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Abstract—We introduce Tiered Sampling, a novel
technique for approximate counting sparse motifs in
massive graphs whose edges are observed in a stream.
Our technique requires only a single pass on the data
and uses a memory of fixed size M , which can be
magnitudes smaller than the number of edges.

Our methods addresses the challenging task of
counting sparse motifs - sub-graph patterns that have
low probability to appear in a sample of M edges in
the graph, which is the maximum amount of data
available to the algorithms in each step. To obtain
an unbiased and low variance estimate of the count
we partition the available memory to tiers (layers) of
reservoir samples. While the base layer is a standard
reservoir sample of edges, other layers are reservoir
samples of sub-structures of the desired motif. By
storing more frequent sub-structures of the motif, we
increase the probability of detecting an occurrence of
the sparse motif we are counting, thus decreasing the
variance and error of the estimate.

We demonstrate the advantage of our method in
the specific applications of counting sparse 4 and 5-
cliques in massive graphs. We present a complete
analytical analysis and extensive experimental results
using both synthetic and real-world data. Our results
demonstrate the advantage of our method in obtain-
ing high-quality approximations for the number of 4
and 5-cliques for large graphs using a very limited
amount of memory, significantly outperforming the
single edge sample approach for counting sparse mo-
tifs in large scale graphs.

Keywords-graph motif mining; reservoir sampling;
stream computing;

I. Introduction

Counting motifs (sub-graphs with a given pattern) in
large graphs is a fundamental primitive in graph mining
with numerous practical applications including link pre-
diction and recommendation, community detection [1],
topic mining [2], spam and anomaly detection [3, 4] and
protein interaction networks analysis [5].

Computing exact count of motifs in massive, Web-
scale networks is often impractical or even infeasible.
Furthermore, many interesting networks, such as social

*Work done in part while visiting Brown University.

networks, are continuously growing, hence there is a
limited value in maintaining an exact count. The goal is
rather to have, at any time, a high-quality approximation
of the quantity of interest.

To obtain a scalable and efficient solution for massive
size graphs we focus here on the well studied model
of one-pass stream computing. Our algorithms use a
memory of fixed size M , where M is significantly smaller
that the size of the input graph. The input is given
as a stream of edges in an arbitrary order, and the
algorithm has only one pass on the input. The goal of the
algorithm is to compute at any given time an unbiased,
low variance estimate of the count of motif occurrences
in the graph seen up to that time.

Given its theoretical and practical importance, the
problem of counting motifs in graph streams has received
great attention in the literature, with particular em-
phasis on the approximation of the number of 3-cliques
(triangles) [6–8]. A standard approach to this problem is
to sample up to M edges uniformly at random, using a
fixed sampling probability or, more efficiently, reservoir
sampling. A count of the number of motifs in the sample,
extrapolated (normalized) appropriately, gives an unbi-
ased estimate for the number of occurrences in the entire
graph. The variance (and error) of this method depends
on the expected number of occurrences in the sample. In
particular, for sparse motifs that are unlikely to appear
many times in the sample, this method exhibits high
variance (larger than the actual count) which makes
it useless for counting sparse motifs. Note that when
the input graph is significantly larger than the memory
size M , a motif that is unlikely to appear in a random
sample of M edges may still have a large count in the
graph. Also, as we attempt to count larger structure than
triangles, these structures are more likely to be sparse
in the graph. It is therefore important to obtain efficient
methods for counting sparser motifs in massive scale
graph streams.

In this work we introduce the concept of Tiered

Sampling in stream computing. To obtain an unbiased
and low variance estimate for the amount of sparse
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motif in massive scale graph we partition the available
memory to tiers (layers) of reservoir samples. The base
tier is a standard reservoir sample of individual edges,
other tiers are reservoir samples of sub-structures of the
desired motif. This strategy significantly improves the
probability of detecting occurrences of the motif.

Assume that we count motifs with k edges. If all
the available memory is used to store a sample of the
edges, we would need k− 1 of the motif’s edges to be in
the sample when the last edge of the motif is observed
on the stream. The probability of this event decreases
exponentially in k.

Assume now that we use part of the available memory
to store a sample of the observed occurrences of a
fixed sub-motifs with k/2 edges. We are more likely
to observe such motifs (we only need k/2 − 1 of there
edges to be in the edge sample when the last edge is
observed in the stream), and they are more likely to
stay in the second reservoir sample since they are still
relatively sparse. We now observe a full motif when the
current edge in the stream completes an occurrence of
the motif with edges sub-motifs in the two reservoirs.
For an appropriate choice of parameters, and with fixed
total memory size, this event has significantly higher
probability than observing the k − 1 edges in the edge
sample. To obtain an unbiased estimate of the count,
the number of observed occurrences needs to be carefully
normalized by the probabilities of observing each of the
components.

In this work we make the following main contributions:

• We introduce the concept of Tiered Sampling for
counting sparse concepts in large scale graph stream
using multi-layer reservoir samples.

• We develop and fully analyze two algorithms for
counting the number of 4-cliques in a graph using
two tier reservoir sampling.

• For comparison purpose we analyze a standard
(one tier) reservoir sample algorithm for 4-cliques
counting problem.

• We verify the advantage of our multi-layer algo-
rithms by analytically comparing their performance
to a standard (one tier) reservoir sample algorithm
for 4-cliques counting problem on random Barábasi-
Albert graphs.

• We develop the ATS4C technique, which allows to
adaptively adjust the sub-division of memory space
among the two tiers according to the properties of
the graph being considered.

• We conduct an extensive experimental evaluation of
the 4-clique algorithms on massive graphs with up
to hundreds of millions edges. We show the quality
of the achieved estimations by comparing them with
the actual ground truth value. Our algorithms are
also extremely scalable, showing update times in the

order of hundreds of microseconds for graphs with
billions of edges.

• We demonstrate the generality of our approach
through a second application of the two-tier
method, estimating the number of 5-cliques in a
graph stream using a second reservoir sample of the
4-cliques observed on the stream.

To the best of our knowledge these are the first fully
analyzed, one pass stream algorithms for the 4 and 5-
cliques counting problem.

II. Preliminaries

For any (discrete) time step t ≥ 0, we denote the
graph observed up to and including time t as G(t) =
(V (t), E(t)), where V (t) (resp., E(t)) denotes the set of
vertices (resp., edges) of G(t). At time t = 0 we have
V (t) = E(t) = ∅. For any t > 0, at time t + 1 we receive
one single edge et+1 = (u, v) from a stream, where
u, v are two distinct vertices. G(t+1) is thus obtained
by inserting the new edge: E(t+1) = E(t) ∪ {(u, v)}; if
either u or v do not belong to V (t), they are added
to V (t+1). Edges can be added just once (i.e., we do
not consider multigraphs in this work) in an arbitrary
adversarial order, i.e., as to cause the worst outcome for
the algorithm. We however assume that the adversary
has no access to the random bits used by the algorithm.

This work explores the idea of storing a sample of sub-
motifs in order to enhance the count of a sparse motif.
For concreteness we focus on estimating the counts of
4-cliques and 5-cliques.

Given a graph G(t) = (V (t), E(t)), a k-clique in G(t)

is a set of
(

k
2

)

(distinct) edges connecting a set of k

(distinct) vertices. We denote by C
(t)
k the set of all k-

cliques in G(t).
Our work makes use of the reservoir sampling

scheme [9]. Consider a stream of elements ei observed in
discretized time steps. Given a fixed sample size M > 0,
for any time step t the reservoir sampling scheme allows
to maintain a uniform sample S of size min{M, t} of the
t elements observed on the stream:

• If t ≤M , then the element et = (u, v) on the stream
at time t is deterministically inserted in S.

• If t > M , then the sampling mechanism flips a
biased coin with heads probability M/t. If the out-
come is heads, it chooses an element ei uniformly at
random from those currently in S which is replaced
by et. Otherwise, S is not modified.

When using reservoir sampling for estimating the sub-
graph count it is necessary to compute the probability
of multiple elements being in S at the same time.

Lemma II.1 (Lemma 4.1 [6]). For any time step t
and any positive integer k ≤ t, let B be any subset of
size |B| = k ≤ min{M, t} of the element observed on



the stream. Then, at the end of time step t (i.e., after
updating the sample at time t), we have Pr(B ⊆ S) = 1
if t ≤M , and Pr(B ⊆ S) =

∏k−1
i=0

M−i
t−i otherwise.

In our experimental analysis (Sections V-C and VII)
we measure the accuracy of the obtained estimator
through the evolution of the graph in terms of their Mean
Average Percentage Error (MAPE) [10]. The MAPE
measures the relative error of an estimator (in this case,
κ

(t)) with respect to the ground truth (in this case,

|C
(t)
k |) averaged over t time steps: that is MAP E =

1
t

∑t
i=1

|κ(t)−|C
(t)

k
||

|C
(t)

k
|

.

III. Related Work

Counting subgraphs in large networks is a well studied
problem in data mining which was originally brought
to attention in the seminal work of Milo et al. [5]. In
particular, many contributions in the literature have
focused on the triangle counting problem, including
exact algorithms, MapReduce algorithms [11, 12] and
streaming algorithms [6, 7, 13, 14].

Previous works in literature on counting graph motifs
[15, 16] can also be used to estimate the number of
cliques in large graphs. Other recent works on clique
counting introduced randomized [17] and MapReduce
[18] algorithms. These require however priori informa-
tion on the graph such as its degeneracy (for [17]) or the
vertex degree ordering (for [18]). Further, none of these
approaches can be used in the streaming setting.

The idea of using sub-structures of a graph motif
in order to improve the estimation of its frequency
in a massive graph has been previously explored in
literature. In [19] Bordino et al. proposed a data stream
algorithm which estimates the number of occurrences of
a given subgraph by sampling its “prototypes (i.e., sub-
structures). While this approach is shown to be effective
in estimating the counts of motif with three and four
edges, it requires multiple passes through the graph
stream and further knowledge on the properties of the
graph. In [20], Jha et al. proposed an algorithm which
effectively and efficiently approximates the frequencies
of all 4-vertex subgraphs by sampling paths of length
three. This algorithm requires however knowledge of the
degrees of all the vertices in the graph and cannot be
used in the streaming setting.

To the best of our knowledge, our work is the first
that proposes a sampling-based, one pass algorithm for
insertion only streams to approximate the global number
of cliques found in large graphs. Further, our algorithms
do not require any further information on the properties
of the graph being observed.

Using a strategy similar to our TieredSampling

approach, in [14] Jha and Seshadri propose a one pass
streaming algorithm for triangle counting which using a

u v

z w
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T1 T2

Figure 1. Detection of 4-clique using triangles

first reservoir for edges which are then used to generate
a stream of wedges (i.e., paths of length two) stored
in a second reservoir. This approach appear to be not
worthwhile for triangle counting as it is consistently
outperformed by a simpler strategy based on a single
reservoir presented [6]. This is due to the fact that
as in most large graph of interest wedges are much
more frequent than edges themselves it is not worth
devoting a large fraction of the available memory space
to maintaining wedges over edges.

IV. TieredSampling application to 4-clique

counting

In this section we present TS4C1 and TS4C2, two ap-
plications of our TieredSampling approach for count-
ing the number of 4-cliques in an undirected graph ob-
served as an edge stream. The two algorithms partition
the available memory into two samples, an edge reservoir
sample and a triangle reservoir sample. TS4C1 attempts
in each step to construct a 4-cliques using the current
observed edge, two edges from the edge reservoir sample
and one triangle from the triangle reservoir sample.
TS4C2 attempts at each step to construct a 4-clique
from the current observed edge and two triangles from
the triangle reservoir sample. At each time step t, both
algorithms maintain a running estimation κ

(t) of |C
(t)
4 |.

Clearly κ
(0) = 0 and the estimator is increased every

time a 4-clique is “observed” on the stream. The two
algorithms also maintains a counter τ (t) for the number
of triangles observed in the stream up to time t. This
value is used by the reservoir sampling scheme which
manages the triangle reservoir.

A. Algorithm TS4C1 description

Algorithm TS4C1 maintains an edges (resp., trian-
gles) reservoir sample Se (resp., S∆) of fixed size Me

(resp., M∆). From Lemma II.1, for any t the probability
of any edge e (resp., triangle T ) observed on the stream
Σ (resp., observed by the TS4C1) to be included in
Se (resp., S∆) is Me/t (resp. M∆/τ (t)). We denote as

S
(t)
e (resp., S

(t)
∆ ) the set of edges (resp., triangles) in Se

(resp., S∆) before any update to the sample(s) occurring

at step t. We denote with N
S(t)

e
u the neighborhood of u



ALGORITHM 1 TS4C1 - Tiered Sampling for 4-
Clique counting

Input: Insertion-only edge stream Σ, integers M, M∆
Se ← ∅ , S∆ ← ∅, t← 0, t∆ ← 0, σ ← 0
for each element (u, v) from Σ do

t ← t + 1
Update4Cliques(u, v)
UpdateTriangles(u, v)
if SampleEdge((u, v), t) then

S ← S ∪ {((u, v), t)}

function Update4Cliques((u, v), t)
for each triangle (u, w, z) ∈ S∆ do

if (v, w) ∈ Se ∧ (v, w) ∈ Se then

p← ProbClique((u, w, z), (v, w), (v, z))

σ ← σ + p−1/2

for each triangle (v, w, z) ∈ S∆ do

if (u, w) ∈ Se ∧ (u, z) ∈ Se then

p← ProbClique((v, w, z), (u, w), (u, z))

σ ← σ + p−1/2

function UpdateTriangles((u, v), t)

NSu,v ← N
S
u ∩ N

S
v

for each element w from NSu,v do

t∆ ← t∆ + 1
if SampleTriangle(u, v, w) then

S∆ ← S∆ ∪ {u, v, w}

function SampleTriangle(u, v, w)
if t∆ ≤ M∆ then

return True

else if FlipBiasedCoin(
M∆
t∆

) = heads then

(u1, v1, w1) ← random triangle from S∆
S∆ ← S∆ \ {(u1, v1, w1)}
return True

return False

function SampleEdge((u, v), t)
if t ≤ M then

return True
else if FlipBiasedCoin( M

t
) = heads then

((u′, v′), t′) ← random edge from S
S ← S \ {((u′, v′), t′)}
return True

return False

with respect to the edges in S
(t)
e , that is N

S(t)
e

u = {v ∈

V S(t)
e : (u, v) ∈ S

(t)
e }.

Let et = (u, v) be the edge observed on the stream at
time t. At each step TS4C1 executes three main tasks:

• Estimation update: TS4C1 invokes the function Up-

date 4-cliques to detect any 4-clique completed
by (u, v) (see Figure 1 for an example). That is, the
algorithm verifies whether in triangle reservoir S∆

there exists any triangle T which includes u (resp.,
v). Note that since each edge is observed just once
and the edge (u, v) is being observed for the first
time no triangle in S∆ can include both u and v. For
any such triangle T ′ = {u, w, z} (or {v, w, z}) the
algorithm checks whether the edges (v, w) and (v, z)
(resp., (v, w) and (v, z)) are currently in Se. When
such conditions are meet, we say that a 4-clique is
“observed on the stream”. The algorithm then uses
ProbClique to compute the exact probability p of
the observation based on the timestamps of all its
edges. The estimator κ is then increased by p−1/2.

• Triangle sample update: using UpdateTriangles

the algorithm verifies whether the edge et completes
any triangle with the edges in S

(t)
e . If that is the

case, we say that a new triangle T ∗ is observed on
the stream. The counter τ is increased by one and
the new triangle is a candidate for inclusion in S∆

with probability M∆/τ t.
• Edge sample update: the algorithm updates the

edge sample Se according to the Reservoir Sampling
scheme described in Section II.

Each time a 4-clique is observed on the stream, TS4C1

uses ProbClique to compute the exact probability of
the observation. Such computation is all but trivial as it
is influenced by both the order according to which the
edges of the 4-clique were observed on the stream, and by
the number of triangles observed on the stream τ (t). The
analysis proceeds using a (somehow tedious) analysis of
all the 5! possible orderings of the first five edges of the
clique observed on the stream. Due to space limitations
we refer the reader to Lemma A.2 of the extend version
of this work [21] for the detailed computation.

B. Analysis of the estimator

We now present the analysis of the estimations ob-
tained using TS4C1. First we show their unbiasedness
and we then provide a bound on their variance. We refer
the reader to Appendix A of the extended version of this
work for the complete proofs [21]. In the following we
denote as t∆ the first time step at for which the number
of triangles seen by TS4C1 exceeds M∆.

Theorem IV.1. κ
(t) = |C

(t)
k | if t ≤ min{Me, t∆}, and

E

[

κ
(t)
]

= |C
(t)
k | otherwise.

We now show an upper bound to the variance of the
TS4C1 estimations. The proof relies on a very careful
analysis of the order of arrival of the edge shared between
a pair of two 4-cliques. We present here the most general
result for t ≥Me, t∆. Note that if t ≤ min{Me, t∆}, from

Theorem IV.1, κ
(t) = |C

(t)
k | and hence Var

[

κ
(t)
]

= 0.

For min{Me, t∆} < t ≤ max{Me, t∆}, Var
[

κ
(t)
]

admits

an upper bound similar to the one in Theorem IV.2.

Theorem IV.2. For any time t > min{Me, t∆}, we
have

Var
[

κ
(t)
]

≤ |C
(t)
4 |



c

(

t− 1

Me

)4
(

τ (t)

M∆

)

− 1





+ 2a(t)

(

c
t− 1

Me
− 1

)

+ 2b(t)



c

(

t− 1

Me

)2
(

1

4

τ (t)

M∆
+

3

4

t− 1

Me

)

− 1



 ,

where a(t) (resp., b(t)) denotes the number of unordered
pairs of 4-cliques which share one edge (resp., three edges)

in G(t), and c ≥ M3
e

(Me−1)(Me−2)(Me−3) .



ALGORITHM 2 TS4C2 - Tiered Sampling for 4-
Clique counting using 2 triangle sub-structures

function Update4Cliques((u, v), t)
for each (u, w, z) ∈ S∆ ∧ (v, w, z) ∈ S∆ do

p ← ProbClique((u, w, z), (v, w, z))

σ ← σ + p−1/2

C. Memory partition across layers

In most practical scenario we assume that a certain
amount of total available memory M is available for
algorithm TS4C1. A natural question concern what is
the best way of spitting the available memory between
Se and S∆. While different heuristics are possible, in
our work we chose to assign the available space in such
a way that the dominant first term of upper bound of
TS4C1 in Theorem IV.2 is minimized. For 0 < α < 1
let Me = αM and M∆ = (1− α) M . Then we have

that |C
(t)
4 |

(

c
(

t−1
αM

)4
(

τ (t)−1
(1−α)M

)

− 1

)

is minimized for

α = 4/5. This convenient splitting rule works well in
most cases, and is used in most of the paper. Section VI
we discuss a more sophisticated dynamic allocation of
memory, ATS4C, and present experimental results for
this method in Section VII-B.

D. Concentration bound

We now show a concentration result on the estimation
of TS4C1, which relies on Chebyshev’s inequality [22,
Thm. 3.6].

Theorem IV.3. Let t > min{Me, t∆} and assume

|C
(t)
4 | > 0. For any ε, δ ∈ (0, 1), if

M > max
{5

4
5

√

12c(t− 1)4(τ (t))

δε2|C
(t)
4 |

,
15ca(t)(t− 1)

δε2|C
(t)
4 |

2
,

5

4
3

√

√

√

√

3b(t)c (t− 1)
2 (

4τ (t) + 3(t− 1)
)

2δε2|C
(t)
4 |

2

}

then |κ(t) − |C
(t)
4 | < ε|C

(t)
4 | with probability > 1− δ.

E. Algorithm TS4C2

TS4C2 detects a 4-clique when the current observed
edge completes a 4-clique with two triangles in S∆.
TS4C1 and TS4C2 differ only in the function Up-

date4Cliques, the pseudocode for TS4C2 is presented
in Algorithm 2.

The probability of detecting a 4-clique using TS4C2

computed by ProbClique is different from the cor-
respondent probability computed in TS4C1. For the
details we refer the reader to Lemma B.2 in Appendix B
of the extended version [21].

Lemma IV.4. Let λ ∈ C
(t)
4 and let pλ denote the

probability of λ being observed on the stream by TS4C2.

We have:

pλ ≤

(

Me

t− 1

)4(
M∆

τ (t)

)2

.

Applying this lemma to an analysis similar to the one
used in the proof of Theorem IV.1 we prove that the
estimations obtained using TS4C2 are unbiased.

Theorem IV.5. The estimator κ returned by TS4C2

is unbiased, that is: E
[

κ
(t)
]

= |C
(t)
k |.

The analysis presents several complications due to the
interplay of the probabilities of observing each of the
two triangles that share an edge. For the details of these
results we refer the reader to Appendix B of the extended
version of this work [21]. Following the same criterion
discussed in Section IV-C, we use |Se| = 2M/3 and
|S∆| = M/3 as a general rule for assigning the available
memory space between the two sample levels. Although
the difference between TS4C1 and TS4C2 may appear
of minor interest, our experimental analysis show that
it can lead to significantly different performances de-
pending on the properties of the graph G(t). Intuitively,
TS4C2 emphasizes the importance of the triangle sub-
structures compared to TS4C1, thus resulting in better
performance when the input graph is very sparse with
smaller frequencies of 3 and 4-cliques.

V. Comparison with single sample approach

To quantify the advantage of our TieredSampling

approach we construct and fully analyze algorithm
FourEst that uses a single sample strategy. We then
compare the performance of FourEst and TS4C1 an-
alytically, and through experiments on both synthetic
and real-world data.

A. FourEst

FourEst is an extension of the reservoir sample
triangle counting algorithm in [6], using one reservoir
sample to store uniform random sample S of size M of
the edges observed over the stream. The pseudocode for
FourEst is presented in Algorithm 3.

ALGORITHM 3 FourEst
Input: Edge stream Σ, integer M ≥ 6
Output: Estimation of the number of 4-cliques κ

Se ← ∅, t← 0, κ ← 0
for each element (u, v) from Σ do

t ← t + 1
Update4Cliques(u, v)
if SampleEdge((u, v), t) then

S ← S ∪ {(u, v)}

function Update4Cliques(u, v)

NSu,v ← N
S
u ∩ N

S
v

for each element (x, w) from NSu,v × N
S
u,v do

if (x, w) in Se then

if t ≤ M then

p← 1
else

p← min{1,
M(M−1)(M−2)(M−3)(M−4)

(t−1)(t−2)(t−3)(t−4)(t−5)
}

κ ← κ + p−1



The proofs of the following results can be found in the
extended version of this work [21].

Theorem V.1. Let κ
(t) the estimated number of 4-

cliques in G(t) computed by FourEst using memory of

size M . κ(t) = |C
(t)
4 | if t ≤ M + 1 and E

[

κ
(t)
]

= |C
(t)
4 |

if t > M + 1.

We now show an upper bound to the variance of the
FourEst estimations for t > M (for t ≤ M we have

κ
(t) = |C

(t)
4 | and thus the variance of κ(t) is zero).

Theorem V.2. For any time t > M + 1, we have

Var
[

κ
(t)
]

≤ |C
(t)
4 |

(

(

t− 1

M

)5

− 1

)

+ a(t)

(

t− 1

M
− 1

)

+ b(t)

(

(

t− 1

Me

)3

− 1

)

.

B. Variance comparison

Although the upper bounds obtained in Theo-
rems IV.2 and V.2 cannot be compared directly, they
still provide some useful insight on which algorithm may
be performing better according to the properties of G(t).

Let us consider the first, dominant, terms of each of

the variance bounds, that is |C
(t)
4

(

(

5
4

t
M

)4 5τ (t)

M − 1
)

| for

TS4C1 (assigning Me = 4M/5 and M∆ = M/5), and

|C
(t)
4 |
(

(

t−1
M

)5
− 1
)

for FourEst. While TS4C1 exhibits

a slightly higher constant multiplicative term a cost due
to the splitting of the memory in the TieredSampling

approach, the most relevant difference is however given

by the term τ (t)

M appearing in the bound for TS4C1

compared with an additional t−1
M appearing in the bound

fro FourEst. Recall that τ (t) denotes here the number
of triangles observed by the algorithm up to time t. Due
to the fact that the probability of observing a triangle
decreases quadratically with respect to the size of the
graph t, we expect that τ < t and, for sparser graphs
for which 3 and 4-cliques are indeed “rare patterns, we
actually expect τ (t) << t. Under these circumstances we
would therefore expect M/5τ >> M/t.

This is the critical condition for the success of the
TieredSampling approach. If the sub-structure se-
lected as a tool for counting the motif of interest is
not “rare enough” then there is no benefit in devoting a
certain amount of the memory budget to maintaining a
sample of occurrences of the sub-structure. Such problem
would for instance arise when using the TieredSam-

pling approach for counting triangles using wedges (i.e.,
two-hop paths) as a sub-structure, as attempted in [14],
as in most real-world graph the number of wedges is
much greater of the number of edges themselves making
them not suited to be used as a sub-structure.

m FourEst TS4C1
Change

TS4C1
TS4C2

Change

TS4C2

50 0.8775 0.5862 -33.19% 0.5222 -40.49%

100 0.3054 0.1641 -46.27% 0.1408 -53.90%

150 0.1521 0.0937 -38.34% 0.0917 -39.70%

200 0.0899 0.0599 -33.39% 0.0549 -38.95%

300 0.0486 0.0346 -28.80% 0.0417 -14.19%

400 0.0289 0.0249 -13.87% 0.0261 -9.32%

500 0.0221 0.0197 -11.28% 0.0239 8.08%

750 0.0134 0.0132 -1.57% 0.0181 34.90%

1000 0.0088 0.0099 13.14% 0.0146 66.36%

Table I
Comparison of MAPE of FourEst. TS4C1 and TS4C2 for

Barábasi-Albert graphs.

C. Experimental evaluation over random graphs

In this section we compare the performances of our
TieredSampling algorithms of TS4C1 and TS4C2

with the performance of the a single sample approach
FourEst, on randomly generated graphs. In particular,
we analyze random Barábasi-Albert graphs [23] with n
nodes and mn total edges, as they exhibit the same
scale-free property observed in many real-world graphs
of interest such as social networks.

In our experiments, we set n = 20000 and we consider
various values for m from 50 to 2000 in order to compare
the performances of the two approaches as the number
of edges (and thus triangles) increases. The algorithms
use a memory space whose size corresponds to 5% of
the number of edges in the graph nm. In columns 2,3
and 5 of Table I we present the average of the MAPEs
of the ten runs for FourEst, TS4C1 and TS4C2. In
column 4 (resp., 6) of Table I we report the percent re-
duction/increase in terms of the average MAPE obtained
by TS4C1 (resp., TS4C2) with respect to FourEst.

Both TieredSampling algorithms consistently out-
perform FourEst for values of m up to 400, that is for
fairly sparse graphs for which we expect 3 and 4 cliques
to be rare patterns. The advantage over FourEst is par-
ticularly strong for values of m up to 200 with reductions
of the average MAPE up to 30%. For denser graphs,
i.e. m ≥ 750, FourEst outperforms both TieredSam-

pling algorithms. This in consistent with the intuition
discussed in Section V-B, as for denser graphs triangles
are not “rare enough” to be worth saving over edges.
Note however that in these cases the quality of all the
estimators is very high (i.e., MAPE≤ 1%).

We can also observe that TS4C2 outperforms TS4C1

for m ≤ 200. Vice versa, TS4C1 outperforms TS4C2

(and FourEst) for 300 ≤ m ≤ 750. Since, as discussed
in Section IV-E, TS4C2 gives “more importance” to
triangles, it works particularly well when the graph
is very sparse, and triangles are particularly rare. As
the graph grows denser (and the number of triangles
increases), TS4C1 performs better until, for highly dense
graphs FourEst produces the best estimates.



VI. Adaptive Tiered Sampling Algorithm

An appropriate partition of the available memory be-
tween the layers used in the TieredSampling approach
is crucial for the success of the algorithm: while assigning
more memory to the triangle sample allows maintain
more sub-patterns, removing too much space from the
edge sample reduces the probability of observing new
triangles. While in Section IV-D we provide a general
rule to decide how to split the memory budget for
TS4C1 and TS4C2, such partition may not always lead
to the best possible results. For instance, if the graph
being observed is particularly sparse, assigning a large
portion of the memory to the triangles would result in
a considerable waste of memory space due to the low
probability of observing triangles. Further, as discussed
in Section V, depending on the properties of G(t) a single
edge approach could perform better than the Tiered-

Sampling algorithms. As in the graph streaming setting
these properties are generally not known a priori, nor
stable through the graph evolution, a fixed memory
allocation policy appears not to be the ideal solution. In
this section we present ATS4C, an adaptive variation of
our TS4C2 algorithm, which dynamically analyzes the
properties of G(t) through time and consequently decides
how to allocate the available memory.

Algorithm description: ATS4C has two main “exe-
cution regimens”: (R1) for which it behaves exactly as
FourEst, and (R2) for which it behaves similarly to
TS4C2. (R1) is the initial regimen for ATS4C. Recall
that, from Lemma II.1 (resp., Lemma IV.4) the proba-
bility of a 4-clique being observed by FourEst (resp.,
TS4C2)is upper bounded by ps = (min{1, M/t})5

(resp., pα = (min{1, αM/t})4(min{1, (1 − α)M/τ (t)})2,
where 0 < α < 1). Every M time steps the al-
gorithm evaluates, based on the number of triangles
observed so far, whether to switch to (R2). ATS4C

α∗ = argmaxα∈[2/3,1)pα. If ps > pα∗ , ATS4C remains in
(R1). Vice versa ATS4C transitions to (R2): the tri-
angle reservoir S∆ is assigned (1−α∗)M memory space,
and it is filled with the triangles composed by the edges
currently in the edge reservoir, using the reservoir sam-
pling scheme. Finally the edge reservoir Se is constructed
by selecting α∗M of the edges in the current sample uni-
formly at random, thus ensuring that Se is an uniform
sample. Once ATS4C switches to (R2) it never goes
back to (R1). During (R2), as long as |S∆| < M/3, every
M time steps ATS4C evaluates whether it is opportune
to assign more memory to S∆. Let t = iM , rather than
just using the information of the number of triangles seen
so far τ (iM), ATS4C computes a “prediction” of the total
number of triangles seen until (i + 1)M assuming that
the number of triangles seen during the next M steps
will equals the number of triangles seen during the last

M steps, that is ˜τ ((i+1)M) = 2τ (iM) − τ ((i−)M). ATS4C

then computes α∗ = argmaxa∈[2/3,1)(min{1, αM/(i +

1)M)})4(min{1, (1 − α)M/ ˜τ ((i+1)M)})2. Let α denote
the split being used by ATS4C at t = iM , if α∗ > α
the algorithm continues its execution with no further
operations (ATS4C never reduces the memory space
assigned to S∆). Vice versa, if α∗ < α, ATS4C removes
(α−α∗)M edges from Se selected uniformly at random,
and the freed space is assigned to S∆. Let us denote
this space as S′

∆. As ATS4C progresses and observes
new triangles it fills S′

∆ using the reservoir sampling
scheme. S∆ and S′

∆ are then merged at the first time
step for which the probability p∆ of a triangle seen before
the creation of S′

∆ being in S∆ becomes lower then the
probability p∆′ of a triangle observed after the creation
of S′

∆ being in it. The merged triangle sample contains
all the triangles in S′

∆, while the triangles in S∆ are
moved to it with probability p∆′/p∆. This ensures that
after the merge all the triangles seen on the stream are
kept in the triangle reservoir with probability p∆′ . After
the merge, ATS4C operates the samples as described in
TS4C2. Finally, ATS4C increases the memory space for
S∆ only if all the currently assigned space is used.

The analysis of ATS4C is much more complicated
than the one for our previous algorithms as it requires
to keep track of the probabilities according to which
the observed triangles appear in S∆. We claim however
(without explicit proof) that the estimation provided by
ATS4C is unbiased. Via the experimental analysis in
Section VII-B, we show how ATS4C succeeds in merging
the advantages of the single sample approach and of an
adaptive splitting of the in tiers.

VII. Experimental Evaluation

In this section, we evaluate through extensive exper-
iments the performance of our proposed TieredSam-

pling method when applied for counting 4 and 5-cliques
in large graphs observed as streams. We use several real-
world graphs with size ranging form 106 to 108 edges
(see Table II for a complete list). All graphs are treated
as undirected. The edges are observed on the stream
according to the values of the associated timestamps
if available, or in random order otherwise. In order to
evaluate the accuracy of our algorithms, we compute
the “ground truth” exact number of 4-cliques (resp., 5-
cliques) for each time step using an exact algorithm
which maintains the entire G(t) in memory. Our algo-
rithms are implemented in Python. The experiments
were run on the Brown University CS department clus-
ter1, where each run employed a single core and used at
most 4GB of RAM. The section is organized as follows:
we first evaluate the performance of TS4C1 and TS4C2

1https://cs.brown.edu/about/system/services/hpc/grid/



Graph Nodes Edges Source

DBLP 986,324 3,353,618 [24]

Patent (Cit) 2,745,762 13,965,132 [6]

LastFM 681,387 30,311,117 [6]

Live Journal 5,363,186 49,514,271 [24]

Hollywood 1,917,070 114,281,101 [24]

Orkut 3,072,441 117,185,083 [25]

Twitter 41,652,230 1.20 · 109 [6, 24]

Table II
Graphs used in the experiments

when run on several massive graphs and we compare
them with the estimations obtained using FourEst. We
then present practical examples that motivate the neces-
sity for the adaptive version of our TieredSampling

approach, and we show how our ATS4C manages to
capture the best of the single and multi-level approach.
Finally, we show how the TieredSampling approach
can be generalized in order to count structures other
than 4-cliques.

A. Counting 4-Cliques

We estimate the global number of 4-cliques on
insertion-only streams, starting as empty graphs and
for which an edge is added at each time step, using
algorithms FourEst, TS4C1 and TS4C2. As discussed
in Section IV-C (resp., Section IV-E),in TS4C1 (resp.,
TS4C2) we split the total available memory space M as
|Se| = 4M/5 and |S∆| = M/5 (resp., |Se| = 2M/3 and
|S∆| = M/3).

The experimental results show that these fixed mem-
ory splits perform well for most cases. We then ex-
periment with an adaptive splitting mechanism that
handles the remaining cases. In Figure 2 we present the
estimation obtained by averaging 10 runs of respectively
TS4C1, TS4C2 and FourEst using total memory
space M = 5 × 105 for the LiveJournal and Hollywood
graphs (i.e., respectively using less than 1% and 0.5% of
the graph size). While the average of the runs for TS4C1

and TS4C2 are almost indistinguishable from the ground
truth, that is clearly not the case for FourEst for which
the quality of the estimator considerably worsens as the
graph size increases.

In Table III, we report the average MAPE perfor-
mance over 10 runs for TS4C1, TS4C2 and FourEst

for several graphs of different size. Depending on the
size of the input graph we assign different total memory
space (as reported in Table III), which in most cases
amounts to at most 3% (∼ 8%M for Patent(Cit)) of the
input graph size. Except for LastFM, our TieredSam-

pling algorithms clearly outperform FourEst, with the
average MAPE reduced by up to 30%. Both TS4C1

and TS4C2 return very accurate estimations of the
number of 4-cliques on the majority of these graphs, with
average MAPE lower than 10% (16% for LastFM and
Orkut). LastFM is the only graph for which FourEst

(considerably) outperforms the TieredSampling algo-

Dataset M FourEst TS4C1 TS4C2

Patent (Cit) 106 0.0963 0.0921 0.0474

LastFM 106 0.0118 0.1258 0.0777

LiveJournal 106 0.1521 0.0543 0.0560

Hollywood 2 · 106 0.0355 0.0207 0.0194

Orkut 2 · 106 0.4674 0.1590 0.1417

Twitter2 5 · 106 0.2503 0.0749 0.0742

Table III
Average MAPE of various approaches for all graphs.
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Figure 2. Comparison of |C
(t)
4 | estimates obtained using TS4C1,

TS4C2 and FourEst with M = 5 × 105,

rithms. This is due to the high density of the graph
|E|/|V | > 500 and to the fact that in this case triangles
are not a rare enough sub-structure to justify the choice
of maintaining them over simple edges.

We analyze the variance reduction achieved using our
TieredSampling algorithms by comparing the empiri-
cal variance observed over forty runs on the Hollywood
graph using M = 5 × 105. The results are reported
in Figure 3. While for both TS4C1 and TS4C2 the
minimum and maximum estimators are close to the
ground truth throughout the evolution of the graph,
TS4C1 estimators exhibit very high variance especially
towards the end of the stream.

Our experiments not only verify that TS4C1 and
TS4C2 allow to obtain good quality estimations which
are in most cases superior to the ones achievable using
a single sample strategy, but also validate the general
intuition underlying the TieredSampling approach.

Both TieredSampling algorithms are extremely
scalable, showing average update times in the order of
hundreds microseconds for all graphs.

B. Adaptive Tiered Sampling

In Section VII-A, we showed that TS4C2, allows to
obtain high quality estimations for the number of 4-
cliques outperforming in most cases both TS4C1 and
FourEst. These results were obtained splitting the
available memory such that |Se| = 2M/3 and |S∆| =
M/3. As discussed in Section VI, while this is an useful
general rule, depending on the properties of the graph
different splitting rules may yield better results. We
verify this fact by evaluating the performance of TS4C2

when run on the Patent(Cit) graph using different as-
signments of the total space M = 5 × 105 to the two

2Ground truth computed for first 3 · 108 edges on the stream.
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Figure 3. Variance of FourEst, TS4C1 and TS4C2 for Hollywood graph with M = 5 × 105.
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Figure 5. Comparison of |C
(t)
4 | estimates obtained using ATS4C,

TS4C2 and FourEst with M = 5 × 105.

levels. The results in Figure 4 show that decreasing the
space assigned to the triangle sample from M/3 to M/9
allows to achieve estimations which are closer to the
ground truth leading to a 31% reduction in the average
MAPE. Due to the sparsity of the Patent(Cit) graph,
TS4C2 observes a very small number of triangles for
large part of the stream. Assigning a large fraction of the
memory space to S∆ is thus inefficient as the probability
of observing new triangles is reduced, and the space
assigned to S∆ is not fully used.

To overcome such difficulties, in Section VI we intro-
duced ATS4C, an adaptive version of TS4C2, which
allows to dynamically adjust the use of the available
memory space based on the properties of the graph being
observed. We experimentally evaluate the performance
of ATS4C over 10 runs on the Patent(Cit) and the
LastFM graphs and we compare it with TS4C2 and
FourEst using M = 5× 105.

As shown in Figure 5, for both graphs, ATS4C pro-
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Figure 6. Comparison of |C
(t)
5 | estimates for the DBLP graph

obtained using TS5C and FiveEst with M = 3 × 105.

duces estimates that are nearly indistinguishable from
the ground truth. ATS4C clearly outperforms TS4C2

(with |S∆| = M
3 ) on Patent(Cit) where triangles are

sparse motifs achieving an ∼ 85% reduction in the
average MAPE compared to TS4C2. ATS4C returns
high quality estimations even for the LastFM graph, for
which the single level approach FourEst outperforms
the TieredSampling algorithms.

C. Counting 5-Cliques

To demonstrate the generality of our TieredSam-

pling approach we present TS5C, a one pass count-
ing algorithms for 5-clique in a stream. The algorithm
maintains two reservoir samples, one for edges and one
for 4-cliques. When the current observed edge completes
a 4-clique with edges in the edge sample the algorithm
attempts to insert it to the 4-cliques reservoir sample.
A 5-clique is counted when the current observed edge
completes a 5-clique using one 4-clique in the reservoir
sample and 3 edges in the edge sample.

Our experiments compare the performance of TS5C

to that of a standard one tier edge reservoir sample algo-
rithm FiveEst, similar to FourEst. We evaluate the
average performance over 10 runs of the two algorithms
on the DBLP graph using M = 3 × 105. The results
are presented in Figure 6. TS5C clearly outperforms
FiveEst in obtaining much better estimations of the
ground truth value |C

(t)
5 | achieving an ∼ 56% reduction

in the average MAPE.



VIII. Conclusions

We developed TieredSampling, a novel technique
for approximate counting sparse motifs in massive
graphs whose edges are observed in one pass stream. We
studied application of this technique for the problems
of counting 4 and 5-cliques. We present both analyti-
cal proofs and experimental results, demonstrating the
advantage of our method in counting sparse motifs
compared to the standard methods of using just edge
reservoir sample. With the growing interest in discover-
ing and analyzing large motifs in massive scale graphs in
social networks, genomics, and neuroscience, we expect
to see further applications of our technique.
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Appendix A.

Additional theoretical results for TS4C1

Before presenting the proof for the main analytical results for TS4C1 discussed in Section IV, we introduce some
technical lemmas.

Lemma A.1. Let λ ∈ C
(t)
4 with λ = {e1, e2, e3, e4, e5, e6} using Figure 1 as reference. Assume further, without loss

of generality, that the edge ei is observed at ti (not necessarily consecutively) and that t6 > max{ti, 1 ≤ i ≤ 5}. λ can
be observed by TS4C1 at time t6 either as a combination of triangle T1 = {e1, e2, ore4} and edges e3 = (v, w) and
e5 = (v, z), or as a combination of triangle T2 = {e1, e3, e5} and edges e2 = (u, w) and e4 = (u, z).

Proof: As presented in Algorithm 4, TS4C1 can detect λ only when its last edge is observed on the stream
(hence, t6). When e6 is observed, the algorithm first evaluates wether there is any triangle in S

(t6)
∆ that shares one

of the two endpoint u or v form e6. Since a this step (i.e., the execution of fucntion Update4Cliques) the triangle
sample is jet to be updated based on the observation of e6, the only triangle sub-structures of λ which may have
been observed on the stream, and thus included in S

(t6)
∆ are T1 = {e1, e2, e4} and T2 = {e1, e3, e5}. If any of these is

indeed in S
(t6)
∆ , TS4C1 proceeds to check wether the remaining two edges required to complete λ (resp., e3, e5 for

T1, or e2, e4 for T2) are in Se. λ is thus observed either once or twice depending on which just one or both of these
conditions are verified.

Lemma A.2. Let λ ∈ C
(t)
4 with λ = {e1, e2, e3, e4, e5, e6} using Figure 1 as reference. Assume further, without loss

of generality, that the edge ei is observed at ti (not necessarily consecutively) and that t6 > max{ti, 1 ≤ i ≤ 5}.
Let t1,2,4 = max t1, t2, t4, Me + 1. The probability pλ of λ being observed on the stream by TS4C1 using the triangle
T1 = {e1, e2, e4} and the edges e3, e5, is computed by ProbClique as:

pλ =
Me

tM
1,2,4 − 1

Me − 1

tM
1,2,4 − 2

min{1,
M∆

τ (t6)
}p′

where if t6 ≤Me

p′ = 1,

if min{t3, t5} > t1,2,4

p′ =
Me

t6 − 1

Me − 1

t6 − 2
,

if max{t3, t5} > t1,2,4 > min{t3, t5}

p′ =
Me − 1

t6 − 2

Me − 2

t1,2,4 − 3

t1,2,4 − 1

t6 − 1

otherwise

p′ =
Me − 2

t1,2,4 − 3

Me − 3

t1,2,4 − 4

t1,2,4 − 1

t6 − 1

t1,2,4 − 2

t6 − 2
.

Proof: Let us define the event Eλ = λ is observed on the stream by TS4C1 using triangle T1 = {e1, e2, e4} and

edges e3, e5. Further let ET1 = T1 ∈ S
(t6)
∆ , and E3,5 = {e3, e5} ⊆ S

(t6)
e . Given the definition of TS4C1 we have:

Eλ = ET1 ∧ E3,5,

and hence:
pλ = Pr (Eλ) = Pr

(

ET1 ∧ E3,5

)

= Pr
(

E3,5|ET1

)

Pr (ET1 ) .

In oder to study Pr (ET1 ) we shall introduce event ES(T1) =“triangle T1 is observed on the stream by TS4C1”. From
the definition of TS4C1 we know that T1 is observed on the stream iff when the last edge of T1 is observed on the
stream at max{t1, t2, t4} the remaining to edges are in the edge sample. Applying Bayes’s rule of total probability
we have:

Pr (ET1 ) = Pr
(

ET1 |ES(T1)

)

Pr
(

ES(T1)

)

.

and thus:
pλ = Pr

(

E3,5|ET1

)

Pr
(

ET1 |ES(T1)

)

Pr
(

ES(T1)

)

. (1)



Let t1,2,4 = max{t1, t2, t4, M + 1}, if order for T1 to be observed by TS4C1 it is required that when the last edge of
T1 is obseved on the stream at t1,2,4 its two remaining edges are kept in Se. From Lemma II.1 we have:

Pr
(

ES(T1)

)

=
Me

t1,2,4 − 1

Me − 1

t1,2,4 − 2
, (2)

and:

Pr
(

ET1 |ES(T1)

)

=
Me

τ t6
. (3)

Let us now consider Pr
(

E3,5|ET1

)

. While the content of S∆ itself does not influence the content of Se, the fact that
T1 is maintained in S∆(t6) implies that is has been observed on the stream at a previous time and hence, that two
of its edges have been maintained in Se at least until the last of its edges has been observed on the stream. We

thus have Pr
(

E3,5|ET1

)

= Pr
(

E3,5|ES(T1
)
)

. In order to study p′ = Pr
(

E3,5|ES(T1
)
)

it is necessary to distinguish

the possible (5!) different arrival orders for edges e1, e2, e3, e4 and e5. An efficient analysis we however reduce the
number of cases to be considered to just four:

• t6 ≤ M + e: in this case all the edges observed on the stream up until t6 are deterministically inserted in Se

and thus p′ = 1.
• min{t3, t5} > t1,2,4: in this cases both edges e3 and e5 are observed after all the edges composing T1 have already

been observed on the stream. As for any t > t1,2,4 the event ES(T1) does not imply that any of the edges of T1

is still in Se we have:

p′ = Pr
(

E3,5|ET1

)

= Pr
(

{e3, e5} ⊆ S
(t6)
e

)

,

and thus, from Lemma II.1:

p′ =
Me

t6 − 1

Me − 1

t6 − 2
.

• max{t3, t5} > t1,2,4 > min{t3, t5}: in this case only one of the edges e3, e5 is observed after all the edges in T1

are observed. We need to therefore take into consideration that the two edges of T1 are kept in Se until t1,2,4.
Let eM

3,5 (resp., em
3,5) denote the last (resp., first) edge observed on the stream between e3 and e5.

p′ = Pr
(

eM
3,5 ∈ S

(t6)
e |em

3,5 ∈ S
(t6)
e

)

Pr
(

em
3,5 ∈ S

(t6)
e

)

,

=
Me − 1

t6 − 2
Pr
(

em
3,5 ∈ S

(t6)
e |em

3,5 ∈ S
(t1,2,4)
e

)

Pr
(

em
3,5 ∈ S

(t1,2,4)
e

)

,

=
Me − 1

t6 − 2

t1,2,4 − 1

t6 − 1

Me − 2

t1,2,4 − 3
.

• t1,2,4 > max{t2, t4}: in all the remaining cases both e3 and e5 are observed before the last edge of T1 has been
observed. Hence:

p′ = Pr
(

{e3, e5} ⊆ S
(t6)
e |{e3, e5} ⊆ S

(t1,2,4)
e

)

Pr
(

{e3, e5} ⊆ S
(t1,2,4)
e

)

,

=
Me − 2

t1,2,4 − 3

Me − 3

t1,2,4 − 4

t1,2,4 − 1

t6 − 1

t1,2,4 − 2

t6 − 2
.

The lemma follows combining the result for the values of p′ with (2) and (3) in (1).

Using this result we can proceed to the proof of the unbiasedness of the estimator returned by TS4C1.

Proof of Theorem IV.1: From Lemma A.1 we have that TS4C1 can detect any 4-clique λ ∈ C
(t)
4 in exactly two

ways: either using triangle T1 and edges e3, e5, or by using triangle T2 and edges e2, e4 (use Figure 1 as a reference).

For each λ ∈ C
(t)
4 let us consider the random variable δλ1 (resp. δλ2 ) which takes value p−1

λ1
/2 (resp., p−1

λ2
/2) if

the 4-clique λ is observed by TS4C1 using triangle T1 (resp., T2) or zero otherwise. Let pλ1 (resp., pλ2 ) denote the
probability of such event: we then have E [δλ1 ] = E [δλ2 ] = 1/2.

From Lemma A.2 we the estimator κ(t) computed using TS4C1 has can be expressed as κ(t) =
∑

λ∈C
(t)
4

(δλ1 + δλ2 ).

From the previous discussion and by applying linearity of expectation we thus have:

E
[

κ
(t)
]

= E







∑

λ∈C
(t)
4

(δλ1 + δλ2 )






=
∑

λ∈C
(t)
4

(

E [δλ1 ] + E [δλ2 ]
)

=
∑

λ∈C
(t)
4

1 = |C
(t)
4 |.
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Figure 7. Cliques sharing one edge.

e3
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g6

Figure 8. Cliques sharing three edges.

Finally, let t∗ denote the first step at for which the number of triangles seen exceeds M∆. For t ≤ min{Me, t∗},
the entire graph G(t) is maintained in Se and all the triangles in G(t) are stored in S∆. Hence all the cliques in G(t)

are deterministically observed by TS4C1in both ways and we therefore have κ
(t) = |C

(t)
4 |.

Lemma A.3. Any pair (λ, γ) of distinct 4-cliques in G(t) can share either one, three or no edges. If λ and γ share
three edges, those three edges compose a triangle.

Proof: Suppose that λ and γ share exactly two distinct edges. This implies that they share at least three
distinct nodes, and thus must share the three edges connecting each pair out of said three nodes. This constitutes
a contradiction. Suppose instead that λ and γ share four or five edges while being distinct. This implies that they
must share four vertices, hence they cannot be distinct cliques. This leads to a contradiction.

We now proceed to the proof of the bound on the variance of TS4C1 in Theorem IV.2. We remark that the bound
presented here is loose as it sacrifices its precision for presentation purposes. A stronger bound would require a case
by case analysis of all the 12! possible relative ordering according to which the edges of any pair of 4-cliques in G(t)

are observed. Our proof technique simplifies the analysis by grouping these cases into macro-cases with a resulting
loss in tightness.

Proof of Theorem IV.2: Assume |C
(t)
4 | > 0, otherwise TS4C1 estimation is deterministically correct and has

variance 0 and the thesis holds. For each λ ∈ C
(t)
4 let λ = {e1, e2, e3, e4, e5, e6}, withouth loss of generality let us

assume the edges are disposed as in Figure 1. Assume further, without loss of generality, that the edge ei is observed
at ti (not necessarily consecutively) and that t6 > max{ti, 1 ≤ i ≤ 5}. Let t1,2,4 = max{t1, t2, t4, Me + 1}. Let us
consider the random variable δλ1 (resp. δλ2 ) which takes value p−1

λ1
/2 (resp., p−1

λ2
/2) if the 4-clique λ is observed by

TS4C1 using triangle T1 = {e1, e2, e4} (resp., T2) and edges e3, e5 (resp., e2, e4) or zero otherwise. Let pλ1 (resp.,
pλ2 ) denote the probability of such event.



Since, from Lemma A.2 we know:

Var [δλ1 ] =
p−1

λ1

4
−

1

4
≤

1

4





τ (t)

M∆

3
∏

i=0

t− 1− i

Me − i
− 1



 ,

Var [δλ2 ] =
pλ2

4

−1
−

1

4
≤

1

4





τ (t)

M∆

3
∏

i=0

t− 1− i

Me − i
− 1



 .

we have:

Var
[

κ
(t)
]

= Var







∑

λ∈C
(t)
4

δλ1 + δλ2






=
∑

λ∈C
(t)
4

∑

γ∈C
(t)
4

∑

i∈{1,2}

∑

j∈{1,2}

Cov
[

δλi , δγj

]

=
∑

λ∈λ∈C
(t)
4

(

Var [δλ1 ] + Var [δλ2 ]
)

+
∑

λ∈C
(t)
4

(

Cov [δλ1 , δλ2 ] + Cov [δλ2 , δλ1 ]
)

+
∑

λ∈C
(t)
4

λ6=γ

(

Cov
[

δλ1 , δγ1

]

+ Cov
[

δλ1 , δγ2

]

+ Cov
[

δλ2 , δγ1

]

+ Cov
[

δλ2 , δγ2

]

)

=
|C

(t)
4 |

2





τ (t)

M∆

3
∏

i=0

t− 1− i

Me − i
− 1



+
∑

λ∈C
(t)
4

(

Cov [δλ1 , δλ2 ] + Cov [δλ2 , δλ1 ]
)

+
∑

λ∈C
(t)
4

λ6=γ

(

Cov
[

δλ1 , δγ1

]

+ Cov
[

δλ1 , δγ2

]

+ Cov
[

δλ2 , δγ1

]

+ Cov
[

δλ2 , δγ2

]

)

(4)

≤
|C

(t)
4 |

2

(

τ (t)

M∆
c

(

t− 1

Me

)4

− 1

)

+
∑

λ∈C
(t)
4

(

Cov [δλ1 , δλ2 ] + Cov [δλ2 , δλ1 ]
)

+
∑

λ∈C
(t)
4

λ6=γ

(

Cov
[

δλ1 , δγ1

]

+ Cov
[

δλ1 , δγ2

]

+ Cov
[

δλ2 , δγ1

]

+ Cov
[

δλ2 , δγ2

]

)

. (5)

We now proceed to analyze the various covariance terms appearing in (4). In the following we refer to

• The second summation in (4),
∑

λ∈C
(t)
4

(

Cov [δλ1 , δλ2 ] + Cov [δλ2 , δλ1 ]
)

, concerns the sum of the covariances of

pairs of random variables each corresponding to one of the two possible ways of detecting a 4-clique using
TS4C1. Let us consider one single element of the summation:

Cov [δλ1 , δλ2 ] = E [δλ1 δλ2 ]− E [δλ1 ] E [δλ2 ] = E [δλ1 δλ2 ]− 1/4.

Let us now focus on E [δλ1 δλ2 ], according to the definition of δλ1 and δλ2 we have:

E [δλ1δλ2 ] =
p−1

λ1
p−1

λ2

4
Pr
(

δλ1 = p−1
λ1
∧ δλ2 = p−1

λ2

)

=
p−1

λ1
p−1

λ2

4
Pr
(

δλ1 = p−1
λ1
|δλ2 = p−1

λ2

)

Pr
(

δλ2 = p−1
λ2

)

≤
p−1

λ1
p−1

λ2

4
Pr
(

δλ2 = p−1
λ2

)

≤
p−1

λ1
p−1

λ2

4
pλ2

≤
p−1

λ1

4
.



We can therefore conclude:

∑

λ∈C
(t)
4

(

Cov [δλ1 , δλ2 ] + Cov [δλ2 , δλ1 ]
)

≤
|C

(t)
4 |

2





τ (t)

M∆

3
∏

i=0

t− 1− i

Me − i
− 1



 ≤
|C

(t)
4 |

2

(

τ (t)

M∆
c

(

t− 1

Me

)4

− 1

)

(6)

• The third summation in (4), includes the covariances of all |C
(t)
4 |
(

2|C
(t)
4 | − 1

)

unordered pairs of random

variables corresponding each to one of the two possible ways of counting distinct 4-cliques in C
(t)
4 . In

order to provide a significant bound it is necessary to divide the possible pairs of 4-cliques depending
on how many edges they share (if any). From Lemma A.3 we have that any pair of 4-cliques λ and γ
can share either one, three or no edges. In the remainder of our analysis we shall distinguishing three
group of pairs of 4-cliques based on how many edges they share. In the following, we present, without
loss of generality, bounds for Cov

[

δλ1 , δγ2

]

. The results steadily holds for the other possible combinations
Cov

[

δλ1 , δγ1

]

, Cov
[

δλ2 , δγ1

]

, Cov
[

δλ2 , δγ2

]

, Cov
[

δγ1 , δλ1

]

, Cov
[

δγ1 , δλ2

]

, Cov
[

δγ2 , δλ1

]

, and Cov
[

δγ2 , δλ2

]

1) λ and γ do not share any edge:

E
[

δλ1 δγ2

]

=
p−1

λ1
p−1

γ2

4
Pr
(

δλ1 = p−1
λ1
∧ δγ2 = p−1

γ2

)

=
p−1

λ1
p−1

γ2

4
Pr
(

δλ1 = p−1
λ1
|δγ2 = p−1

γ2

)

Pr
(

δλ2 = p−1
λ2

)

The term Pr
(

δλ1 = p−1
λ1
|δγ2 = p−1

γ2

)

denotes the probability of TS4C1 observing λ using T1 and edges e3

and e5 conditioned of the fact that γ was observed by the algorithm using T3 and edges g3 and g5. Note
that as λ and γ do not share any edge, no edge of γ will be used by TS4C1 to detect λ. Rather, if any
edge of γ is included in §e or if T3 is included in S∆, this would lessen the probability of TS4C1 detecting
λ using T 1, e3 and e5 as some of space in Se or S∆ may be occupied by edges or triangle sub-structures

for γ. Therefore we have Pr
(

δλ1 = p−1
λ1
|δγ2 = p−1

γ2

)

≤ Pr
(

δλ1 = p−1
λ1

)

and thus:

E
[

δλ1 δγ2

]

=
p−1

λ1
p−1

γ2

4
Pr
(

δλ1 = p−1
λ1
|δγ2 = p−1

γ2

)

Pr
(

δλ2 = p−1
λ2

)

≤
p−1

λ1
p−1

γ2

4
Pr
(

δλ1 = p−1
λ1

)

Pr
(

δλ2 = p−1
λ2

)

≤
p−1

λ1
p−1

γ2

4
pλ1 pλ2

≤
1

4

We therefore have Cov
[

δλ1 , δγ2

]

≤ 0. Hence we can conclude that the contribution of the covariances of
the pairs of random variables corresponding to 4-cliques that do not share any edge to the summation
in (4) is less or equal to zero.

2) λ and γ share exactly one edge e∗ = λ ∩ γ as shown in Figure 7 Let us consider the

event E∗ =“e∗ ∩ T1 ∩ E(t1,2,4−1) ∈ S
t1,2,4
e , and e∗ ∩ {e3, e5} ∩ E(t6−1) ∈ S

(t6)
e ”. Clearly

Pr
(

δλ1 = p−1
λ1
|δγ2 = p−1

γ2

)

≤ Pr
(

δλ1 = p−1
λ1
|E∗
)

. Recall from Lemma A.2 that Pr
(

δλ1 |E
∗
)

=

Pr
(

{e3, e5} ⊆ S
(t6)
e |E∗

)

Pr
(

T1 ∈ S
(t6)
∆ |E∗

)

Pr
(

S(T1)|E∗
)

, where S(T1) denotes the event “T1 is observed

on the stream by TS4C1”. By applying the law of total probability e have that Pr
(

T1 ∈ S
(t6)
∆ |E∗

)

≤

Pr
(

T1 ∈ S
(t6)
∆

)

. The remaining two terms are influenced differently depending on whether e∗ ∈ T1 or

e∗ ∈ {e3, e5}

– if e∗ ∈ T1: we then have Pr
(

{e3, e5} ⊆ S
(t6)
e |E∗

)

≤ Pr
(

{e3, e5} ⊆ S
(t6)
e

)

. This follows from the

properties of the reservoir sampling scheme as the fact that the edge e∗ is in Se means that one unit of
the available memory space required to hold e3 or e5 is occupied, at least for some time, by e∗. If e∗ is



the last edge of T1 observed in the stream we then have:

Pr
(

S(T1)|E∗
)

= Pr
(

{e1, e2, e4} \ {e
∗} ∈ S(

et1, 2, 4)|E∗
)

= Pr
(

{e1, e2, e4} \ {e
∗} ∈ S(

et1, 2, 4)
)

≤
Me

t1,2,4 − 1

Me − 1

t1,2,4 − 2

Suppose instead that e∗ is not the last edge of T1. Assume further , without loss of generality, that
t2 > max{t1, t4}. TS4C1 observes T1 iff {e1, e4} ∈ S

(
et2). As in E∗ we assume that once observed e∗ is

always maintained in Se until t1,2,4 we have:

Pr
(

S(T1)|E∗
)

= Pr
(

{e1, e4} \ {e
∗} ∈ S(

et1, 2, 4)|E∗
)

≤
Me − 1

t1,2,4 − 2

– if e∗ ∈ {e3, e5}: we then have Pr
(

S(T1)|E∗
)

≤ Pr
(

S(T1)
)

. This follows from the properties of the
reservoir sampling scheme as the fact that the edge e∗ is in Se means that one unit of the available
memory space required to hold the first two edges of T1 until t1,2,4 is occupied, at least for some time,
by e∗. Further, using Lemma A.2 we have:

∗ if t6 ≤Me, then Pr
(

{e3, e5} ⊆ S
(t6)
e |E∗

)

= 1

∗ if min{t3, t5} > t1,2,4, then Pr
(

{e3, e5} ⊆ S
(t6)
e |E∗

)

≥ Me

t6−1 ,

∗ if max{t3, t5} > t1,2,4 > min{t3, t5}, then Pr
(

{e3, e5} ⊆ S
(t6)
e |E∗

)

≥ max{Me−1
t6−2 , Me−2

t1,2,4−3
t1,2,4−1

t6−1 },

∗ otherwise Pr
(

{e3, e5} ⊆ S
(t6)
e |E∗

)

≥ Me−2
t1,2,4−3

t1,2,4−1
t6−1 .

Putting together these various results we have that p
(−1)
λ Pr

(

δλ1 = p−1
λ1
|δγ2 = p−1

γ2

)

≤

p
(−1)
λ Pr

(

δλ1 = p−1
λ1
|E∗
)

≤ c t6−1
Me

with c = s. Hence we have E
[

δλ1 δγ2

]

≤ c
4

t6−1
Me

≤ c
4

t−1
Me

. We can

thus bound the contribution to the third component of (4) given by the pairs of random variables
corresponding to 4-cliques that share one edge as:

2a(t)

(

c
t− 1

Me
− 1

)

, (7)

where a(t) denotes the number of unordered pairs of 4-cliques which share one edge in G(t).
3) λ and γ share three edges {e∗

1, e∗
2, e∗

3} which form a triangle sub-structure for both λ and γ. Let us refer to
Figure 8, without loss of generality let T1 denote the triangle shared between the two cliques. We distinguish
the kind of pairs for the random variables δλi and δγj cases:

– δλi = p−1
λi

if T1 ∈ S
t6−1
∆ ∧ {e3, e5} ⊆ St6−1

e and δγj = p−1
γj

if T1 ∈ S
tγ −1
∆ ∧ {g3, g5} ⊆ S

tγ −1
e , where tγ

denotes the time step at which the last edge of γ is observed. This is the case for which the random
variables δλi and δγj corresponds to FourEstobserving λ and γ using the shared triangle T1. Let us

consider the event E∗ =“T1 ∈ S
(t6)
∆ . Clearly Pr

(

δλi = p−1
λi
|δγj = p−1

γj

)

≤ Pr
(

δλi = p−1
λi
|E∗
)

. In this case

we have Pr
(

T1 ∈ S(t6)|E∗
)

≤ 1, while Pr
(

{e3, e5} ∈ S
(t6)
e |E∗

)

≤ P rob{e3, e5} ∈ S
(t6)
e . This second fact

follows from the properties of the reservoir sampling scheme as the fact that the edges e∗
1, e∗

2 and e∗
3

are in Se at least for the time required for T1 to be observed, means that at least two unit of the
available memory space required to hold the edges e3, e5 are occupied, at least for some time. Putting

together these various results we have that p
(−1)
λi

P robδλi = p−1
λi
|δγj = p−1

γj
≤ p

(−1)
λi

Pr
(

δλi = p−1
λi
|E∗
)

≤

c
(

t6−1
Me

)2
τ (t)

S∆
. Hence we have E

[

δλi δγj

]

≤ c
4

(

t6−1
Me

)2
τ (t)

S∆
and Cov

[

δλi , δγj

]

≤ c
4

(

t6−1
Me

)2
τ (t)

S∆
− 1

4 .

– in all the remaining case, then the random variables δλi and δγj corresponds to FourEstnot observing
λ and γ using the shared triangle T1 for both of them. Let T ∗ denote the triangle sub-structure used by
TS4C1 to count λ with respect to δλi . Let us consider the event E∗ =“{e∗

1, e∗
2, e∗

3} ∩ T1 ∩ E(t1,2,4−1) ∈

S
t1,2,4
e , T1 ∈ S

(t6)
∆ unless one of its edges is the last edge of T ∗ observed on the stream, and {e∗

1, e∗
2, e∗

3}∩



{e3, e5} ∩ E(t6−1) ∈ S
(t6)
e if e∗ ∈ {e3, e5}”, where E(t) denotes the set of edges observed up until time t

included. Clearly Pr
(

δλi = p−1
λi
|δγj = p−1

γj

)

≤ Pr
(

δλi = p−1
λi
|E∗
)

. Note that in this case |{e∗
1, e∗

2, e∗
3} ∩

T1|+ |{e∗
1, e∗

2, e∗
3}∩{e3, e5}|. By analyzing Pr

(

δλi = p−1
λi
|E∗
)

in this case using similar steps as the ones

described for the other sub-cases we have p
(−1)
λi

Pr
(

δλi = p−1
λi
|δγj = p−1

γj

)

≤ p
(−1)
λi

Pr
(

δλi = p−1
λi
|E∗
)

≤

c
(

t6−1
Me

)3

. Hence we have E
[

δλiδγj

]

≤ c
4

(

t6−1
Me

)3

and Cov
[

δλi , δγj

]

≤ c
4

(

t6−1
Me

)3

− 1
4 .

We can thus bound the contribution to the third component of (4) given by the pairs of random variables
corresponding to 4-cliques that share three edges as:

2b(t)



c

(

t− 1

Me

)2
(

1

4

τ (t)

M∆
+

3

4

t− 1

Me

)

− 1



 , (8)

where b(t) denotes the number of unordered pairs of 4-cliques which share three edges in G(t).

The Theorem follows by combining (6), (7) and (8) in (4).



Appendix B.

Additional theoretical results for TS4C2

In this section we present the main analytical results for TS4C2 discussed in Section IV-E. In order to simplify
the presentation we use the following notation:

tM
1,2,...,i , max{t1, t2, . . . , ti}

tm
1,2,...,i , min{t1, t2, . . . , ti}

Lemma B.1. Let λ ∈ C
(t)
4 with λ = {e1, e2, e3, e4, e5, e6} using Figure 1 as reference. Assume further, without loss

of generality, that the edge ei is observed at ti (not necessarily consecutively) and that t6 > max{ti, 1 ≤ i ≤ 5}. λ can
be observed by TS4C2 at time t6 only by a combination of two triangles T1 = {e1, e2, e4} and T2 = {e1, e3, e5}.

Proof: TS4C2 can detect λ only when its last edge is observed on the stream (hence, t6). When e6 is observed,

the algorithm first evaluates wether there are two triangles in S
(t6)
∆ , that share two endpoints and the other endpoints

are u and v respectively. Since a this step (i.e., the execution of function Update4Cliques) the triangle sample is
jet to be updated based on the observation of e6, the only triangle sub-structures of λ which may have been observed
on the stream, and thus included in S

(t6)
∆ are T1 = {e1, e2, e4} and T2 = {e1, e3, e5}. λ is thus observed if and only

if both of the triangles T1 and T2 are found in S
(t6)
∆ .

Lemma B.2. Let λ ∈ C
(t)
4 with λ = {e1, e2, e3, e4, e5, e6} using Figure 1 as reference. Assume further, without loss

of generality, that the edge ei is observed at ti (not necessarily consecutively) and that t6 > max{ti, 1 ≤ i ≤ 5}. The
probability pλ of λ being observed on the stream by TS4C2, is computed by ProbClique as:

pλ = min{1,
Me

tM
1,3,5 − 1

Me − 1

tM
1,3,5 − 2

}min{1,
M∆

τ (t6)

M∆ − 1

τ (t6) − 1
}p′

where:

p′ =



































































































































1, if tM
1,2,4 ≤Me

Me−2
t1−3

Me−3
t1−4 , if t1 > tM

2,3,4,5
Me−2
t1−3

Me−3
t1−4 , if tM

3,5 > t1 > max{tm
3,5, t2, t4}

Me−2
tM

2,4−3
, if tM

3,5 > tM
2,4 > max{tm

3,5, tm
2,4, t1}

Me

t1−1
Me−1
t1−2 , if tm

3,5 > t1 > tM
2,4

Me−1
tM

2,4−2
if tm

3,5 > tM
2,4 > t1

Me−1
tM

2,4−1
Me−2
t1−3

t1−1
t2−1 , if tM

2,4 > t1 > max{Me, tm
2,4, tM

3,5}

Me−1
tM

2,4−1
Me

t2−1 if tM
2,4 > Me > t1 > max{tm

2,4, tM
3,5}

t3−1
tM

2,4−1
t3−2

tM
2,4−2

Me−2
tM

3,5−3
, if tM

2,4 > tM
3,5 > max{Me, tm

3,5, tm
2,4, t1}

Me

tM
2,4−1

Me−1
tM

2,4−2
, if tM

2,4 > Me > tM
3,5 > max{tm

3,5, tm
2,4, t1}

Me

tM
2,4−1

Me−1
tM

2,4−2
, if tm

2,4 > t1 > tM
3,5

Me−1
tM

2,4−2

tM
3,5−1

tM
2,4−1

, if tm
2,4 > tM

3,5 > max{M, t1}

Me−1
tM

2,4−2
Me

tM
2,4−1

, if tm
2,4 > Me > tM

3,5 > t1

Proof: Let us define the event Eλ = λ is observed on the stream by TS4C2 using triangle T1 = {e1, e2, e4} and
triangle T2 = {e1, e3, e5}. Given the definition of TS4C2 we have:

Eλ = ET1 ∧ET2 ,

and hence:

pλ = Pr (Eλ) = Pr (ET1 ∧ ET2 ) = Pr
(

ET1 |ET2

)

Pr (ET2 ) .

In oder to study Pr (ET2 ) we shall introduce event ES(T2) =“triangle T2 is observed on the stream by TS4C2”. From
the definition of TS4C2 we know that T2 is observed on the stream iff when the last edge of T2 is observed on the



stream at max{t1, t3, t5} the remaining to edges are in the edge sample. Applying Bayes’s rule of total probability
we have:

Pr (ET2 ) = Pr
(

ET2 |ES(T2)

)

Pr
(

ES(T2)

)

.

and thus:

pλ = Pr
(

ET1 |ET2

)

Pr
(

ET2 |ES(T2)

)

Pr
(

ES(T2)

)

. (9)

In order for T2 to be observed by T S4c2 it is required that wen the last edge of T2 is observed on the stream at
tM
1,3,5 its two remaining edges are kept in Se. Lemma II.1 we have:

Pr
(

ES(T2)

)

=
Me

t1,3,5 − 1

Me − 1

t1,3,5 − 2
, (10)

and:

Pr
(

ET2 |ES(T2)

)

=
Me

τ t6
. (11)

Let us now consider Pr
(

ET1 |ET2

)

. In order for T1 to be found in S∆ at t6 it is necessary for T1 to have been

observed by TS4C2. We thus have that Pr
(

ET1 |ET2

)

= Pr
(

ET1 |ES(T1), ET2

)

Pr
(

ES(T1)|ET2

)

Pr
(

ET1 |ES(T1)

)

=
M∆ − 1

τ t6 − 1
(12)

Let us now consider Pr
(

ES(T1)|ET2

)

. while the content of S∆ itself does not influence the content of Se, the fact

that T2 is maintained in S∆ at t6 implies that it has been observed on the stream at a previous time. We thus have

Pr
(

ES(T1)|ET2

)

= Pr
(

ES(T1)|ES(T2)

)

. In order to study p′ = Pr
(

ES(T1)|ES(T2)

)

it is necessary to distinguish the

possible (5!) different arrival orders for edges e1,e2, e3, e4 and e5. An efficient analysis we however reduce the number
of cases to be considered to thirteen.

• tM
1,2,4 ≤ Me: in this case all edges of T1 are observed on the stream before Me so they are deterministically

inserted in Se and thus p′ = 1.
• t1 > tM

2,3,4,5: in this case the edge e1 that is shared by T1 and T2 is observed after e2, e3, e4, e5.

p′ = P ({e2, e4} ∈ Se
(t1)|{e3, e5} ∈ Se

(t1))

= P (e2 ∈ Se(t1)|{e3, e4, e5} ∈ Se
(t1)) · P (e4 ∈ Se

(t1)|{e3, e5} ∈ Se
(t1))

= min(1,
M − 3

t1 − 4
) ·min(1,

M − 2

t1 − 3
)

• tM
3,5 > t1 > max{tm

3,5, t2, t4}: in this case only one of the edges e3,e5 is observed after e1, which is observed after
all the remaining edges. Here we consider the case when e3 is the edge to be observed last. The same procedure
follows for e5 as well.

p′ = P ({e2, e4} ∈ Se
(t1)|e5 ∈ Se

(t1))

= P (e2 ∈ Se(t1)|{e4, e5} ∈ Se
(t1)) · P (e4 ∈ Se

(t1)|e5 ∈ Se
(t1))

= min(1,
M − 2

t1 − 3
) ·min(1,

M − 1

t1 − 2
)

• tM
3,5 > tM

2,4 > max{tm
3,5, tm

2,4, t1}: in this case only one of the edges e3, e5 is observed after one of the edges e2,
e4, which is observed after all the remaining edges. We consider the case when e3 and e2 are observed last. The
same procedure follows for e4 and e5 as well.

p′ = P ({e1, e4} ∈ Se
(t2)|{e1, e5} ∈ Se

(t3))

= P (e1 ∈ Se(t2)|{e1, e4, e5} ∈ Se
(t3)) · P (e4 ∈ Se

(t2)|{e1, e5} ∈ Se
(t3))

= 1 ·min(1,
M − 2

t2 − 3
)



• tm
3,5 > t1 > tM

2,4: in this case both edges e3,e5 are observed after e1, which is observed after all the remaining
edges. Here we consider the case when t3 > t5 > t1. The same procedure follows for t5 > t3 > t1.

p′ = P ({e2, e4} ∈ Se
(t1)|{e1, e5} ∈ Se

(t3))

= P (e2 ∈ Se(t1)|e4 ∈ Se(t1), {e1, e5} ∈ Se
(t3)) · P (e4 ∈ Se

(t1)|{e1, e5} ∈ Se
(t3))

= min(1,
M − 1

t1 − 2
) ·min(1,

M

t1 − 1
)

• tm
3,5 > tM

2,4 > t1: in this case both edges e3,e5 are observed after one of the edges e2,e4, which is observed after
e1. We consider the case t2 > t4 and t3 > t5. The same procedure follows for t4 > t2 and t5 > t3

p′ = P ({e1, e4} ∈ Se
(t2)|{e1, e5} ∈ Se

(t3))

= P (e4 ∈ Se(t2)|e1 ∈ Se(t2), {e1, e5} ∈ Se
(t3)) · P (e1 ∈ Se

(t3)|{e1, e5} ∈ Se
(t3))

= min(1,
M − 1

t2 − 2
) · 1

• tM
2,4 > t1 > max{Me, tm

2,4, tM
3,5}: in this case both edges e2, e4 are observed after e1, which is observed after the

edge reservoir is filled and after all the remaining edges. We consider the case when t2 > t4. The same procedure
follows for t4 > t2.

p′ = P ({e1, e4} ∈ Se
(t2)|{e3, e5} ∈ Se

(t1))

= P (e4 ∈ Se(t2)|e1 ∈ Se(t2), {e3, e5} ∈ Se
(t3)) · P (e1 ∈ Se

(t2)|{e3, e5} ∈ Se
(t1))

=
M − 1

t2 − 2
·

M − 2

t1 − 3
·

t1 − 1

t2 − 1

• tM
2,4 > Me > t1 > max{tm

2,4, tM
3,5}:in this case both edges e2, e4 are observed after e1, which is observed before

the edge reservoir is filled and after all the remaining edges. We consider the case when t2 > t4. The same
procedure follows for t4 > t2.

p′ = P ({e1, e4} ∈ Se
(t2)|{e3, e5} ∈ Se

(t1))

= P (e4 ∈ Se(t2)|e1 ∈ Se(t2), {e3, e5} ∈ Se
(t3)) · P (e1 ∈ Se

(t2)|{e3, e5} ∈ Se
(t1))

=
M − 1

t2 − 2
·

Me

t2 − 1

• tM
2,4 > tM

3,5 > max{Me, tm
3,5, tm

2,4, t1}: in this case only one of the edges e2, e4 is observed after one of the edges
e3, e5 which is observed after the edge reservoir if filled and after all the remaining edges. We consider the case
when t2 > t4 and t3 > t5. The same procedure follows for t4 > t2 and t5 > t3

p′ = P ({e1, e4} ∈ Se
(t2)|{e1, e5} ∈ Se

(t3))

= P (e1 ∈ Se(t2)|e4 ∈ Se(t2), {e1, e5} ∈ Se
(t3)) · P (e4 ∈ Se

(t2)|{e1, e5} ∈ Se
(t3))

=
t3 − 1

t2 − 1
·

t3 − 2

t2 − 2
·

Me − 2

t3 − 3

• tM
2,4 > Me > tM

3,5 > max{tm
3,5, tm

2,4, t1}: in this case only one of the edges e2, e4 is observed after one of the edges
e3, e5 which is observed before the edge reservoir if filled and after all the remaining edges. We consider the
case when t2 > t4 and t3 > t5. The same procedure follows for t4 > t2 and t5 > t3

p′ = P ({e1, e4} ∈ Se
(t2)|{e1, e5} ∈ Se

(t3))

= P (e1 ∈ Se(t2)|e4 ∈ Se(t2), {e1, e5} ∈ Se
(t3)) · P (e4 ∈ Se

(t2)|{e1, e5} ∈ Se
(t3))

=
Me

t2 − 1
·

Me − 1

t2 − 2



• tm
2,4 > t1 > tM

3,5: in this case both edges e2,e4 are observed after e1, which is observed after all the remaining
edges. Here we consider the case when t2 > t4 > t1. The same procedure follows for t4 > t2 > t1.

p′ = P ({e2, e4} ∈ Se
(t1)|{e3, e5} ∈ Se

(t1))

= P (e2 ∈ Se(t1)|e4 ∈ Se(t1), {e3, e5} ∈ Se
(t1)) · P (e4 ∈ Se

(t1)|{e3, e5} ∈ Se
(t1))

= min(1,
Me − 1

t2 − 2
) ·min(1,

Me

t2 − 1
)

• tm
2,4 > tM

3,5 > max{M, t1}: in this case both edges e2,e4 are observed after one of the edges e3,e5, which is
observed after the edge reservoir is filled and after all the remaining edges.

p′ = P ({e1, e4} ∈ Se
(t2)|{e1, e5} ∈ Se

(t3))

= P (e4 ∈ Se(t2)|e1 ∈ Se(t2), {e1, e5} ∈ Se
(t3)) · P (e1 ∈ Se

(t2)|{e1, e5} ∈ Se
(t3))

=
Me − 1

t2 − 2
·

t3 − 1

t2 − 1

• tm
2,4 > Me > tM

3,5 > t1: in this case both edges e2,e4 are observed after one of the edges e3,e5, which is observed
before the edge reservoir is filled and after all the remaining edges.

p′ = P ({e1, e4} ∈ Se
(t2)|{e1, e5} ∈ Se

(t3))

= P (e4 ∈ Se(t2)|e1 ∈ Se(t2), {e1, e5} ∈ Se
(t3)) · P (e1 ∈ Se

(t2)|{e1, e5} ∈ Se
(t3))

=
Me − 1

t2 − 2
·

Me

t2 − 1

The lemma follows combining the result for the values of p′ with (10), (11) and (12) in (B).
We now present the unbiasedness of the estimations obtained using TS4C2.

Proof of Theorem IV.5: Let t∗ denote the first step at for which the number of triangle seen exceeds M∆. For
t ≤ min{Me, t∗}, the entire graph G(t) is maintained in Se and all the triangles in G(t) are stored in S∆. Hence all

the cliques in G(t) are deterministically observed by TS4C1and we have κ
(t) = |C

(t)
4 |.

Assume now t > min{Me, t∗} and assume that |C
(t)
4 | > 0, otherwise, the algorithm deterministically returns 0 as

an estimation and the thesis follows. For any 4-clique λ ∈ C
(t)
4 which is observed by TS4C2 with probability pλ,

consider a random variable Xλ which takes value p−1 iff λ is acutally observed by TS4C2 (i.e., with probability pλ)

or zero otherwise. We thus have E [Xλ] = p−1
λ Pr

(

Xλ = p−1
λ

)

= p−1
λ pλ = 1. Recall that every time TS4C2 observes a

4-clique on the stream it evaluates the probability p (according its correct value as shown in Lemma B.2) of observing
it and it correspondingly increases the running estimator by p−1. We therefore can express the running estimator
κ

(t) as:
κ

(t) =
∑

λ∈C
(t)
4

Xλ .

From linearity of expectation, we thus have:

E

[

κ
(t)
]

=
∑

λ∈C
(t)
4

E[Xλ] =
∑

λ∈C
(t)
4

p−1
λ pλ = |C

(t)
4 |.



Appendix C.

Additional theoretical results for FourEst

Lemma C.1. Let λ ∈ C
(t)
4 with λ = {e1, e2, e3, e4, e5, e6}. Assume, without loss of generality, that the edge ei is

observed at ti (not necessarily consecutively) and that t6 > max{ti, 1 ≤ i ≤ 5}. λ is observed by FourEst at time t6

with probability:

pλ =















0 if |M | < 5,

1 if t6 ≤M + 1,
∏5

i=0
M−i

t−i−1 if t6 > M + 1.

(13)

Proof: Clearly FourEst can observe λ only at the time step at which the last edge e6 is observed on the stream
at t6. Further, from its construction, FourEst observed a 4-clique λ if and only if when its large edge is observed
on the stream its remaining five edges are kept in the edge reservoir S. S is an uniform edge sample maintained by
means of the reservoir sampling scheme. From Lemma II.1 we have that the probability of any five elements observed
on the stream prior to t6 being in S at the beginning of step t6 is given by:

Pr
(

{e1, e2, e3, e4, e5, e6} ⊆
)

=















0 if |M | < 5,

1 if t6 ≤M + 1,
∏4

i=0
M−i

t−i−1 if t6 > M + 1.

The lemma follows.
We now present the proof of the unbiasedness of the estimations obtained using FourEst.

Proof of Theorem V.1: Recall that when a new edge et is observed on the stream FourEst updates the
estimator κ

(t) before deciding whether the new edge is inserted in S. For t ≤ M + 1, the entire graph G(t) \ {et}
is maintained in S, thus whenever an edge et is inserted at time t ≤ M + 1, FourEst observes all the triangles
which include et in G(t) with probability 1 thus increasing κ by one. By a simple inductive analysis we can therefore
conclude that for t ≤M + 1 we have κ

(t) = |C
(t)
4 |.

Assume now t > M + 1 and assume that |C
(t)
4 | > 0, otherwise, the algorithm deterministically returns 0 as an

estimation and the thesis follows. Recall that every time FourEst observes a 4-clique on the stream a time t it
computes the probability p =

∏4
i=0

M−i
t−i−1 of observing it and it correspondingly increases the running estimator by

p−1. From Lemma II.1, the probability p computed by FourEst does indeed correspond to the correct probability
of observing a 4-clique at time t. For any 4-clique λ ∈ C

(t)
4 which is observed by TS4C1with probability pλ, consider

a random variable Xλ which takes value p−1 iff λ is actually observed by FourEst (i.e., with probability pλ) or zero

otherwise. We thus have E [Xλ] = p−1
λ Pr

(

Xλ = p−1
λ

)

= p−1
λ pλ = 1. We therefore can express the running estimator

κ
(t) as:

κ
(t) =

∑

λ∈C
(t)
4

Xλ .

From linearity of expectation, we thus have:

E

[

κ
(t)
]

=
∑

λ∈C
(t)
4

E[Xλ] =
∑

λ∈C
(t)
4

p−1
λ pλ = |C

(t)
4 |.

We now present the proof for the upper bound for the variance of the estimations obtained using FourEst.

Proof of Theorem V.2: Assume |C
(t)
4 | > 0 and t > M + 1, otherwise (from Theorhem V.1) TS4C1 estimation

is deterministically correct and has variance 0 and the thesis holds. For each λ ∈ C
(t)
4 let λ = {e1, e2, e3, e4, e5, e6},

without loss of generality let us assume the edges are disposed as in Figure 1. Assume further, without loss of
generality, that the edge ei is observed at ti (not necessarily consecutively) and that t6 > max{ti, 1 ≤ i ≤ 5}. Let us
consider the random variable δλ (which takes value p−1

λ if the 4-clique λ is observed by FourEst, or zero otherwise.
From Lemma C.1, we have:

pλ = Pr
(

δλ = p−1
λ

)

=

4
∏

i=0

M − i

t− i− 1
,



and thus:

Var [δλ] = p−1
λ − 1.

We can express the estimator κ
(t) as κ

(t) =
∑

λ∈C
(t)
4

. We therefore have:

Var
[

κ
(t)
]

= Var







∑

λ∈C
(t)
4

δλ







=
∑

λ∈C
(t)
4

∑

γ∈C
(t)
4

Cov
[

δλ, δγ

]

=
∑

λ∈C
(t)
4

Var [δλ] +
∑

λ,γ∈C
(t)
4

λ6=γ

Cov
[

δλ, δγ

]

≤ |C
(t)
4 |





4
∏

i=0

t− 1− i

M − i
− 1



+
∑

λ,γ∈C
(t)
4

λ6=γ

Cov
[

δλ, δγ

]

. (14)

From Lemma A.3, we have that two distinct cliques λ and γ can share one, three or no edges. In analyzing the
summation of covariance terms appearing in the right-hand-side of (4) we shall therefore consider separately the
pairs that share respectively one, three or no edges.

• λ and γ do not share any edge:

E
[

δλδγ

]

= p−1
λ p−1

γ Pr
(

δλ = p−1
λ ∧ δγ = p−1

γ

)

= p−1
λ p−1

γ Pr
(

δλ = p−1
λ |δγ = p−1

γ

)

Pr
(

δλ = p−1
λ

)

The term Pr
(

δλ = p−1
λ |δγ = p−1

γ

)

denotes the probability of FourEst observing λ conditioned of the fact that

γ was observed. Note that as λ and γ do not share any edge, no edge of γ will be used by FourEst to detect λ.
Rather, if any edge of γ is included in S, this lowers the probability of FourEst detecting λ as some of space

available in S may be occupied by edges of γ. Therefore we have Pr
(

δλ = p−1
λ |δγ = p−1

γ

)

≤ Pr
(

δλ = p−1
λ

)

and

thus:

E
[

δλδγ

]

= p−1
λ p−1

γ Pr
(

δλ = p−1
λ |δγ = p−1

γ

)

Pr
(

δγ = p−1
γ

)

≤ p−1
λ p−1

γ Pr
(

δλ = p−1
λ

)

Pr
(

δγ = p−1
γ

)

≤ p−1
λ p−1

γ pλpγ

≤ 1.

As Cov
[

δλ, δγ

]

= E
[

δλδγ

]

−1, we therefore have Cov
[

δλ, δγ

]

≤ 0. Hence we can conclude that the contribution
of the covariances of the pairs of random variables corresponding to 4-cliques that do not share any edge to the
summation in (4) is less or equal to zero.

• λ and γ share exactly one edge e∗ = λ ∩ γ (as shown in Figure 7). Let us consider the event E∗ =“e∗ ∈ St6

unless e∗ is observed at t6”. Clearly Pr
(

δλ = p−1
λ |δγ = p−1

γ

)

≤ Pr
(

δλ = p−1
λ |E∗

)

. Recall from Lemma C.1

that Pr
(

δλ|E∗
)

= Pr
(

{e1, . . . , e5} ⊆ S
(t6)
e |E∗

)

. We can distinguish two cases: (a) e∗ = e6: in this case

we have Pr
(

δλ|E∗
)

= Pr
(

{e1, . . . , e5} ⊆ S
(t6)
e

)

= pλ; (b) e∗ 6= e6: in this case we have Pr
(

δλ|E∗
)

=



Pr
(

{e1, . . . , e5} \ {e
∗} ⊆ S(t6)|e∗ ∈ S

(t6)
e

)

=
∏3

i=0
M−1−i
t6−2−i . We can therefore conclude:

E
[

δλδγ

]

= p−1
λ p−1

γ Pr
(

δλ = p−1
λ |δγ = p−1

γ

)

Pr
(

δγ = p−1
γ

)

≤ p−1
λ Pr

(

δλ = p−1
λ |δγ = p−1

γ

)

≤
t6 − 1

M
.

We can thus bound the contribution to covariance summation in (14) given by the pairs of random variables
corresponding to 4-cliques that share one edge as:

a(t)

(

t− 1

M
− 1

)

, (15)

where a(t) denotes the number of unordered pairs of 4-cliques which share one edge in G(t).
• λ and γ share three edges {e∗

1, e∗
2, e∗

3} which form a triangle sub-structure for both λ and γ. Let us refer to

Figure 8. Let us consider the event E∗ =“{e∗
1, e∗

2, e∗
3} ∩ E(t6−1) ⊆ S(t6). Clearly Pr

(

δλ = p−1
λ |δγ = p−1

γ

)

≤

Pr
(

δλ = p−1
λ |E∗

)

. Recall that Pr
(

δλ|E∗
)

= Pr
(

{e1, . . . , e5} ⊆ S(t6)|E∗
)

. We can distinguish two cases:

(a) e6 ∩ {e
∗
1, e∗

2, e∗
3} 6= ∅: in this case we have |{e1, . . . , e5} \

(

{e∗
1, e∗

2, e∗
3} \ {e6}

)

| = 3 hence

Pr
(

δλ|E∗
)

= Pr
(

{e1, . . . , e5} \
(

{e∗
1, e∗

2, e∗
3} \ {e6}

)

|
(

{e∗
1, e∗

2, e∗
3} \ {e6}

)

⊆ S(t6)
)

=
∏2

i=0
M−2−i
t6−3−i ; (b) e6 ∩

{e∗
1, e∗

2, e∗
3} = ∅: in this case we have |{e1, . . . , e5} \

(

{e∗
1, e∗

2, e∗
3} \ {e6}

)

| = 2 hence Pr
(

δλ|E∗
)

=

Pr
(

{e1, . . . , e5} \ {e∗
1, e∗

2, e∗
3}|{e

∗
1, e∗

2, e∗
3}) ⊆ S

(t6)
)

=
∏1

i=0
M−3−i
t6−4−i ;. For the pairs of 4-cliques which share three

edge we therefore have:

E
[

δλδγ

]

= p−1
λ p−1

γ Pr
(

δλ = p−1
λ |δγ = p−1

γ

)

Pr
(

δγ = p−1
γ

)

≤ p−1
λ Pr

(

δλ = p−1
λ |δγ = p−1

γ

)

≤
2
∏

i=0

t− 1− i

M − i
.

We can thus bound the contribution to covariance summation in (14) given by the pairs of random variables
corresponding to 4-cliques that share one edge as:

b(t)





2
∏

i=0

t− 1− i

M − i
− 1



 = b(t)c′

(

t

M

)5

(16)

where b(t) denotes the number of unordered pairs of 4-cliques which share three edges in G(t) and c′ = (M −
1)(M − 2)/M2.

The Theorem follows form the previous considerations and by combining by combining (15) and (16) in (14).



Appendix D.

Pseudocode for ATS4C

A. Algorithm TS4C1 description

ALGORITHM 4 ATS4C - Adaptive Version of TieredSampling

Input: Insertion-only edge stream Σ, integers M
1: Se ← ∅ , S∆ ← ∅, S

′
∆ ← ∅, M ′

∆ ← 0, t← 0, t∆ ← 0, σ ← 0, r ← 1
2: for each element (u, v) from Σ do
3: t← t + 1
4: if r = 1 then ⊲ If we are in first regimen
5: α = SWITCH()
6: if α = 0 then ⊲ Remain in the first regimen
7: Update4CliquesFirstRegimen(u, v)
8: else ⊲ First time switching
9: r ← 2

10: CreateTriangleReservoir(α)
11: Update4CliquesSecondRegimen(u, v)

12: else if r = 2 then ⊲ We have already switched to second regimen
13: if t%M = 0 then
14: UpdateMemory()

15: if t′
∆ < M∆ then

16: UpdateTriangles((u, v), t′
∆, S′

∆)

17: p∆ ← min(1, M∆

t∆
), p′

∆ ← min(1,
M ′∆
t′

∆
)

18: if p∆ < p′
∆ then

19: Smerged ← ∅
20: for each (x, y, z) ∈ S∆ do

21: if FlipBiasedCoin(
p′∆
p∆

) = heads then
22: Smerged ← Smerged ∪ (x, y, z)

23: S∆ = Smerged ∪ S′
∆

24: Update4CliquesSecondRegimen(u, v)
25: UpdateTriangles((u, v), S∆)

26: if SampleEdge((u, v), t) then
27: S ← S ∪ {((u, v), t)}

28: function Switch()
29: ps ← min(1, M

t )5

30: pα ← min(1, αM
t )4 ·min(1, (1− α) M

t∆
)2 where a = argmaxα∈[ 2

3 ,1]pα

31: if ps < pα then
32: return α
33: else
34: return 0

35: function CreateTriangleReservoir(α)
36: i← 1
37: M∆ = (1− α)M
38: while |S∆| < M∆ do
39: (x, y)(i) ← Edge observed at time i

40: for each element z from NS(i)
x,y do

41: t∆ ← t∆ + 1
42: S∆ ← S∆ ∪ (x, y, z)

43: while |S| > M −M∆ do
44: (v, w)← random edge from S
45: S ← S \ {(v, w)}



46: function UpdateTriangles((u, v), t)
47: NS

u,v ← N
S
u ∩ N

S
v

48: for each element w from NS
u,v do

49: t∆ ← t∆ + 1
50: if SampleTriangle(u, v, w) then
51: S∆ ← S∆ ∪ {u, v, w}

52: function SampleTriangle(u, v, w)
53: if t∆ ≤M∆ then
54: return True
55: else if FlipBiasedCoin(M∆

t∆
) = heads then

56: (u1, v1, w1)← random triangle from S∆

57: S∆ ← S∆ \ {(u1, v1, w1)}
58: return True
59: return False

60: function UpdateMemory()

61: t
(i+1)M
∆ = 2t

(iM)
∆ − t

((i−1)M)
∆ ⊲ Prediction of number of triangles at (i+1) step

62: ps ← min(1, M
t )5

63: pα ← min(1, αM
t )4 ·min(1, (1− α) M

t
(i+1)M

∆

)2 where a = argmaxα∈[ 2
3 ,1]pα

64: if α < M∆

M then

65: for i ∈ [1, M∆

M − α] do
66: (v, w)← random edge from S
67: S ← S \ {(v, w)}
68: M∆ ←M∆ + 1
69: M ′

∆ ←M ′
∆ + 1

70: function Update4CliquesFirstRegimen(u, v)
71: NS

u,v ← N
S
u ∩ N

S
v

72: for each element (x, w) from NS
u,v ×N

S
u,v do

73: if (x, w) in Se then
74: if t ≤M then
75: p← 1
76: else
77: p← min{1, M(M−1)(M−2)(M−3)(M−4)

(t−1)(t−2)(t−3)(t−4)(t−5) }

78: κ ← κ + p−1

79: function Update4CliquesSecondRegimen((u, v), t)
80: for each triangle (u, w, z) ∈ S∆ do
81: if (v, w) ∈ Se ∧ (v, w) ∈ Se then
82: p← ProbClique((u, w, z), (v, w), (v, z))
83: σ ← σ + p−1/2

84: for each triangle (v, w, z) ∈ S∆ do
85: if (u, w) ∈ Se ∧ (u, z) ∈ Se then
86: p← ProbClique((v, w, z), (u, w), (u, z))
87: σ ← σ + p−1/2

88: function SampleEdge((u, v), t)
89: if t ≤M then
90: return True
91: else if FlipBiasedCoin(M

t ) = heads then
92: ((u′, v′), t′)← random edge from S
93: S ← S \ {((u′, v′), t′)}
94: return True
95: return False



Appendix E.

Additional results on 5 clique counting

ALGORITHM 5 TS5C - Tiered Sampling for 5-Clique counting

Input: Insertion-only edge stream Σ, integers M , MC

Se ← ∅ , SC ← ∅, t← 0, tC ← 0, κ ← 0
for each element (u, v) from Σ do

t← t + 1
Update5Cliques(u, v)
Update4Cliques(u, v)
if SampleEdge((u, v), t) then
S ← S ∪ {((u, v), t)}

function Update5Cliques((u, v), t)
for each 4-clique (u, x, w, z, t∗) ∈ S∆ do

if (v, x) ∈ Se ∧ (v, w) ∈ Se ∧ (v, z) ∈ Se then
p← MC

tC
· ( Me

t
)3 · ( Me

t∗
)5

σ ← κ + p−1/2

for each 4-clique (v, x, w, z, t∗) ∈ S∆ do
if (u, x) ∈ Se ∧ (u, w) ∈ Se ∧ (u, z) ∈ Se then

p← MC
tC
· ( Me

t
)3 · ( Me

t∗
)5

σ ← κ + p−1/2

function Update4Cliques((u, v), t)
NS

u,v ← N
S
u ∩N

S
v

for each pair (w, z) from NS
u,v ×N

S
u,v do

if (w, z) ∈ Se then
tC ← tC + 1
if Sample4Clique(u, v, w, z, t) then
SC ← SC ∪ {u, v, w, z, t}

function Sample4Clique(u, v, w, z, t)
if tC ≤MC then

return True
else if FlipBiasedCoin( MC

tC
) = heads then

(u1, v1, w1, z1, t1)← random 4-clique from SC

SC ← SC \ {(u1, v1, w1, z1, t1)}
return True

return False

function SampleEdge((u, v), t)
if t ≤M then

return True
else if FlipBiasedCoin( M

t
) = heads then

((u′, v′), t′)← random edge from S
S ← S \ {((u′, v′), t′)}
return True

return False

Lemma E.1. Let λ ∈ C
(t)
5 with λ = {e1, . . . , e10}. Assume, without loss of generality, that the edge ei is observed

at ti (not necessarily consecutively) and that t10 > max{ti, 1 ≤ i ≤ 9}. λ is observed by FiveEst at time t10 with
probability:

pλ =















0 if |M | < 9,

1 if t10 ≤M + 1,
∏9

i=0
M−i

t−i−1 if t10 > M + 1.

(17)

Theorem E.2. Let κ(t) the estimated number of 5-cliques in G(t) computed by FiveEst using memory of size M > 9.

κ
(t) = |C

(t)
5 | if t ≤M + 1 and E

[

κ
(t)
]

= |C
(t)
5 | if t > M + 1.



ALGORITHM 6 FiveEst - Single Reservoir Sampling for 5-cliques counting

Input: Edge stream Σ, integer M ≥ 6
Output: Estimation of the number of 5-cliques κ

Se ← ∅, t← 0, κ ← 0
for each element (u, v) from Σ do

t← t + 1
Update5Cliques(u, v)
if SampleEdge((u, v), t) then
S ← S ∪ {(u, v)}

function Update5Cliques(u, v)
NS

u,v ← N
S
u ∩ N

S
v

for each element (x, w, z) from NS
u,v ×N

S
u,v ×N

S
u,v do

if {(x, w), (x, z), (w, z)} ⊆ Se then
if t ≤M + 1 then

p← 1
else

p←
∏9

i=0
M−i

t−i−1

κ ← κ + p−1

The proof for Lemma E.1 (resp., Theorem E.2), closely follows the steps of the proof of Lemma C.1 (resp.,
Theorem V.1)).
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