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Abstract—In situ lossy compression allowing user-controlled
data loss can significantly reduce the I/O burden. For large-
scale N-body simulations where only one snapshot can be
compressed at a time, the lossy compression ratio is very
limited because of the fairly low spatial coherence of the
particle data. In this work, we assess the state-of-the-art single-
snapshot lossy compression techniques of two common N-body
simulation models: cosmology and molecular dynamics. We
design a series of novel optimization techniques based on the
two representative real-world N-body simulation codes. For
molecular dynamics simulation, we propose three compression
modes (i.e., best speed, best tradeoff, best compression mode)
that can refine the tradeoff between the compression rate
(a.k.a., speed/throughput) and ratio. For cosmology simulation,
we identify that our improved SZ is the best lossy compressor
with respect to both compression ratio and rate. Its compres-
sion ratio is higher than the second-best compressor by 11%
with comparable compression rate. Experiments with up to
1024 cores on the Blues supercomputer at Argonne show that
our proposed lossy compression method can reduce I/O time
by 80% compared with writing data directly to a parallel
file system and outperforms the second-best solution by 60%.
Moreover, our proposed lossy compression methods have the
best rate-distortion with reasonable compression errors on the
tested N-body simulation data compared with state-of-the-art
compressors.

I. INTRODUCTION

Because of ever-increasing parallel execution scale, to-
day’s scientific simulations are producing volumes of data
too large to be accommodated in storage systems. The
limitation comes from the limited storage capacity and I/O
bandwidth of parallel file systems in production facilities.
Cosmology simulations such as the Hardware/Hybrid Ac-
celerated Cosmology Code (HACC) [9] are typical exam-
ples of parallel executions facing this issue. HACC solves
an N-body problem involving domain decomposition, a
medium-/long-range force solver based on a particle-mesh
method, and a short-range force solver based on a particle-
particle/particle-mesh algorithm. According to cosmology
researchers, the number of particles to simulate can be up
to 3.5 trillion in today’s simulations (and even more in the
future), which leads to 60 PB of data to store; yet a system
such as the Mira supercomputer has only 26 PB of file
system storage. Currently, HACC users rely on decimation in
time, storing only a fraction of the simulation snapshots, to
reduce the pressure on the storage system. A reduction factor
of 80% to 90% is commonly used. At exascale, temporal
decimation will not be enough to address the limitations of
the storage system: snapshots will be so large (each in the
range of 5 PB) that the time to store each snapshot (83

minutes on a storage system offering a sustained bandwidth
of 1 TB/s) will become a serious problem. HACC is not a
special case. Another example of exascale particle simula-
tion requiring data reduction is the atomistic modeling of
the microstructural evolution of material. This application
uses the Accelerated Molecular Dynamics Family (AMDF)
code [1] developed at Los Alamos National Laboratory for
generating high-quality trajectories of ensembles of atoms
in materials. At exascale, storing each full snapshot in this
case would also take too long, however, so that in situ
compression of each snapshot is needed.

In this paper, we focus on how to optimize the lossy
compression quality of individual snapshots for scientific
data sets produced by N-body simulations. Compressing in-
dividual snapshots is challenging because we cannot reduce
the data size by leveraging the smoothness of particle’s
trajectory (such as compression in the time dimension),
which is the common approach used to compress particle
data sets. Instead, we can use only the spatial information
and fairly limited correlation of adjacent elements in the
data set to perform the data compression. This approach is
significantly more challenging than mesh-data compression
and trajectory-based data compression. Unlike the regular or
irregular mesh data generated by conventional simulations
such as fluid dynamics, the data fields of particles such
as the coordinate and velocity are stored in separate 1D
arrays across different dimensions. In the two applications
considered in this study, the indices of every 1D array are
kept consistent for the same particle. All key data in the
HACC code, for example, are stored in six 1D arrays: three
coordinate fields (xx, yy, zz) and three velocity fields (vx,
vy, vz). Because of the lack of correlation between adjacent
particles in the data set, state-of-the-art lossy compressors
(such as SZ [8], [20] and ZFP [13]) cannot work effectively.
Moreover, the data across various fields are diverse, with
different features.

In this work, we assess the existing state-of-the-art single-
snapshot lossy compression techniques based on the two
common N-body simulation models: the AMDF molecular
dynamics simulation model and HACC hierarchical cosmol-
ogy simulation model. The AMDF code is a classical molec-
ular dynamics code developed by LANL, and HACC is a
typical representative of the hierarchical model. We propose
a series of novel optimization techniques. Specifically, we
make the following four contributions.

• We propose three compression modes for molecular
dynamics simulation that can refine the tradeoff be-
tween the compression rate (a.k.a., speed/throughput)
and ratio. (1) Our solution with best speed mode
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(called SZ-LV) improves the prediction method, such
that the compression rate turns 4.4x as fast as that of
the existing best-ratio compressor CPC2000 with only
12% lower compression ratio. (2) The best tradeoff
mode (called SZ-LV-PRX) adopts a partial-radix sorting
based on R-index, obtaining 2x improvement on the
compression rate with unchanged compression ratio
compared with CPC2000. (3) The best compression
mode (called SZ-CPC2000) combines our improved SZ
and CPC2000, increasing the compression ratio by 13%
and the compression rate by 10% over CPC2000.

• For cosmology simulation, we identify that our SZ-
LV is the best lossy compressor with respect to both
compression ratio and rate. Its compression ratio is
higher than the second-best compressor by 11% with
comparable compression rate.

• Our experiments with up to 1024 cores on a super-
computer show that our proposed lossy compression
method can reduce I/O time by 80% compared with
writing data directly to a parallel file system and out-
performs the second-best solution by 60%. The exper-
iments also show that our proposed lossy compression
methods have the best rate-distortion with reasonable
compression errors on the tested N-body simulation
data compared with state-of-the-art compressors.

The rest of the paper is organized as follows. We discuss
the related work in Section II. In Section III, we formulate
the data compression problem based on the N-body simu-
lation data sets. In Section IV, we assess the existing state-
of-the-art lossy compression approaches (or compressors) on
the two real-world N-body simulation data. In Section V, we
propose our novel optimization methods to improve the lossy
compression for the N-body simulation data. In Section VI,
we evaluate the compression ratios and compression rates for
all the lossy compression approaches based on both serial
execution and parallel execution. We provide concluding
remarks in Section VII.

II. RELATED WORK

Lossless and Lossy Compression: Data compression
has been extensively studied for decades and can be split into
two categories: lossless compression and lossy compression.
Lossless compressors (such as Huffman coding [10] and
LZ77 [23]) can work effectively on the digital streams (such
as image or sound) that are composed of integer numbers.
However, they suffer from a very low compression ratio
on scientific data sets composed of floating-point values (as
confirmed by [8], [20]), because of high randomness of the
tailing mantissa bits such that finding the exact same patterns
or repeated values in the sequence is difficult.

Recently, many lossy compressors [4], [8], [12]–[14],
[18], [19] have been designed and implemented for scientific
data. Many of them are designed for mesh data sets, which
are expected to have strong coherence among the nearby
data in the data set. SZ [8], for example, predicts the
value for each data point by its preceding neighbors in
the multidimensional space and then performs a customized
Huffman coding [10] to shrink the data size significantly.
ZFP [13] splits the whole data set into many small blocks
with an edge size of 4 along each dimension and compresses
the data in each block separately by a series of carefully
designed steps (including alignment of exponent, orthogonal
transform, fixed-point integer conversion, and binary rep-
resentation analysis with bit-plane encoding). FPZIP [14]

adopts predictive coding and also ignores insignificant bit
planes in the mantissa based on the analysis of IEEE 754
binary representation [5]. SSEM [18] splits data into a high-
frequency part and low-frequency part by wavelet transform
[6] and then uses vector quantization and GZIP. ISABELA
[12] sorts the data and then performs the data compression
by B-spline interpolation. Several papers [2], [18] have
shown that these lossy compressors can work effectively on
mesh data, but the quality of their compression declines on
N-body simulation data sets, which is a significant gap for
the compressors and N-body simulation researchers.

N-body Simulation Data Compression: Compression
of N-body simulation data sets has also been studied for
years, but most of the methods proposed are designed
based on smooth temporal trajectory of the same particles
[4], [11], [15], [22]. All such trajectory-based compression
schemes requires to load/keep multiple snapshots during
the compression/simulation, hence, they are not suitable for
extremely large-scale simulation in which only one snapshot
is allowed to be loaded into the memory.

In addition to the temporal-coherence based compression
methods, we noted one related work on the particle com-
pression based on single snapshot. Omeltchenko et al. [16]
proposed a lossy compression method (called CPC2000 in
this paper) that does not rely on the temporal coherence.
Four steps are involved: (1) It first converts all floating-
point values (including coordinate fields and velocity fields)
to integer numbers by dividing them by user-required error
bound. (2) Then, it reorganizes all particles in the space
onto a zigzag-similar space-filling curve [3] by splitting
the space into multiple small blocks and constructing a
uniform Oct-tree index in each block based on the coordinate
fields (xx, yy, zz). (3) It sorts the particles based on the
R-indices by a radix-similar sorting method in each block,
and then computes the difference of the adjacent indices.
(4) It performs a tailored adaptive variable-length encoding
to shrink the storage size. We implemented the method
rigorously and compare it with other approaches in our
evaluation section.

III. PROBLEM STATEMENT

As discussed above, the main limitation of lossless com-
pressors is their limited data reduction capability [17] and
even lower on N-body simulation data sets, thus we focus on
the lossy compression methods for N-body simulations. As
discussed above, because of considerations of memory con-
sumption, we focus on single-snapshot compression without
utilization of temporal coherence in this work.

Compression in parallel falls into two categories: in situ
compression and off-line compression. For in situ com-
pression, each rank or process can compress/decompress a
fraction of the data that is being held in its memory. For
off-line compression, a parallel program can be used to load
the data into multiple processes and run the compression
separately on them. In this work, we focus on the in
situ compression for parallel N-body simulation application
rather than off-line compression.

N-body simulations contain many variables each repre-
senting one data field of particles. In the two applications
considered in this study, the variables are stored in separate
1D arrays. Each array has a specific data type, for example,
integer, single or double floating point, and string data. Since
the major type of the scientific data is floating point, we
focus on floating-point data compression. Note that the vari-
ables may be stored in an array of structures or a structure of



arrays in other N-body simulations, but the storage format
doe not change the data compression problem. Further,
each snapshot of N-body simulations contains six floating-
point variables, namely, xx, yy, zz, vx, vy, vz. The first three
indicate coordinate information, and the other three indicate
velocity along the three dimensions. As confirmed by HACC
and AMDF code developers/users, the only floating-point
data used in the analysis by them are positions and velocities
and other quantities of interest can be recomputed from
positions and velocities. Also, other N-body simulations
may use other fields such as energy and entropy that are
much smoother and easier to compress than position and
velocity, such that the final size of the compressed data set is
largely dominated by position and velocity compressibility.
Therefore, we focus on optimizing the lossy compression of
coordinate and velocity data in N-body simulation.

In summary, the main objective of our work is to optimize
the single-snapshot in situ lossy compression quality for N-
body simulation data sets, mainly on coordinate and velocity
data, provided that the compression errors are controlled
within a user-specified bound for each data point. Com-
pression ratio (i.e., compression factor) is a key assessment
metric; it is the ratio of the original data size to the
compressed data size. The distortion of the data through the
compression can be evaluated by different measurements,
such as maximum point-wise compression error and peak-
to-signal ratio. Moreover, an ideal in situ data compressor
should also have high compression rate.

To describe the evaluation metrics clearly, we use the
particle’s velocity variable vx as an example and define
some necessary notation as follows. We denote the original
1D array of vx as {vx1, vx2, ..., vxN}, where each vxi is a
floating-point scalar. We denote the reconstructed array by
{ ˜vx1, ˜vx2, ..., ˜vxN}, which is recovered by the decompres-
sion process. We also denote the value range of variable vx
by Rvx, that is, Rvx = vxmax − vxmin.

Pointwise compression error: For data point i, let
ei = |vxi − ˜vxi|, where ei is the absolute error. For error-
controlled lossy compression, the compression errors can be
guaranteed within an error bound, which can be expressed
as ei < ebabs for 1 ≤ i ≤ N , where ebabs is a user-
specified absolute error bound. Similar to [20], we also
define the value-range-based relative error bound as the
ratio of ebabs/Rvx, denoted by ebrel.

Average compression error: To evaluate the average
error in the compression, we adopt the normalized root
mean squared error (NRMSE), which is calculated as√∑N

i=1 e
2
i /N/Rvx.

Compression and decompression rate: To evaluate the
speed/throughput of the compressor, we calculate the com-
pression and decompression rate (in bytes/second) based on
execution time and data size.

IV. OVERVIEW OF STATE-OF-THE-ART COMPRESSION
METHODS ON N-BODY SIMULATION DATA SETS

Before proposing our analysis and optimizations, we
first evaluate the compression ratios of the current state-
of-the art lossless and lossy compressors including GZIP,
CPC2000, FPZIP, ISABELA, ZFP, and SZ. Since SSEM
cannot guarantee compression errors within user-set error
bounds [8] and since NUMARCK depends on the multiple
snapshots [4], they are not included in this research and we
do not present their compression ratios here. We conduct
the compression on two real-word N-body simulation data

Table I: Descriptions of N-body simulation data sets used in the assessment

Name # of Particles # of Snapshots Data Size
HACC 147.3 million 500 1.8 TB
AMDF 2.8 million 500 34 GB

Table II: Compression ratios of state-of-the-art lossless and lossy compres-
sors on N-body simulation data sets under ebrel = 10−4

Compressor HACC AMDF
GZIP 1.2 1.1
CPC2000 3.5 3.2
FPZIP 3.1 1.8
ISABELA 1.4 1.2
ZFP 2.3 1.9
SZ 4.6 2.7

sets: HACC data sets from cosmology simulation and AMDF
data sets from shape evolution simulation of small platinum
nanoparticles. Both of the two data sets are single precision
floating-point data. The details of the applications are shown
in Table I. Note that, although FPZIP, ISABELA, ZFP,
and SZ are designed for mesh data, we directly perform
their compression on separate 1D arrays storing data with
consistent indices for particles, because it is the unique way
to handle them by existing mesh-based compressors. For the
lossless compressor GZIP, we use the best-ratio mode. For
the lossy compressors, because of space limitations, we show
only the typical error bound, that is, the value-range-based
relative error bound 10−4, which is accurate enough for data
analysis as stated by users. Specifically, for CPC2000, ZFP,
and SZ, we use the absolute error bound computed based
on ebrel = 10−4 and the data value range for each variable.
Note that ZFP has three compression modes including fixed
bit-rate, fixed precision, and fixed accuracy. As suggested
by ZFP’s developer, we adopt the best mode (i.e., fixed
accuracy) with respect to compression ratio. For ISABELA,
we use the pointwise relative error bound computed based
on ebrel = 10−4 and the maximum absolute data value for
each variable. For FPZIP, we set the number of retained bits
to 21 as approximate ebrel = 10−4 for all the variables. We
will use the same test method in the following experiments.

Table II shows the compression ratios of the current state-
of-the-art lossless and lossy compressors on the HACC and
AMDF data sets. The table illustrates that for the HACC
data sets SZ outperforms the other current state-of-the-art
compression methods in regards to the compression ratio; for
the AMDF data sets, CPC2000 has the highest compression
ratio. These results indicate that different lossy compressors
may have different performance on various N-body simula-
tion data sets, a fact that motivates us to conduct an in-depth
research on the best-fit lossy compression methods for N-
body simulations. In the following discussion, we exclude
GZIP and ISABELA because of their fairly low ratios.

V. EXPLORATION OF OPTIMIZATIONS FOR LOSSY
COMPRESSION ON N-BODY SIMULATION DATA SETS

In this section, we first discuss prediction models for lossy
compression on N-body simulation data sets and optimize
the prediction model for SZ to improve its compression
ratios on N-body simulation data sets. We next propose
several techniques for optimizing the lossy compression,
including SZ and CPC2000, on the molecular dynamics
simulation data sets. We then explore the best-fit lossy
compression methods for cosmology simulation data sets,
which are more complicated, such as HACC.



Table III: Normalized root mean square error of different variables using
LCF and LV prediction model on PIC simulation data sets

HACC AMDF
LCF LV LCF LV

xx 0.001 0.0007 0.10 0.07
yy 0.003 0.002 0.10 0.06
zz 0.061 0.043 0.14 0.09
vx 0.030 0.018 0.24 0.14
vy 0.032 0.020 0.25 0.14
vz 0.031 0.019 0.24 0.14

A. Prediction Models of Lossy Compression on N-Body
Simulation Data Sets

A good prediction model is important for achieving high
prediction accuracy and compression ratio for the prediction-
based lossy compressors.

Currently, SZ lossy compressor adopts a multilayer pre-
diction model for multidimensional mesh data sets, and
the multilayer prediction model will become the linear-
curve-fitting (LCF) model when the dimensional size is
only 1. Specifically, the LCF model uses the previous two
data values to predict the data point being compressed.
For example, the LCF model predicts the value of vxi by
calculating vxpred

i = 2vxi−1 − vxi−2, where vxi−1 and
vxi−2 are the values of two previous points. However, the
LCF model may not be applicable to N-body simulation
data because of their high irregularity, such as the velocity
variables vx, vy, vz.

The Lerenzo predictor used in FPZIP degrades into a
prediction model, namely, a last-value (LV) model, when
it compresses 1D data sets. Specifically, the LV model
uses the same value of the previous one data point to
make a prediction, for example, vxpred

i = vxi−1. The LV
model is simple but practical. We calculate the NRMSE
of the different variables in the N-body simulation data
sets including the HACC and AMDF data sets. Table III
illustrates that the prediction accuracy of the LV model is
higher than the prediction accuracy of the LCF model on
both data sets.

Inspired by LV’s higher prediction accuracy, we modify
the prediction model of SZ from LCF to LV. Figure 1
shows the compression ratios of the original SZ (i.e., SZ-
LCF) and the improved SZ (i.e., SZ-LV) on the HACC and
AMDF data sets. It illustrates that the SZ-LV has higher
compression ratios than SZ-LCF on all the variables and the
compression ratios are increased by 10.1% on the average.
We note that FPZIP also uses the LV prediction method
for 1D data sets but it has lower compression quality than
both SZ-LCF and SZ-LV (as shown in Table II and Figure
1), because of largely different designs after the prediction.
Specifically, FPZIP converts every floating-point value to a
binary integer and arithmetically encodes only the leading-
zero part of residuals (predicted-values minus real-values).
However, the leading-zero part takes a small portion in each
residual because the Lorenzo predictor is not accurate on
N-body data. The remainder raw bits are not compressed.
SZ/SZ-LV adopt linear-scaling quantization approach with
a very large number of quantization intervals, such that
entropy-coding can be applied to most data of the dataset
(e.g. 99%). We also evaluate the single-core compression
rate of SZ-LV based on the execution time and the data
size. SZ/SZ-LV have similar/comparable compression rates.
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Figure 1: Compression ratios of lossy compressor SZ with LCF and LV
model on (a) HACC and (b) AMDF data sets under ebrel = 10−4.
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Figure 2: Construction of R-index based on (a) coordinate variables and
(b) coordinate + velocity variables.

B. Optimizations of Lossy Compression on Molecular Dy-
namics Simulation Data Sets

Sorting is a classic method to enhance the data continuity
and has been used in many existing compressors, such as
ISABELA [12] and CPC2000 [16]. It suffers from several
limitations, however, especially for the snapshot with ex-
tremely large numbers of data points. First, sorting is a time-
consuming operation even when using the fastest algorithm
(quick-sort). Second, because of the reordered location of the
data in the sorted array, the compressor must use an extra
index array to record the original location for each point,
which significantly limits the compression ratio. However,
storing the extra index information is not necessary for
particle elements, since, unlike regular multidimensional
mesh data, the particle elements in each array are allowed
to be reordered in the reconstructed data set as long as the
locations or indices of the elements with regard to the same
particle can be consistent across arrays. We usually perform
the sorting once on one data array and adjust the indices with
the same orders on other data arrays. CPC2000 proposes
a useful technique, namely R-index based sorting, which
matches the above conditions.

CPC2000 first converts coordinate variables from floating-
point values to integer numbers by dividing them by a user-
set error bound. Then it generates an R-index (i.e., Ri) by
interleaving the binary representations of three coordinate
variables (xxi, yyi, zzi), as illustrated in Figure 2 (a). After
that, CPC2000 sorts all the variables, including coordinate
and velocity variables, based on the R-index values con-
structed from coordinates. Figure 3 shows a portion of
coordinate variables before and after R-index-based sorting.
It demonstrates that although R-index-based sorting cannot
completely sort every value in each coordinate variable, as
can traditional sorting (e.g., quick-sort), the converted data
points will become more ordered and thus smoother. Even
though CPC2000 does not necessarily store the extra index
information, it still suffers from low compression rate. For
example, the single-core compression rate of SZ-LV for
compressing AMDF data is about 94.4 MB/s, whereas the
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Figure 3: Partial visualization of coordinate variables before and after R-
index-based sorting.

Table IV: Compression ratios and rates using SZ-LV and R-index-based
sorting technique with different segment sizes on AMDF data sets under
ebrel = 10−4

Segment
Size

Compression
Ratio

Compression
Rate (MB/s)

SZ-LV / 2.85 94.4

SZ-LV-RX

1024 3.03 36.0
2048 3.07 33.9
4096 3.11 34.3
8192 3.15 33.6

16384 3.20 35.0

CPC2000’s is only about 21.5 MB/s.
Thus, we propose an optimization strategy, namely SZ-

LV-PRX. It can achieve the same compression ratio as
CPC2000’s but significantly improve the compression rate
as twice as much. The method comprises two steps: (1)
performing a partial-radix sorting to sort the R-index array
such that the compression performance can be improved sig-
nificantly, and then (2) applying SZ-LV lossy compression
method on the reordered data arrays (xx, yy, zz) instead of
compressing R-index directly as done by CPC2000.

In what follows, we describe step 2 first, as the design
motivation of step 1 is based on step 2. Specifically, the
objective of step 1 is just to mitigate the execution overhead
of step 2.

In the step 2, we split the data set into multiple segments,
construct the R-index array based on xx, yy and zz in each
segment, and then perform a radix sorting on the R-index
array by segment. Table IV shows the compression ratios
and the compression rates when compressing the AMDF’s
data arrays reordered by R-index sorting method with vari-
ous segment sizes, under a value-range-based relative error
bound 10−4. The table demonstrates that we can increase
the compression ratio for SZ-LV to 3.2 by using the segment
size of 16,384, but the compression rate is decreased to 46%
(from 94.4 MB/s to 35.0 MB/s). Note that in the table “RX”
represent R-indeX-based sorting.

As for the first step, we improve the compression rate by
performing a partial-radix sorting. Specifically, we ignore

Table V: Compression ratios and rates using SZ-LV-PRX technique with
different ignored bits on AMDF data sets under ebrel = 10−4

Segment
Size

Ignored
Bits

Compression
Ratio

Compression
Rate (MB/s)

SZ-LV / / 2.85 94.4

SZ-LV-PRX

16384 0 3.20 35.0
16384 2 3.20 36.6
16348 4 3.20 39.4
16384 6 3.20 43.8
16384 8 3.16 51.1

the last few least significant digits and start the radix sorting
from the last n-th bit. Note that for the R-index constructed
from the three coordinate variables, we sort it by three bits
at each round. For example, in Figure 1 (a), we start the
radix sorting from the last third 3-bit, which is “010”; this
process can be described as Partial R-indeX (PRX) based
sorting by ignoring the last two 3-bits.

The PRX sorting will keep a high smoothness of the
reordered arrays for compression while suffering from low
time. We evaluate the SZ-LV compression based on the PRX
sorting on the AMDF data sets. Table IV shows the compres-
sion ratios and rates with different numbers of ignored bits
using the same segment size 16,384 under the value-range-
based relative error bound 10−4. The ignored bits in Table V
represent the number of ending 3-bits overlooked in the R-
index. For example, the number of ignored bits being set to 2
represents that we ignore the right-most two 3-bits in the R-
index before conducting the radix sorting. The table shows
that our proposed optimization method can significantly
improve the compression rate from 35.0 MB/s to 43.8 MB/s
while maintaining the compression ratio of 3.20. The reason
the partial radix sorting may not degrade the compression
ratio is that the reordered data arrays actually still exhibit
local irregularity within a relatively small index range even
in the full-radix R-index sorting method. That is, the last
few bits in R-index do not need to be sorted, in order to
keep the smoothness of the reordered arrays.

Based on our observation, CPC2000’s compression ratio
is 2x higher than SZ’s on the coordinate variables, so we
propose another optimization method, namely SZ-CPC2000,
to further improve the compression ratio on molecular
dynamics simulation data sets. After converting the floating-
point data of velocity variables to the integer numbers,
CPC2000 compresses the integer velocity values by apply-
ing an adaptive variable-length coding method [16], which
adopts status bits to differentiate the different values in the
bit stream. However, such a variable-length encoding method
suffers from relatively high status bit overhead (1∼10 bits
per value based on our experimental observations), leading
to a very limited compression ratio. So we propose SZ-
CPC2000 combining SZ-LV and CPC2000. It applies SZ-
LV technique with a tailored Huffman encoding [20] on
the compression of velocity data that was reordered by R-
index sorting. Figure 4 demonstrates that CPC2000 has the
highest compression ratio from among all existing lossy
compressors (including FPZIP, ZFP, SZ) on the molecular
dynamics simulation data. Our designed SZ-CPC2000 can
further improve the compression ratio by about 13% and
improve the compression rate by about 10%. Also note that
our proposed method SZ-LV obtains the best compression
rate among all the lossy compression methods.

C. Exploration of Lossy Compression on Cosmology Simu-
lation Data Sets

In this subsection, we continue exploring an optimized
lossy compression method on the cosmology simulation data
sets. Table II shows that SZ and CPC2000 are the two most
promising lossy compressors on the HACC data sets. In
particular, our proposed SZ-LV outperforms CPC2000 in
each variable of the HACC data as shown in Table VI. Thus,
we use SZ-LV as the baseline compression model and try to
further optimize its compression quality for the HACC data.

Similar to the first optimization method proposed in
Section V-B, two candidate solutions are reorganizing the
data in terms of velocity-based R-index sorting and a
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Figure 4: Comparison of compression ratios and rates with different lossy
compression methods on AMDF data sets under ebrel = 10−4.

Table VI: Compression Ratios of several R-index attempts on HACC data

CPC2000 SZ-LV
SZ-LV +

Coordinate-based
R-index

SZ-LV +
Velocity-based

R-index

SZ-LV +
Coordinate & Velocity-

based index
xx 7.1 8.18 8.55 8.00 8.14
yy 7.1 8.31 6.28 5.07 5.62
zz 7.1 5.93 6.73 3.66 5.15
vx 2.3 3.97 3.84 4.36 4.21
vy 2.3 3.92 3.79 4.48 4.25
vz 2.3 3.93 3.87 4.69 4.38
Overall 3.5 5.12 4.97 4.76 5.02

coordinate&velocity-based R-index sorting, as shown in
Figure 2 (b) and (c), respectively. The construction is similar
to the traditional one as shown in Figure 2 (a). Table
VI presents the compression ratios of SZ-LV plus these
three types of R-index with the segment size of 4096. It
demonstrates that all three R-index-based sorting strategies
are unable to improve the compression ratio for the HACC
data sets. The table shows that SZ-LV plus velocity-based
R-index can improve the compression ratios of velocity
variables about 20% on average, but the compression ratios
of coordinate variables drop significantly, especially yy
(from 8.3 to 5.1) and zz (from 5.9 to 3.7), and counteract
the improvement from velocity variables. After we put both
the coordinate and velocity variables into the construction
of the R-index, the compression ratio of zz is improved
by more than 40% (only 13% lower than using the SZ-
LV without R-index-based sorting), whereas yy is still
much lower than using SZ-LV without R-index-based sorting
(i.e., 32%). Therefore, the overall compression ratio using
coordinate&velocity-based index is still worse than without
R-index-based sorting. We observe that the compression
ratio of xx, zz, vx, vy, vz can be improved at least by
one type of R-index sorting, but the compression ratio of
yy is always reduced. Therefore, for HACC that performs
N-body simulations with a hierarchical model, SZ-LV plus
R-index sorting fail to improve the compression ratio of the
whole data sets. This is due to the fact that unlike AMDF,
not all variables in HACC are very disordered: in particular,
yy is actually approximately sorted in an increasing order
in a wide-index range, such that any attempt of reordering
the variables, such as R-index based sorting, will get it
disordered unexpectedly, leading to the low compression
ratios on them in turn. Therefore, the orderly variable with
high autocorrelation is not applicable to be reordered by
any R-index based sorting methods, such as SZ-LV-PRX
and SZ-CPC2000. Consequently, our improved SZ-LV is
the best-ratio lossy compression method in this case. In the
next section, we will show that SZ-LV is the best lossy
compressor with respect to both compression ratio and rate
for cosmology simulation based on the HACC data sets.

VI. EMPIRICAL EVALUATION

In this section, we evaluate our proposed optimization
solutions on the HACC and AMDF simulation data sets
(as shown in Table I) using 1024 cores (i.e., 64 nodes,
each with two Intel Xeon E5-2670 processors and 64 GB
DDR3 memory, and each processor with 16 cores) from
the Blues supercomputer at Argonne and compare with the
state-of-the-art lossy compressors. The details of the data
sets are described in Table I. The storage system of Blues
uses General Parallel File Systems (GPFS). The different
directories on the cluster are located on the separate GPFS
file systems that are shared by all nodes on the cluster. These
file systems are located on a raid array and are served by
multiple file servers. The I/O and storage systems are typical
of high-end supercomputer facilities. We use the same test
methods described in Section IV for the state-of-the-art lossy
compressors including CPC2000, FPZIP, ZFP, and SZ.

We first perform the evaluation on the full 1.8 TB HACC
data sets in parallel. As we analyzed in Section V-C, R-
index-based compression methods, such as CPC2000, SZ-
LV-PRX, and SZ-CPC2000, are not applicable for the HACC
data sets, therefore, we focus on evaluating FPZIP, ZFP,
and SZ-LV on the HACC data sets in parallel. In the
experiments, we increase the scale from 1 node to 64 nodes
with 16 processes on each node in the cluster. Each process
will independently compress a single snapshot of HACC
data within its memory. We note that the decompression
rates of FPZIP, ZFP, and SZ are not lower than their
compression rates because of less steps in decompression,
as demonstrated in [13], [14], [20]. Specifically, FPZIP’s
decompression rate is similar to its compression rate [14];
ZFP’s decompression rate is 1.4x of its compression rate
[13]; and SZ’s decompression rate is 1.7x of its compres-
sion rate [20]. We confirm it in the experiments. We also
confirm that SZ-LV and SZ have the similar compression
and decompression rate. So we only present the compression
rate due to space limitations.

Figure 5 presents the comparison of the time to write
initial data and the times to write compressed data plus
compression with ZFP, FPZIP, and SZ-LV respectively. It
shows that the time to write initial data is always much
longer than the time to write compressed bytes plus the
time of compression when the number of processes is 64
or more, no matter which compressor is used. Hence, the
parallel applications can save I/O time from 64 processes
on this system by using the lossy compression in this
parallel environment. Figure 5 (a) shows that SZ-LV always
outperforms the other two lossy compressors because of
its higher compression ratio and rate. In Figure 5 (b), we
further present the compression time and the time to write
compressed data. Each bar includes time of compression,
time to write compressed data, and the time to write the
initial data. We normalize the sum to 100% and plot a
dash line at 50% to ease the comparison. It shows that
SZ-LV can reduce I/O time by 80% and outperforms the
second-best solution by 60% with 1024 cores. Note that
the relative time spent in I/O will keep increasing with
the number of processes due to inevitable bottleneck of the
I/O bandwidth when writing data simultaneously by many
processes. But the parallel in situ compression has a nearly
linear speedup with the number of processes, which indicates
the performance gains will be greater with increasing scale.

We present in Table VII the scalability and compression
rates (GB/s) of the three lossy compression methods without
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Figure 5: Comparison of time to compress and write compressed data
against time to write original data with ZFP, FPZIP, and SZ-LV on HACC
data sets.

Table VII: Compression rate (GB/s) and parallel efficiency of ZFP, FPZIP,
and SZ-LV on HACC data sets.

Number of
Processes

ZFP FPZIP SZ-LV
Comp
Rate

Parallel
Efficiency

Comp
Rate

Parallel
Efficiency

Comp
Rate

Parallel
Efficiency

1 0.17 / 0.13 / 0.22 /
16 2.72 100% 2.16 100% 3.44 99.5%
32 5.42 99.6% 4.20 99.4% 6.88 99.5%
64 10.8 98.8% 8.38 99.1% 13.7 99.1%
128 21.6 99.3% 16.80 99.4% 27.3 98.7%
256 43.2 99.3% 33.4 98.9% 54.7 99.0%
512 80.0 91.9% 67.1 99.3% 111.1 99.1%
1024 146.2 83.8% 119.2 88.2% 194.6 88.0%

I/O in different scales ranging from 1 to 1024 processes on
the cluster. We measure the time of compression without I/O
time and use the maximum time among all the processes.
We can see that the parallel efficiency of these three lossy
compression methods can always stay nearly 100% from 1 to
256 processes, which demonstrates that the in situ compres-
sion with FPZIP, ZFP, and SZ-LV have linear speedup with
the number of processes. However, the parallel efficiency is
decreased to about 85% when the total number of processes
is greater than 256. This performance degradation is due
to node internal limitations when multiple cores share the
memory on each node.

We then evaluate the lossy compression on the AMDF
data sets, including the state-of-the-art lossy compressors
(i.e., CPC2000, FPZIP, ZFP, SZ) and our proposed opti-
mization solutions (i.e., SZ-LV, SZ-LV-PRX, SZ-CPC2000).
We evaluate the compression rate on a single core of
the cluster as shown in Figure 4. It shows that (1) our
proposed method SZ-LV can lead to the best rate with
only 12% lower compression ratio than the best-ratio com-
pressor CPC2000, (2) our proposed method SZ-LV-PRX
can obtain 2x improvement on the compression rate with
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Figure 6: Rate-distortion of ZFP, FPZIP, CPC2000, SZ-LV, and SZ-
CPC2000 on (a) HACC and (b) AMDF data sets.

unchanged compression ratio compared with CPC2000, and
(3) our proposed method SZ-CPC2000 can further improve
the compression ratio by 13% with 10% improvement on
the compression rate over CPC2000. Therefore, similar
to GZIP [7], we can set three modes—best_speed,
best_tradeoff, and best_compression – for the
lossy compression on the molecular dynamics simulation
data based on our proposed optimization methods. Specif-
ically, we can set SZ-LV as the best_speed mode, SZ-
LV-PRX as the best_tradeoff mode, and SZ-CPC2000
as the best_compression mode.

We next evaluate the maximum compression errors for all
the lossy compressors in our experiments, including FPZIP,
ZFP, CPC2000, SZ, SZ-LV, and SZ-CPC2000, on the HACC
and AMDF data sets. The maximum compression errors
of CPC2000, SZ, SZ-LV, SZ-LV-PRX, and SZ-CPC2000
are exactly equal to the user-set error bound, while ZFP’s
maximum compression errors are lower than the user-set
error bound. For example, ZFP’s maximum compression
error of each variable ranges from 3.2E-5 to 4.6E-5 when
ebrel is set to 1E-4, which means ZFP over-preserves the
compression errors in respect of user’s accuracy require-
ment. Since FPZIP is designed for fixed bit-rate, we set the
number of retained bits to 21 as approximate value-range-
based relative error bound of 1E-4 in the experiments and
its maximum compression errors are a bit higher than 1E-
4, ranging from 0.6E-4 to 2.4E-4. Users can achieve higher
compression accuracy by increasing the number of retained
bits in each value.

At last, we evaluate the distortion quality for all the
lossy compression methods on the HACC and AMDF data
sets by using Z-checker [21]. Here rate means bit-rate in
bits/value, and we use the peak signal-to-noise ratio (PSNR)
to measure the distortion quality. PSNR is calculated as
20 · log10(NRMSE): the higher the better. We run ZFP,
CPC2000, SZ-LV, and SZ-CPC2000 with different error



bounds and run FPZIP with different numbers of retained
bits. Then, we calculate their correponding average bit
rates (i.e., 32/compression-ratio) and distortion values (i.e.,
PSNRs) and plot rate-distortion curves by connecting the
scatters. Figure 6 shows the rate-distortion curves of the
different lossy compressors on the two data sets. It illustrates
that our proposed method SZ-CPC2000 has the best rate-
distortion among all the lossy compression methods on both
the HACC and AMDF data sets when the bit-rate is smaller
than 10 bits/value (i.e., compression ratio is higher than
3.2). Note that we test and show the case only with the
bit-rate lower than 16 bits/value for the two single-precision
data sets, i.e., the compression ratios are higher than 2. As
demonstrated in [17], lossless compression can provide a
compression ratio up to 2, so it is reasonable to assume
that users are interested in lossy compression only if the
compression ratio is higher than 2.

VII. CONCLUSION

In this work, we explored the lossy compression tech-
niques for single-snapshot data produced by N-body simu-
lations. We first assessed state-of-the-art compression tech-
niques on two real-world N-body applications: HACC and
AMDF. Some of the compression techniques are state-of-
the-art tools such as SZ and ZFP; and others (such as
CPC2000) are implemented and improved rigorously by us.
To the best of our knowledge, this is the first attempt to
comprehensively assess the quality of lossy compression
techniques with a single snapshot for N-body simulations.
We then designed a series novel optimization techniques.

• For molecular dynamics simulations, our proposed
three compression methods can either lead to the best
compression rate or best compression ratio compared
with existing state-of-the-art compression techniques.

• For cosmology simulations, our proposed method SZ-
LV is the best lossy compression technique with respect
to both compression ratio and rate. Broadly speaking,
SZ-LV is more suitable than SZ-LV-PRX/SZ-CPC2000
on the orderly data sets with high autocorrelations.

• Experiments show that our proposed method SZ-LV
can be used as an in situ compression method in a
parallel cosmology simulation to reduce the I/O time
by more than 80% with 1024 cores and outperforms
the second-best solution by 60%. Our proposed method
SZ-CPC2000 has the best rate-distortion with reason-
able compression errors compared with state-of-the-art
compression methods.

Our optimizations solutions are generic and can be applied
to any other N-body scientific data sets. We plan to evaluate
on more N-body applications in the future.
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