in-
cluding three ARM-based systems, from low-end Raspberry
Pi3 to NVIDIA Jetson TX1 embedded system and Applied

Micro X-Gene 2 server board. Finally, a system based on
the latest Intel Xeon generation sockets has been used to
explore the scalability limits of the multithreaded RF.

A. Hoeffding Tree Accuracy

Table III compares the accuracy achieved by MOA,
StreamDM and LMHT. The main conclusion is that the three
implementations behave similarly, with less than one percent
difference in accuracy in all datasets but r2 and r5 for which
LMHT improves almost two percent. On the real world data
sets (CoverType and Electricity) learning curves are almost
identically for all three implementations (not included for
page limit reasons).

The minor differences that are observed are due to the
fact that in few cases LMHT obtains different values for
the Hoeffding Bound (eq. 2) at the same time step when
compared to MOA, and this may cause node splits at differ-
ent time steps (and in few cases using different attributes).
MOA uses dynamic vectors to store the attribute counters.
These counters are forwarded to child nodes as the previous
class distribution in the presence of a split. LMHT uses
a preallocated vector that can only grow. In some cases
these vectors can have different sizes at the same time step,
affecting the class range used to compute the bound.

B. Hoeffding Tree Throughput Evaluation

Table IV shows the throughput (instances per millisecond)
achieved by the two reference implementations and LMHT
on the different platforms, for each dataset and the average of
all datasets. For each implementation/platform, the speedup
with respect to MOA is also shown.

On the Intel i7-based platform LMHT outperforms the
two reference implementations by a 6.7x factor, achieving
on the average a throughput above the 500 instances per
millisecond. The worst case (CoverType) has a throughput
close to 250 instances (of 134 attributes) per millisecond.
StreamDM performs the worst in almost all datasets, with
an average slowdown compared to MOA of 0.9.

On the Jetson and X-Gene2 ARM-based platforms,
LMHT performs quite similarly, achieving 3x lower through-
put, on the average, compared to the Intel i7-based system.
However, on the average LMHT is able to process 168 and
149 instances per millisecond on these two ARM platforms,
which is better than the two reference implementations on
the Intel i7, and in particular 2x better than MOA. The last
column in Table IV corresponds to the RPi3 throughput,
which is similar to MOA on the Intel i7, showing how the
implementation of LMHT is portable to low-end devices
doing real-time classification on the edge.

Figure 6 summarises the results in terms of performance.
Up to this point, the main factor limiting the performance of
LMHT on a single HT is the CSV parser, which is in charge
of reading from a file the attributes for each input sample. In
order to disect the influence of this parser, Table V shows the

overhead introduced by the parser when data is read from
a file or when data is already parsed and directly streamed
from memory, resulting in an average 3x improvement.

C. Random Forest Accuracy and Throughput

In this section we compare the performance and accu-
racy of MOA and the proposed RF ensemble design with
100 learners. Table VI compares the accuracy of the two
implementations, with less than one percentage points of
difference in the average accuracy. The comparison with
StreamDM is not possible since it does not provide an
implementation for RF. The same table also shows the
numerical stability of LMHT, with a small standard deviation
(on 12 runs). These variations in LMHT are due to the
random number generator used at the sampling and random
attributes selection. LMHT uses a different seed at each
execution, while MOA uses a default seed (unless a custom
one is specified by the user; we used the default seed in
MOA).

As with the single HT, learning curves for the real world
datasets CoverType and Electricity have a similar pattern, as
shown in Figure 7: at early stages LMHT is slightly better,
but soon they become very similar.

Table VII summarises the results in terms of through-
put, comparing again with the performance that the MOA
reference implementation provides. On the same hardware
platform (Intel i7) we observe an average throughput im-
provement of 85x compared to MOA when 11 threads are
used as workers, resulting on an average throughput very
close to 100 instances per millisecond; MOA throughput
is less than 2 instances per millisecond in all tests. The
Intel Xeon platform results in almost the same throughput
than the Intel i7 which uses a much modest core count (6
instead of 24). Two main reasons for this behaviour: 1) the
parser thread reads data from a CSV file stored in GPFS
on a large cluster with several thousand nodes; if the parser
thread directly streams data from memory, the throughput
that is obtained raises to 175 instances per millisecond (143x

co
v

el
ec h1 h2 l1 r1 r2 r3 r4 r5 r6 s1 s2

Datasets

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Sp
ee

du
p

10

StreamDM (Intel i7)
LMHT (Intel i7)
LMHT (Jetson TX1)

LMHT (X-Gene2)
LMHT (Rpi3)

Figure 6. LMHT and StreamDM speedup over MOA using a single HT

Table II
PLATFORMS USED IN THE EXPERIMENTAL EVALUATION

Platform Cores Procesor RAM Storage SO Kernel Compiler
Intel Xeon 24 Intel Xeon Platinum 8160 @ 2.1GHz 96GB Network (gpfs) SUSE 12 server 4.4.59-92.20-default GCC 7.1.0
Intel i7 6 Intel i7-5930K @ 3.7GHz 64GB SSD Debian 8.7 4.7.8-1 GCC 6.3.0
X-Gene2 8 ARM ARMv8-A @ 2.4 GHz 128GB Network (gpfs) Debian 8 4.3.0-apm arm64 sw 3.06.25 GCC 6.1.0
Jetson TX1 4 ARM Cortex A57 @ 1.9 GHz 4GB eMMC L4T 3.10.96 GCC 6.1.0
Raspberry RPi3 4 ARM Cortex A53 @ 1.2GHz 1GB Class 10 SD Card Fedora 26 64bits 4.11.8-300.fc26.aarch64 GCC 7.1.0

Table III
SINGLE HOEFFDING TREE ACCURACY COMPARISON

Dataset MOA StreamDM LMHT
CoverType 73.18 73.18 73.16
Electricity 79.14 79.14 79.14
h1 84.67 84.67 84.67
h2 78.03 78.03 78.03
l1 68.58 68.58 68.40
r1 82.04 82.04 82.98
r2 43.71 43.71 45.86
r3 31.58 31.58 32.24
r4 82.04 82.04 82.98
r5 75.88 75.88 77.40
r6 73.71 73.71 74.61
s1 85.81 85.81 85.85
s2 85.75 85.75 85.76

0 100000 200000 300000 400000 500000 600000
Instances

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

MOA LMHT

0 10000 20000 30000 40000
Instances

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

MOA LMHT

Figure 7. Random Forest learning curve: CoverType (top) and Electricity
(bottom)

faster than MOA). And 2) the different clock frequencies at
which the i7 and Xeon sockets operate (3.7 and 2.1 GHz,
respectively, as shown in Table II); in any case, the Xeon–
based platform allows us to do an scalability analysis up to
a larger number of cores.

On the ARM-based platforms we observe improvements
of 10x and 20x on the Jetson TX1 and X-Gene2 platforms,
respectively.

D. Random Forest Scalability

Finally, this subsection analyses the scalability of the pro-
posed ensemble implementation with the number of worker
threads, always limiting the analysis to the number of cores
(hardware threads) available in a socket. On the commodity
Intel i7 platform, LMHT achieves a relative speedup with
respect to single threaded execution, between 5-7x when
using 11 workers (12 threads), as shown in Figure 8. It
is interesting to observe the drop in performance observed
when going from 5 to 6 worker threads. Since the i7-5930K
processor has 6 cores and 12 threads (two threads mapped
on the same physical core), when 6 workers are used they
start competing for the same physical cores introducing some
work imbalance. However, the hyperthreading capabilities
of the i7-5930K are able to mitigate this as the number of
threads tends to the maximum hardware threads.

1 2 3 4 5 6 7 8 9 10 11
Workers threads

1

2

3

4

5

6

7

Re
la

tiv
e

Sp
ee

du
p

cov
elec
h1
h2
l1

r1
r2
r3
r4

r5
r6
s1
s2

Figure 8. Random Forest speedup on Intel i7

X-Gene2 scalability has some variability for the different
datasets and speed-ups in the range 5-6.5x when using 7
worker threads (Figure 9). On the other side, Jetson achieves
an almost linear speedup very close to 3x when using 3
threads as workers. (Jetson scalability figure is omitted due
to page limits).

In order to better study the scalability limits of the LMHT
ensemble, we have extended our evaluation to one of the
latest Intel Xeon Scalable Processor, the Platinum 8160
socket which include 24 cores. To better analyse if the limits
are in the producer parser thread or in the implementation
of the instance buffer and worker threads, we consider two
scenarios: parser thread reading instances from storage and
directly streaming them from memory.

Table IV
SINGLE HOEFFDING TREE THROUGHPUT COMPARED TO MOA. ↓ INDICATES SPEED-DOWN (MOA IS FASTER)

MOA(Intel i7) StreamDM (Intel i7) LMHT (Intel i7) LMHT (Jetson TX1) LMHT (X-Gene2) LMHT (RPi3)
Dataset Throughput Throughput Speedup Throughput Speedup Throughput Speedup Throughput Speedup Throughput Speedup
Covertype 41.20 34.65 0.84 ↓ 251.63 6.11 78.67 1.91 68.13 1.65 43.78 1.06
Electricity 36.70 60.98 1.66 415.71 11.33 122.80 3.35 87.47 2.38 86.80 2.37
h1 62.11 54.79 0.88 ↓ 418.94 6.74 127.96 2.06 101.18 1.63 89.57 1.44
h2 61.14 65.04 1.06 416.67 6.81 128.49 2.10 127.16 2.08 89.39 1.46
l1 141.20 99.18 0.70 ↓ 834.03 5.91 277.01 1.96 231.27 1.64 79.81 0.57 ↓
r1 51.56 41.96 0.81 ↓ 333.00 6.46 104.98 2.04 52.74 1.02 43.43 0.84 ↓
r2 52.23 42.76 0.82 ↓ 333.56 6.39 107.54 2.06 94.71 1.81 42.84 0.82 ↓
r3 56.06 42.98 0.77 ↓ 332.78 5.94 110.06 1.96 94.55 1.69 42.60 0.76 ↓
r4 54.54 42.79 0.78 ↓ 334.56 6.13 110.84 2.03 95.30 1.75 43.43 0.80 ↓
r5 54.52 42.17 0.77 ↓ 326.90 6.00 110.56 2.03 95.05 1.74 43.24 0.79 ↓
r6 53.69 41.83 0.78 ↓ 332.56 6.19 110.24 2.05 94.81 1.77 42.95 0.80 ↓
s1 192.68 162.81 0.84 ↓ 1253.13 6.50 401.61 2.08 398.57 2.07 281.53 1.46
s2 179.22 166.09 0.93 ↓ 1250.00 6.97 402.58 2.25 398.57 2.22 281.69 1.57
Average 79.76 69.08 0.90 ↓ 525.65 6.73 168.72 2.14 149.19 1.80 93.16 1.13

Table V
LMHT PARSER OVERHEAD (INSTANCES PER MS)

Dataset With Parser In Memory speedup
Covertype 251.63 859.49 3.42
Electricity 415.71 1618.29 3.89
h1 418.94 1647.45 3.93
h2 416.67 1636.66 3.93
l1 834.03 1550.39 1.86
r1 333.00 890.47 2.67
r2 333.56 878.73 2.63
r3 332.78 881.83 2.65
r4 334.56 889.68 2.66
r5 326.90 884.96 2.71
r6 332.56 875.66 2.63
s1 1253.13 4000.00 3.19
s2 1250.00 4000.00 3.20
Average 525.65 1585.66 3.03

Table VI
RANDOM FOREST ACCURACCY

MOA LMHT
Dataset Avg. Std. dev.
CoverType 85.34 86.37 0.23
Electricity 82.41 82.12 0.22
h1 87.97 88.41 0.24
h2 83.18 82.48 0.24
l1 68.68 68.18 0.20
r1 86.35 87.39 0.13
r2 65.96 68.04 0.14
r3 40.61 45.05 0.12
r4 86.35 87.41 0.13
r5 81.42 82.79 0.12
r6 79.10 79.81 0.12
s1 86.49 86.54 0.24
s2 86.48 86.53 0.24

The two plots in Figure 10 show the speed-up, with
respect to a single worker, that is achieved when using up to
24 cores (23 worker threads). With the parser from storage
(top plot), an speed-up between 6-11x is obtained when
using 23 worker threads, which corresponds to a parallel
efficiency below 45%. Both figures raise to 10-16x and 70%
when the parser streams directly from memory (bottom plot).

VI. RELATED WORK

Real-time high-throughput data stream classification has
been a hot research topic in the last years. The unfeasibility
to store potentially infinite data streams has led to the

1 2 3 4 5 6 7

Workers threads

1

2

3

4

5

6

7

Re
la

tiv
e

Sp
ee

du
p

cov
elec
h1
h2
l1
r1
r2

r3
r4
r5
r6
s1
s2

Figure 9. Random Forest speedup on X-Gene2

proposal of classifiers able to adapt to concept drifting only
with a single pass through the data. Although the throughput
of these proposals is clearly limited by the processing
capacity of a single core, little work has been conducted
to scale current data streams classification methods.

For example Vertical Hoeffding Trees (VHDT [18]) par-
allelize the induction of a single HT by partitioning the
attributes in the input stream instances over a number of
processors, being its scalability limited by the number of
attributes. A new algorithm for building decision trees is
presented in SPDT [19] based on Parallel binning instead
of the Hoeffding Bound used by HTs. [20] propose MC-
NN, based on the combination of Micro Clusters (MC) and
nearest neighbour (NN), with less scalability than the design
proposed in this paper.

Related to the parallelization of ensembles for real-time
classification, [21] has been the only work proposing the
porting of the entire Random Forest algorithm to the GPU,
although limited to binary attributes.

VII. IMPLEMENTATION NOTES

This section includes some implementation notes that may
be useful for someone willing to use the design proposed in
this paper or extend its functionalities to implement other
learners based on classification trees. Upon publication, the

Table VII
RANDOM FOREST THROUGHPUT COMPARISON (INSTANCES/MS)

MOA (Intel i7) LMHT (Intel i7, 11 workers) LMHT (Intel Xeon, 23 workers) LMHT (Jetson TX1, 3 workers) LMHT (X-Gene2, 7 workers)
Dataset Throughput Throughput Speedup Throughput Speedup Throughput Speedup Throughput Speedup
Covertype 1.30 96.48 74.22 90.85 69.89 14.68 11.29 31.31 24.09
Electricity 1.48 109.71 74.03 97.87 66.04 15.04 10.15 23.32 15.74
h1 1.15 103.42 90.25 100.63 87.82 12.51 10.92 28.52 24.89
h2 1.37 98.89 72.23 97.99 71.57 11.19 8.18 26.95 19.68
l1 1.54 100.95 65.56 142.11 92.29 12.07 7.84 26.99 17.53
r1 0.93 103.00 111.29 105.99 114.53 13.17 14.23 29.49 31.87
r2 1.15 101.54 87.97 104.55 90.57 13.05 11.30 29.21 25.31
r3 1.72 99.86 57.91 103.36 59.93 12.70 7.36 28.49 16.52
r4 0.91 102.70 113.07 103.64 114.10 13.17 14.50 29.76 32.77
r5 0.92 102.09 111.47 104.03 113.58 13.13 14.33 29.32 32.02
r6 0.94 103.08 109.72 106.76 113.63 13.14 13.98 29.49 31.39
s1 1.71 127.39 74.29 131.08 76.44 12.36 7.21 30.76 17.94
s2 1.74 124.64 71.67 127.00 73.03 11.54 6.64 30.20 17.37
Average 1.30 105.67 85.67 108.91 87.95 12.90 10.61 28.76 23.62

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Workers threads

1

2

3

4

5

6

7

8

9

10

11

Re
la

tiv
e

Sp
ee

du
p

cov
elec
h1
h2
l1

r1
r2
r3
r4

r5
r6
s1
s2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Workers threads

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Re
la

tiv
e

Sp
ee

du
p

cov
elec
h1
h2
l1

r1
r2
r3
r4

r5
r6
s1
s2

Figure 10. Intel Xeon Platinum 8160 scalability, with the parser thread
streaming from storage (top) and memory (bottom).

implementation of both LMHT and the RF ensemble will
be released as open source, including in this section the
appropriate reference to github.

All the implementation relies on C++14 powerful template
features. Templates replace dynamic allocations at runtime
by static objects that can be optimized by the compiler.
Attribute counters are designed using a relaxed version of
the Single Responsibility Principle (SRP [22]). The counter
class only provides the data, and any extra functionalities

such as the split criterion (Information Gain in this study)
or leaf classifier are implemented in a separate object.
Information gain and leaf classifiers rely on the compiler
for the automatic vectorisation of the computation in the
HT leaves as a fast way to achieve SIMD portability.

For safe access to the instance buffer in the mul-
tithreaded implementation of Random Forest, the im-
plementation makes use of the C++11 atomic API
(std::memory_order), allowing to fine tune the order of
memory accesses in a portable way. In particular, the use of
the memory order consume for write operations and mem-
ory order relaxed for read operations. Regarding threads,
although the C++11 std::thread offers a portable API
across platforms, pinning threads to cores must be done
using the native thread library (e.g. Pthreads on Linux);
thread pinning has been required to improve scalability in
some platforms.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented a novel design for real-time data
stream classification, based on a Random Forest ensemble
of randomised Hoeffding Trees. This work goes one big step
further in fulfilling the low-latency requirements of today
and future real-time analytics. Modularity and adaptivity to
a variety of hardware platforms, from server to edge com-
puting, has also been considered as a requirement driving
the proposed design. The design favours an effective use of
cache, SIMD units and multicores in nowadays processor
sockets.

Accuracy of the proposed design has been validated with
two reference implementations: MOA (for HT and Random
Forest) and StreamDM (for HT). Throughput is evaluated on
a variety of platforms. On Intel-based systems: i7 desktop
(6 cores) and Xeon server (24 cores) class sockets. And
on ARM-based systems: NVIDIA Jetson TX1 (4 cores),
Applied Micro X-Gene2 (8 cores) and low-end Raspberry
RPi3 (4 cores). For single HT the performance evaluation
in terms of throughput reports 6.7x (i7), around 2x (Jetson
TX1 and X-Gene2) and above 1x (RPi3) compared to MOA

executed in i7. For Random Forest the evaluation reports
throughput improvements of 85x (i7), 143x (Xeon pars-
ing from memory), 10x (Jetson TX1) and 23x (X-Gene2)
compared to single-threaded MOA on i7. The proposed
multi-threaded implementation for the ensemble shows good
scalability up to the largest core count socket that we have
evaluated (75% parallel efficiency when using 24 cores on
the Intel Xeon).

The evaluation also reports how the parser thread, in
charge of feeding instances to the HT and ensemble, can
easily limit throughput. The limits are mainly observed be-
cause of the media used to store the data (GPFS, solid–state
disks, eMMC, SD, ...) that feeds the learners. For large core
counts, we need to investigate if the proposed single–parser
design limits scalability and find the appropriate number
of learners per parser ratio. Improving the implemention in
order to consider counters for attributes other than binary is
also part of our near future work. Scaling the evaluation
to multi-socket nodes in which NUMA may be critical
for performance and extending the design to distribute the
ensemble across several nodes in a cluster/distributed system
are part of our future work.

ACKNOWLEDGMENTS

This work is partially supported by the Spanish Govern-
ment through Programa Severo Ochoa (SEV-2015-0493), by
the Spanish Ministry of Science and Technology through
TIN2015-65316-P project, by the Generalitat de Catalunya
(contract 2014-SGR-1051), by the Universitat Politècnica de
Catalunya through an FPI/UPC scholarship and by NVIDIA
through the UPC/BSC GPU Center of Excellence.

REFERENCES

[1] T. Bujlow, T. Riaz, and J. M. Pedersen, “Classification of http
traffic based on c5.0 machine learning algorithm,” in 2012
IEEE Symposium on Computers and Communications (ISCC),
July 2012.

[2] A. Jadhav, A. Jadhav, P. Jadhav, and P. Kulkarni, “A novel
approach for the design of network intrusion detection sys-
tem(nids),” in International Conference on Sensor Network
Security Technology and Privacy Communication System,
May 2013.

[3] A. Salazar, G. Safont, A. Soriano, and L. Vergara, “Automatic
credit card fraud detection based on non-linear signal pro-
cessing,” in 2012 IEEE International Carnahan Conference
on Security Technology (ICCST), Oct 2012.

[4] P. Domingos and G. Hulten, “Mining high-speed data
streams,” in Proceedings of the 6th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
2000, pp. 71–80.

[5] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, Oct 2001.

[6] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging Bag-
ging for Evolving Data Streams,” in Machine Learning and
Knowledge Discovery in Databases, 2010, pp. 135–150–150.

[7] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A survey on concept drift adaptation,” ACM
Comput. Surv., vol. 46, no. 4, pp. 44:1–44:37, Mar. 2014.

[8] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA:
Massive online analysis,” J. Mach. Learn. Res., vol. 11, pp.
1601–1604, Aug. 2010.

[9] StreamDM-C++: C++ Stream Data Mining. IEEE
Computer Society, 2015. [Online]. Available:
https://github.com/huawei-noah/streamDM-Cpp

[10] W. Hoeffding, “Probability inequalities for sums of bounded
random variables,” Journal of the American Statistical Asso-
ciation, vol. 58, no. 301, pp. 13–30, 1963.

[11] A. Bifet and R. Gavaldà, “Learning from time-changing
data with adaptive windowing,” in In SIAM International
Conference on Data Mining, 2007.

[12] Intel, “Optimizing performance with intel advanced vector
extensions. intel white paper,” 2014.

[13] F. Petrogalli, “A sneak peek into sve and vla programming.
arm white paper,” 2016.

[14] I. Corporation, “Intel architecture instruction set extensions
programming reference,” 2016.

[15] M. Thompson, D. Farley, M. Barker, P. Gee, and A. Stew-
art, DISRUPTOR: High performance alternative to bounded
queues for exchanging data between concurrent threads,
2015.

[16] J. A. Blackard and D. J. Dean, “Comparative accuracies
of artificial neural networks and discriminant analysis in
predicting forest cover types from cartographic variables,”
1999.

[17] M. Harries, U. N. cse tr, and N. S. Wales, “Splice-2 compar-
ative evaluation: Electricity pricing,” Tech. Rep., 1999.

[18] N. Kourtellis, G. D. F. Morales, A. Bifet, and A. Murdopo,
“Vht: Vertical hoeffding tree,” in 2016 IEEE International
Conference on Big Data (Big Data), Dec 2016, pp. 915–922.

[19] Y. Ben-Haim and E. Tom-Tov, “A streaming parallel decision
tree algorithm,” J. Mach. Learn. Res., vol. 11, pp. 849–872,
Mar. 2010.

[20] M. Tennant, F. Stahl, O. Rana, and J. B. Gomes, “Scalable
real-time classification of data streams with concept drift,”
Future Generation Computer Systems, April 2017.

[21] D. Marron, G. D. F. Morales, and A. Bifet, “Random forests
of very fast decision trees on gpu for mining evolving big
data streams,” in Proceedings of ECAI 2014, 2014.

[22] R. Martin, Agile Software Development: Principles, Patterns,
and Practices, ser. Alan Apt series. Pearson Education, 2003.

